EWD595 - O

html transcription

On-the-fly garbage collection: an exercise in cooperation.

by

Edsger W.Dijkstra *)
Leslie Lamport **)
A.d.Martin **¥)
C.S5.9cholten ****)
E.F.M.Steffens ***)

*) Burroughs, Plataanstraat 5, NL-4565 NUENEN, The Netherlands
**) Massachusetts Computer Associates Inc., 26 Princess Street,
WAKEFIELD, Mass. 01880, U.5.A.
***) Philips Research Laboratories, EINDHOVEN, The Netherlands
) Philips-Electrologica B.V., APELDOORN, The Netherlands

Abstract., As an example of intimate interference between sequential processes,
a technique is developed, which allows nearly all of the.activity, needed for
garbage detection and collection, to be performed by an additional processor
operating concurrently with the processor devoted to the computation proper.
Exclusion and synchronization congtraints have been kept as weak as could be

achieved; the severe complexities eagendered by this goal are amply illustrated.
Key Words and Phrases: multiprocessing, fine-grained interleaving, cooperation
between sequential processes with minimized mutual exclusion, program correct-

ness for multiprogramming tasks, garbage collection.

CR Categories; 4.32, 4.%4, 4.35, 4.39, 5.23 .

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD05xx/EWD595.html

EWD595 - 1

On~-the-fly garbage collection: an exercise in cooperation.
f

1. Introduction,

In any large-scale computer installation today, a considerable amount
of time of the (genaral purpose) processor is spent an "operating the system".
With the advent of multiprocessor installations the question arises to what
extent such "housekeeping activities" can be carried out concurrently with
the computatiun(s) proper. Because the more intimate the interference, the
harder the organization of the cocperation bstween the concurrent processes,
the problem of garbage collection was selected as ane of the most challenging
--and, hopefully, most instructive!-- problems. (Our exercise has not only
besen very instructive, but at times even humiliating, as we have fallen into!
nearly every logical trap that we could possibly fall into.) In our treatment
we have tried to blend a condensed design history --in order naot to hide the
heuristics too much-- with a rather detailed justification of our final solu-
tion. We have tried to keep exclusion and synchronization constraints between
the processors as weak as pogsible, and how to deal with the complexities en-
gendered by that goal is the mein topic of this paper. It has hardly been
our purpose to contribute specifically to the art of garbage collection, and,

consequently, from that point of view no practical significance is claimed for

our solution.

We tackled ~-in the form we knew it-- the garbage collection problem as
it presents itself in ths traditional implementation environment for pure LISP.
There the data structure to be stored consists of a directed graph in which
each node has at most two outgoing edges, more precisely: may have a left-hand
outgoing edge and may have a right-hand outgoing edge, but either of them or
both may be missing. Our discussions were simplified considerably as soon as
we followed the --not unusual-- practice of introducing a special purpose
node, called "NIL" --with its two outgoing edges pointing to itself-- , and
representing a formerly miSSing;adge now by an edge with the node NIL as
its target. For us, the introduction of the node called NIL was definitely
much more than just a coding trick, for it allowed us to treat "adding an
outgoing edge to a node", "removing an outgoing edge from a node" and "redi-
recting an outgoing edge of a node", which were originally regarded as three

different operations, on the same footing, viz. as "redirecting an outgoing

edge of a node". In the sequel it will become clear that the homogeneity

EWD595 - 2

thus achieved has been absolutely essential fur our purposes.

furthermore all the nodes of the date structure to be stored are "reach-
ahle" (via a directed path along the edges) from one or more fixed nodes, called
"the roots", and modifications of the data structure are confined to redirecting
an uﬁtgoing edge of an already reachable node. The roots are given a constant
place in memory. The storage allocated to each node is constant in time and
equal in size, to be more precise: sufficient for a few bits marking infor-
mation (see later) and two addresses --for each of the cutgoing edges the
address of its tafgat node~- . Given (the addrass nf) a node, finding (the
address nf) its left- or right-hand successor node can be regarded as an atomic,
primitive action; finding its predecessor nodes, however, would imply a search

through memory.

Besides redirecting an outgoing edge of a node towards an already reachable
node, it should be possible to direct it {owards a new node, that has to be
added to the data structure; such a new node --which upon creation has only
NIL as successor node-- is taken from the so-called "free list", i.e. a
lirearly linked list of nodes that are currently not used for storing a node
of the data structure. The difference between those two typss of changes of
the data structure has been made to disappear, by linking the "free" nodes
linearly --via their left-hand outgoing edge, say-- and introducing a specisl
root pointing to the begin node of the free list.r(See Appendix 1.) Again this
is more than a mere coding trick, for now also the nodes of the free list can
be regarded as reachable. By furthermore declaring that also the special pur-
pose node NIL is a root, we achieved our next homogenizing simplification:
only one type of change of the data structure is left, viz. redirecting for

a reachable node ona of its outgoing edges to a reachable node,

Note that redirecting an outgoing edge of a reachable node may turn a
number of other, formerly reachable nodes into unreachable ones: they then dis-
appear from the data structure and become what is called "garbage™, Garbage
may arise anywhere in store, and it is the purpose of the so-called "garbage
collector” to detect such disconnected and therefore obsolete nodes and to
append them to the free list. In classical LISP implemsntations the computa-

tion proper proceeds until the free list is exhausted (or nearly su). Then

the computation proper comes to a grinding halt, during which the processor

EWD595 - 3

is devoted to garbage collection. Starting from the roots, all reachable

nodes are marked. Because we have made the nndeslof the free list reachable
from a special root, nodes of the free list (if any) will in our case be marked
as well. Upon completion of this marking phase, all unmarked nodes can be
concluded to be garbage and are appended to the free list, after which the

computation proper is resumed.

The minor disadvantage of this arrangement is the delay of the ecomputa-
tion proper; its major disadvantage is the unpredictability of these garbage
collecting interludes, which makes it hard to design such systems so as to
meet real time requirements as well. It was therefore tempting to investigate
whether a second processor -- called "the collector"-- could collect garbage
concurrently with the activity of the other pracessor --for the purpose of
this discussion called "the mutator"-- which would be dedicated to the compu-
tation proper. In order to investigate & difficult problem, we have imposed

upon our solution a number of constraints (compare [2]).

Firstly we wanted to reduce, as much as possible, the overhead on the

activity of the mutator (as required for the cooperation with the collector.)

Secondly, we wanted the synchronization and exclusion constraints between
the mutator and the collector as weak as possible. (The classical implementation
presents in this respect the other sxtreme: a garbage collecting interlude can
in its entirety be regarded as a single critical section that excludes all
mutator activity!) We wanted in particular to avoid highly frequent mutual
exclusion of "elaborate" activities, as this would defy our aim of concurrent
activity: our ultimate aim was something like no more interference than the
mutual exclusion of a single read or write of the same single variable. (Une
synchronization measure is evidently unavoidable: when needing 2 new node
from the free list, the mutator may have to be delayed until the collector
has appended some nodes to the free list. This is the now traditional prnducer/
consumer coupling; in the context of this article it must suffice te mention
that this form of synchronization can be achieved without any need for mutual
exclusion (see [31). In our very first solution the overhead on the mutator
was dependent on the question whether the collectior was engaged on an odd or

an even major cycle, a dependency which required a synchronization batween

EWD595 -~ 4

mutator and collector; in our later solutions the need for this synchronizatian

has been eliminated.) '

Thirdly we did not want the mutator's ongoing activity to impair the
collector's ability to identify garbage more than we could avoid. With a major
cycle of the collector consisting of a marking phase followed by an appending
phase, it is impossible to guarantee that the appending phase will append all
the garbage existing at its beginning: new garbage could have been created
between an appending phese and the preceding marking phase. (We do require,!
however, that such garbage, existing at the beginning of an appending phase
but not identified as such by the collector, will be appended in the next
major cycle of the collector.) Solutions we found, in which garbage created ;
during a marking phase was guaranteed hot to be appended during the next

appending phase, have been rejected for that reason.

2. Preliminary investigations.

A counterexample taught us that the goal "no overhead for the mutator"
is unattainable. Suppose that the nodes A end B are permanently reachable
via a constant set of edges, while node C is reachable only viz an edge
from A to C . Suppose furthermore that from then on the mutator performs
repeatedly the following sequence of operations
1) making an outgoing edge from B point to C
2) deleting the edge from A to C
3) making an outgoing edge from A point to C
4) deleting the edge from B to C .

The collector, which observes nodes one at a time, will discover that A and
B are reachable from the roots, but may never discover that [is reachable
as well: while A is observed by the collector, C wmay be reachable via 3
only, and the other way Tound. We may therefore sxpect that the mutator may

have to mark in some way target nodes of changed edges.

Marking will be described in terms of colours. When we start with all
nodes white, and, furthermore, can ensure that the combined activity of collector
and mutatar will maks all reachable nodes black, then all white nodes can be
identified as garbage. For each repetitive process --and the marking process

certainly is ome-- we have alwsys two concerns (see[1]): firstly we must have

EWD595 - 5

a8 monotonicity argument on which to base our proof of termination, secondly we
must find én invariant relation which, initially érue and not being destroyed,
will still hold upon termination. For the monotonicity argument we have chaosen
(fairly obviously) that during marking no node will go back from black to white,
or, stated in slightly more general terms:

"at no moment during marking nodes will become lighter".:

i
For the invariant relation --a relation which must be satisfied both before
and after the marking cycle-- we must generalize the initial and final states

of the marking process, and our first guess was (perhaps less obvious, but not

unnatural)

P1: "during marking there will be no edge pointing from a black node to a

white one",

- Additional acticn is then required from the mutator when it is about to
introduce an edge from a black node to a white one: just placing it would
cause a vielation of Pl . The monotonicity argument tells us that the black
source naode of the new edge has to remain black, and, therefore, P1 tells
us that the target node of the new edge cannot be allowed to remain white. But
the mutator cannot make it just black, because that could cause a vinlation af
P1 betwesn that new target node and its immediate successors. For that Teason
grey has been introduced as intermediate colour, and for the mutator we have
considered the action ~-of which the "shading" part can be regarded as the

overhead--

M1: "the mutator changes an edge and shades its new target" .

Note 0. The "shading"™ of a node is defined to make a white nede gray and to

leave the colour of a grey or a black node unchanged. (End of note O.)

Note !'. Disregarding P1 , the problem of node C , described at the beginning

of this section, could also be solved by changing M1 into shading the old target

instead of the new one; this would, howsver, lead to a solution of the type that

we>habe rejected at the end of section 1. {(End of note 1.)

As long as the whole of M1 , i.e. the comhined changing of an edge and

shading its new target, was taken as a single, indivisible "grain of action",

EDWS95 - 6

the invariant relation P} was sufficient for a coarse-grained solution (as
a matter of fact with the same collector as deseribed in section 3)
Encouraged by this success we tried to split action M1 up into two graing
of action, one for changing the edge énd one for shading the new target. Wanting
to keep P1, which had been so successful, invariant, we had to choose as first
indivisible grain of action the shading of the future target, and as second
grain redirecting the edge towards the node just shaded, because doing it the
other way round would have caused a temporary vieolation of P! . Our solution,
although presented in a manner sufficiently convincing to fool ourselves, con-
tained a bug found by N.Stenning and M.Woodger [6].;If, after shading the
future target, the mutator went to sleep, the collector could in its appending
phase make that future target white again, in the next marking phase it could
make the source black, whereafter the mutator would wake up again and could
introduce a black-to-white edge; the new target node could then erroneoualy

be considered as garbage.

In short: in the finer-grained solution we were heading for, total absence
of an edge from a black node to a white one was a stronger relation than we
could maintain. We could, however, retain the notion "grey" as "semi-marked",
more precisely, as representing the unfulfilled marking obligation: as before,
the marklng activity of the collector remains localized at grey nodes and their
passible white successors. Again we tried to find and justify our fine-grained
solution by using a --this time different!—— coarse-grained solution as step-

ping stona.

3. A coarse-grained solution.

Relation P1 has to he replaced by a weaker one. (It will be replaced
by P2 and P3 , as defired below,) In our previous effort we had made essential
use of the fact that, after the collector had initialized the marking phase by
shading all rxoots, the validity of P! allowed us to conclude that the existence
of a white reachable node implied the existence of a grey node (even of a grey
reachable node, but the reachability of such an existing grey node was not

essential). A weaker relation, from which the same conclusion can be drawn, is

P2: "during the marking cycle (which the collector has initialized by shadlngﬂ
all roots) there exists for each white reachable node a so-called "bra-

pagation path", leading to it from a {not necessarily reachable) grey

EWD535 - 7

node, and consisting solely of edges with white targets (and, as a con-
sequence, without black sources).”

Note 2. In the absence of edges from a black node to a white one, relation P2

is clearly satisfied. (End of note 2.)

Relation P2 is strong enough to draw at the end of the marking cycle
the desired conclusion that all white nodes ars garbage; all by itself, however,
it is too weak to be kept invariant. 1t can bs kept invariant when we restrict
the existence of black-to-white edges by P73 -~-analogous to P1 , but weaker--

given by

P3: "during the marking cycle anly the last edge placed by the mutator may

lead from a black node to a white one".

Note 3. In the absence of black nodes, P3 is trivially satisfied. (End af
note 3.)

When the mutator redefines an outgoing edge of a black node, it may
direct it towards a white node: this new edge from a black node to a white
one is permitted by P3% , but because the previously placed one could still
exist and be of the same type, we consider for the mutator (instead of the

earlier M1) , for the time being as a single grain of action:

mz2: "the mutator shades the target of the edge previously placed by it

and changes an edge".

Note 4. For the very firat time that the mutator changes an edge, we can
assume that, for lack of a previously placed edge, the shading will be suppressed
or an arbitrary reachable node will be shaded; the choice dees not matter for

the sequel. (End of note 4.)

Action M2 has been carefully chasen in such a way that it leaves P3
invariant; it leaves, however, the stronger relation P2 and P53 invariant
as well.

Proof. The action M2 cannot introduce new reachable nodes; it, therefore,
does not introduce new white ones, for which extra propagation paths must

exist. If the node whose successor is redefined is black, its outgoing edge

EWD595 - 8

that may have disappeared as a result of the change, was ngt part of any pro-
pagation path, and the edges of the old propagatién paths will be sufficient

to provide the new propagation paths. (Pussibly we don't need all of them as

a result of the shading and/or white reachable nodes having become unreachable.)
If the node whose successor is redefined was white or grey to start with, the
net result of action M2 will be a graph without edges from a black node to [
a white one: if ane existed, its target has now been shaded, and no new ons
has been introduced as the source of the new edge is not black. (It may have

been shaded!) By Note 2, P2 still holds. (End of praof.)

We have now reached the stage where we can describe our first collector,
which repeatedly performs the following program. {Our bracket pairs "if...fi"
and "do...od" delineate our alternative and repetitive constructs respectively
(see [1]), comments have been inserted hetween braces, and labels have besn
inserted for the discussion.) The program has two local integer variables

i and k ; the nodes in memory are assumed to be numbered from O through

M-1

marking phase:
begin {there are no black nodes; hence (see Note 3} P3 holds}
C1: "shade all the roots" {P2 and P3};
ir= O3 kiz= M;
marking cycie:
do k >0 - {P2 and P3}
if C2: "node nr. i is grey" -
k= M;
C3: "shade tHe successors of node nr. i and make node
nrs i black" {P2 and P3}
[€2: "node nr. i is not grey" -
ki= k - 1 {P2 and P3}
i {P2 and P3};
iz= (i + 1)mod M

od {P2 and P53 and there are no grey nodes, hence all white nodes are

garbage}

EWD595 -~ 9

appending phase:
begin i:= 0;
doi<M~ {a node with a number < i cannot be black;
8 node with a number > i cannot be grey,
and is garbage, if white}
Af C2: "node nr. i is white" -
C4: "append node nr. i to the free list"
] c2: "node nr. i is black" -

C5: "make node nr. i white”

od {there are no black nodes}

The indivisible actions of the collector --between the executions of
which actions M2 of the mutator may occur-- are '
1) "shading of a single root" (from which €1 is composed: the order
in which the roots are shaded is irrelevant)

2) establishing the current colour of node nr..i (labaled nc2n)y

3) the total actions C3 , C4 (see, however, the Appendix) and C5 .
Remark 1. With a more elaborate administration local to the collector --a
list of grey or possibly grey nodes-- a prohably much more efficient marking
phase could have been designed. For the sake of gimplicity we have not done

so._(End of remark 1.)

We chserve that (even independent of the colour of node nr. i !) action
€3 : "shade the successors of node nr. i and make node nr. i black" can
never cause a violation of P2 and P3 : the shading of the successors ean
never do any ha;m; as a result of the shading the outgoing edges of node nr.
i are no longer needed for a propagation path, and making node nr. i black

maintains the existence of the propagation paths needed, without introducing

an edge from a black node to a white one,

Marking has been completed when all grey nodes have disappeared. Its

detection by the collector, however, presents some problems. In the marking

EWD595 - 10

cycle of the collector as given above, k ig res?t to M each time the

collector encounters a grey node, and the marking cycle terminates with 8

scan past all nodes, during which no grey ﬁcdes have been encountered. If
we had only the collector to consider, the conclusion that upon termination
of the marking cycle grey nodes are sbsent would be trivial; due to the on-
going activity of the mutator -~the shading activity of which can introduce
grey nodes!-- a more subtle argument is required to justify the conclusion
that after a collector scan past all nodes, during which no grey nodes have

been encountered, there are, indeed, no grey nodes. The argument is as 'fGllowsJ

Absence of grey nodes implies on account of P2 that all white nodes
are garbage and that all reachabls nodes are black. Hence, the state char-
acterized by the absence of grey nodes is stahle during marking: the ahsence
of white reachable nodes prevents the mutator from intraducing grey ones and
the absence of grey nodes prevents the callector fram doing so. Consider now
the coliector scan past all nodes during which no grey nodes have been en-
countered. Because the mutator leaves a grey node grey, no grey node can have
existed at the beginning of that scan, i.e. the stable state must already have

been reached at the beginning of that scan.

Finally, terminationinf the marking cycle is guaranteed because of the
monotonicity of the colouring history of each nade, and because of the fact
that resetting k to M is always accompanied by effective darkening of at

least one node (nr. i to be precise).

When the appending phase starts, all reachable nodes are black and al}
white nodes are garbage. Note that the existence of black garbage is not
excluded, The appending phase deals with sach node in turn: as long as it
has not been dealt with (i.e. has a number > i) it cannat change colour:
if black, it remains black because the mutator can only shade it, and if it
ig white, it is garbﬁge and, by definition, the mutator won't touch it., As
s0on as it has been dealt with (i.e. has a number < i), it has been white
and can at most have been shaded by the mutatar. Black garbage at the bs-
ginning of the appending phase will not be appended during that appending phase,
it will only be made white; during the next ‘marking phase it will remain white,
and the next appending phase will indeed append it, Therefore, no garbage,

once created, will escape being collected.

EWD595 - 11

4. A solution with a fine-grained collector.

i/

In this section we show how the course-grained solution of section 3
can be used as a stepping stone for a solution whiceh admits, as far as the
collector is concerned, a finer grain of interleaving. In particular we shall
show how C3 can be broken open as a succession of five indivisible subactions,

say (mt and m2 being local variables of the collector):

C3.1: ml:= number of the left-hand suyccessor of node nr. i ;
£3.2: shade node nr. ml ;

C3.3: m2:= number of the right-hand successor of node nr. i ;
C3.4: shade nade nr. m2 ;

C3.5: make node nr. i blaek .

Nene of the actions C3.1 , C3.2, €3.3, and C3.4 can cause a
violation of P2 and P3 ., . The ecticns C3.1 and C3.% cannot do so because
they leave no trace in common memory, and the actions C3.2 and (3.4 cannot
do so, because shading cannot do-so. Besides that, because shading of a nods
commutes with any number of actions M2 of the mutator, we have, by the time
that the collector starts with C3.5 , a state as if the éhading of node nrx.
mi had besn part of C3.1 and the shading of node nr. m2 had oceurred
simultanecusly with C3.% . Without loss of generality we can, therefore,
continue our discussion as if "shade right-hand successor" and "shade left-
hand successor" are available as indivisible actions. The prablem, howevar,
lies with C3.5 : can we safely make node nr. i black? Note that neither
m? y mor m2 needs still to be one of its successors: m! and m2 even
never need to have been its left- and right-hand successor simultaneously!

A more thorough study of the mutator, however, reveals that it is safe.

Proof. During the marking.phase we define a changing set of edges to which we

given the meaningless term "Q-edges".

Remark 2. We could only get the argument straight after the introduction of

a meaningless term such as "Q-edges". At first we used terms like "iressential®
or "dispensable", etc., but they all messed up our thinking. The problem

is that an edge that is nati "inessential" --in the above, special meaning of

the word-- is not "essential" --in the normal sense of the word-- . It was

very instructive to experience how totally misleading the choice of so-called

D

EWD595 - 12

"meaningful identifiers™ can be. (End of remark 2.)

Remark 3. Note that we only define the set of Q-edges for our benefit. The
mutator and collector would have a hard time if they bad to update it ex-
plicitly: in the jargan the term "ghost variable" is sometimes used for such

an entity. (End of remark'3.)

The set of Q-edges is defined as follows as a function of the evolving com-
putations: '

1) at the beginning of the marking phase the set of Q-edges is initialized
with all the edges with a grey target

2) each time a white node becomes gray, all its ipncoming edges (that were
not already a Q-edges) are added to the set of (Q-edges

3) when acticn M2 , seen as a replacement of an outgoing edqe, replaces

a (-edge --or an edge that, according to the secand ruls, would have become
one ag a consequence of M2's shading act-- the new.edge that replaces it,

is also a U-edge : it "inherits the Q-ness" from the edge it replaces.

The above rules imply that a Q-edge is never needed for a propagation
path. The third rule, all by itself, implies that ance the left-hand outgoing
edge of a node is a Q-edge, it will remain so, no matter how often redirected
by the mutator, and that the same holds for the right-hand outgoing edge. In
short: when, since the beginning of the marking phase, a given node has had
a grey left-hand sucressor and has had a grey right-hand successor, it has
two outgoing Q-edges, and making it black will never cause violation of P2 .
It wan't violate P3 either: if it has a white successor, the corresponding
edge must have been the last one placed by the mﬁtatcr (it can therefare have
at most ome white successur)‘and that edge from a black node to a white one

is the edge explicitly allowed by 73 . (End of proof.)

Note 5. In breaking up C3 we have placed C€3.5 "make node nr. i black"

at the end. ~As making a nade black commutes with all other actions M2 and
€3.1 through C3.4 , we could also have placed it at the beginning, before
dealing (in some order) with the successors; P2 and P3 could then be vislated

temporarily. (End aof note 5.)

EWD595 - 13

5. A solution with a fine-grained mutator as well.

/

The treatment in the previous section was greatly simplified by the
circumstance that the mutator cauld only interfere via a single type of action:
as far as thes collector was concerned, the mutatar ectivity could be considered
as a stream of actions M2, and it was therefore, so to speak, not necessary
to take the mutator's "instruction counter" into account. It was the possibility
of this simplification that motivated us to postpone the transition to a fine-
grained mutator till the end; this postponement was the more seductive because
we thought that the following very simple argument would justify that trans-

ition.

It is obvious that no harm is done if at random moments a daemon would
shade a reachable node. We now assume a friendly daemon that, hetween any
two successive actions M2 of the mutator, shades the target of the last
placed edge, and the idea was that then it would make no difference if M2
did not do the shading anymore, and that therefore it was safe to replace M2

by the succession of the following two separate indivisible subactions:

"redirect for a reachable node an outgoing edge towards a reachable

node";

"shade the target of the edge just placed"

It‘was David Gries who pointed ocut to us that, although the conclusion
was correct, the argument contained a flaw: the friendly daemon's activity
does not exclude that, at. the beginning of an action M2 , the node just
shaded by the daemon in the meantime has been made white again by the callector,
and the combination of daemon with shading M2 is therefore not necessarily

semantically equivalent to the combination of daemon with M2 , from which

the shading has been remaved.

The fuii argument is that, with our friendly daemon, for the initial state
of an action M2 during a marking cycle we can assert {besides P2 and P3) the
absence of an edge from a black node to a white one, regardless of the quastion
whether the last shading by our friendly daemon took place during the current
marking phase or earlier: in the first case we observe that the only edge
allowed by P3 +to paint from a black node towards a white one has a target
that is at least grey, in the second case we observe that the marking phase

started without edges pointing from a black node to a white one and that

EWD595 - 14

during marking the collector cannot introduce them all by itself. As a result
of the guaranteed absence of an edge from a black node to a white one, the
proofs that M2 1leaves P2 and P3 invariant is now also valid if M2 does

not shade at all.

Remark 4. The detailed implementation of what we have described as "a grain
of interleaving" falls very definitely cutside the scope of this paper: many
techniques --even allowing concurrent access o the same unit of information--

are possible (533[3]). (End of remark 4.)

In retrospect.

It has been surprisingly hard to find the published solution and justi-
fication. It was only too sasy ta design what looked --sometimes even for
weeks and to many people-- like a perfectly valid solution, until the effort
to prove it to be correct revealed. a (sometimes deep) bug. Work has been done
on formal corractness proofs ([4], (51}, but a shape that would make them fit
for print has, to our tastes, not yet been reached. Hence our informal Justi-
fication (which we do not regard as an adequate substitue for a formal correct-
ness proof!}, Whether its stepwise approach —~which this time seems ta have
been successful in reducing the case analyses——- is more éenarally applicable,

is at the moment of writing still an open qﬁestion.

When it is objected that we still needed rather subtle arguments, we
can only agree whole-heartedly: all of us would have preferred a simpler
argument! Perhaps we should conclude that constructions that give rise to
such tricky problems are not to be recommended. One firm conclusion, however,
can be drawn: +to believe that such solutions can be found without a very

careful justification is optimism on the verge of foolishness.

History and acknowledgements. (As in this combination this is our first

exercise in international and inter-company cooperation, some internal credit

is given as WEll.) After careful consideration of a wider class of problems
the‘third and.Fifth authors selected and formulated this problem, and did

most of the preliminary investigations; the first author found a first solution
during a discussion with the latter, W.H.J.Feijen and M.Rem. It was independently
improved by the second author --to give the free list a root and mark its nodes

s well, was his suggestion-- and, on a suggestion made by John M.Mazola,

EWD595 - 15

by the first and the third author. The first and the fourth merged these
embellishments, but introduced the bug that was found by N.Sterning and M.
Woodger. The final version and its justification are the result of the four
authors in the Netherlands. The active and inspiring interest shown by David

Gries is mentioned in gratitude.

References.

1. Dijkstra, Edsger W., Guarded Commands, Nnndeterminacy and Formal Derivaticn
of Programs. Comm. ACM 18, 8 (Aug. 1975), 453-457.
2. Steele Jr., Guy L., Multiprocessing Compactifying Garbage Collection,
Comm. ACM 18, 9 (Sep. 1975), 495-508.
3« Lamport, Leslie, On Concurrent Reading and Writing. (Submitted to the
Comm, ACM.)
4. Gries, David, An Exercise in Proving Parallel Pragrams Correct. (Sub~
mitted to the Comm. ACM.)
5. Lamport, Leslie, Report CA-T508-0111, Massachusetts!tomputer Associates, Inc.

6. Woodger, M., Private Communications.

Appendix

Here we give an example of how the free list and the operations such
as taking a node from or appending a node to the free list can be implemented.
We consider the nodes of the free list ordered according to "age". For
each nods in the free list, the right-hand sveecessor is NIL y the left-hand
successor is NIL for the youngest node and is the next-younger one for the
others. We have a root called TAKE , its left-hand successor and its right-
hand successor are both the uldeét frae'nnde; we have a second root called
APF , whose left-hand and right-hand successor sre both the youngest free

nade,

Taking a free node --and making it the left-hand successar of some
reachable node X , say-- can be done in the following steps (shown in a

hopefully self-explanatory notation):

X.left:= TAKE.left; (All four actions should follow
TAKE.left:= TAKE.right.left; the shading convention chosen.)
TAKE.right.left:= NIL;|
TAKE.right:= TAKE.left

EWD595 - 16

Appending,:say, node Y --in action C4-- could be done by:

4

Y.left:= NIL; Y.right:= NIL;
APP.left:= Y;
APP.right.left:= Y;
APP.right:= APP.left

When a minimum of two free nodes ig mainitained, the collector that
appends is certain only to deal with nodes that are left alone by the mutator,
and the action C4 need not to be regarded as a single indivisible action,
but is trivially allowed toc be broken up in the above subactions. The syn-
chronization guaranteeing the lower bound for the length of the free list is

here supposed to have been implemented by other, independent means.

5th of January 1977

