EWD652 - 0
EWD652.html

A correction on EWD651.

The day after I had mailed the copies of EWD651 to its various recipients
I discovered that it was miserably wrong: the transfer from the L-group to
the R-group did not work properly. In the new version the boolean L is

replaced by the four-wvalued integer k . .

A notational difference is the introduction of the integers pL and
PR , counting the numbers of blocked processes in the L-group and in the
R-group respectively. The former variables wL and wR have disappeared,

their values being pL - nL and pR - nR respectively.

The integer k controls whether a process wifh a false guard will
arrive in the L-group or in the R-group. In contrast to EWD651, in which
the value of L was left undefined when both groups were empty, we have now
decided that the first process to be blocked will come in £he R-group, thus
being faithful to the intention of mainmtaining m = O br pL =0 or pR >0 .

Initially we have k = 1 . We shall now describe the meaning of the variable

k =0 .,

The process finding its guard false either just entered the critical
activity via P(m) or is retesting its guard; in the latter case it came from
the L—group. 1In either case it is directed towards the L-—group. During the
test of a guard with k = 0, we have pR = nR >0 , and all the processes in

the R-group have a false guard.

If the process finding its guard false just entered the critical activity
via P{m}, we had pL = pR = 0 , and the process is entered into the R-group. '
If the process finding its guard false is retesting its guard, it came from
the R-group and returns to it, and the values of the guards of the processes

in the L-group --if any-- are unknown.

Il
e

This state, which is one of the transfer states, cannot occur with m

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD06xx/EWD652.html

EwWD652 - 1

hence & process finding its guard false has not just entered the critical
activity. The process that is retesting its guard came from the L-group and
will be directed into the R-group. The state k = 2 remains until the L-group
is empty, so as to ensure that all L-processes esrape or become an R-process
before @& new process is admitted via P(m) « This is done in order to ex-

clude infinite overtaking of a process in the L-group. During k = 2 we

have pR = nR , and all processes in the R-group --if any-- have a false
guard.
k = .

This second transfer state can also not occur with m=1 . It is only
entered when in the "middle" of the transfer of processes from the L-group
to the R-group --i.e, when k = 2 -- one of the processes escapes via § .
As soon as that has happened, we are no longer sure that all processes in the
R-group have a false guard. Therefore all the processes in the R-group have
to retest their guard before the transfer from the L-group to the R-group
can be resumed. When with k =3 a process finds its guard false, it came
from the R-group and will be returned to the R-group, just as in state k =1
The values of the guards of the processes in the L-group --if any-- are un-
known, when it has been established that the R-group only contains processes
with a false guard and the L-group is not empty, the transfer will be resumed

with k = 2.

When, with pR >0 , it has been established that all processes in the
R-group have @ false guard -- pR = nR -- the primary case distinction is
whether the L-groyp is empty or not. In the first case, the critical activity
is terminated via V(m)‘with k = 0, because a new process that blocks itself,
should do so in the L-group. In the second case --because when processes
from the R-group are tested, the guards of those in the L-group are never
'knﬂwn—— those in the L-group have to retest their guard. The last Prucess
(re)entering the R-group did so with k =1, 2, or 3 ; the L-testing has to

be resumed with k = 0, 2, 2 respectively, hence the

do odd(k) — ki=k - 1 od .

Upon completion of an S , when there are no blocked processes, the

critical activity is terminated via V(m) with k =1 , hecause the first new

EWDER2 - 2

pb, nL :=pL + 1, nL + 1;

if pb >nL - v(tL)] pL = nb = v(m) fi;
P(sL); nLi= nb - 1;

_i_tnL>d-.v(sL) I nL=0-v(t) fi;
P(tL); pb:= pL - 1

x>0

PRy, nR :=pR + 1, nR + 1;

if pR > nR - V(tR)

ﬂ pR = nR -

if pb = 0 = k:= 0; V(m)
[oL >0 —~ do odd(k) = ki= k - 1 od;
if b >0 - v{sL) [nL = 0 — v(tL) fi
fi
Fi;
P(sR); nR:= nR - 1;
if nR >0 - V(sR) [nR = 0 = V(tR) fi;
P{tR); pR:= pR - 1
fi
od;
Si;
Aif pR = 0 -
if pL = 0 = k:= 1; V(m)
l pL >0~ ki=2; 3£ nL >0 = v(sL) [nL =0 = v(tL) fi
fi
ﬂ pR > 0 -
da even(k)} - ki= k + 1 od; if nR >0 = V(sR) [] nR = 0 - V(tR) fi
fi

blocked process should be entered into the R-group. Dtherwise testing is
resumed with priority to the R-group. If the R-group is empty —-possible
values of k are 1, 2, and 3 —- the transfer from the L-group to the R-group

is started or continued with k = 2 , because the R-group (being Bmpty) contains

EWD652 - 3

no processes with a possibly true guard. If the R-group is not empty, the
testing of the R-group is started or continued. The S has been executed
with k = 0,71, 2, or 3 ; testing will be resumed with k=1, 1, 3, 3, hence

the do even(k) - ki=k + 1 od

independent of the question whether the L-group is empty or not.

ote. The integer k was introduced when I had discovered the need for the
state k = 2 , but not yet the need for the state k = % . Had I foreseen
that fourth state, I would have used a second boalean , 1if say ("transfer"),

and would have coded

k =0 as L and pon tf

k =1 as non L and non tf

k =2 as L and tf

k =3 as non L and tf)

and the statements: do odd{k) — ki= k - 1 od and do even(k) - k:=k + 1 od
simply as: L= true and L:i= false

respectively. (End of nnte.)

I can only describe the blunder of EWD651 as "most instructive, because
I know exactly how it occurred: we did not stick to cur own rules, fell back
into our old bad habits and rushed into coding! Besides that the whole ex-
perience provides a (totally unintended but welcome) confirmation af my often
stated conjecture that pictures give a false sense of security. Although

somewhat humiliated I am actually glad that I blundered so clearly!

I wish everybody a happy 1978!

Plataanstraat 5 prof.dr.Edsger W.Dijkstra
5671 AL Nueren Burroughs Research Fellow
The Netherlands

