EwWD719 - O
EWD719.html

On not duplicating valatile information.

In EWD718 I have described the assembly conventions for the EDSAC.
With one aspect of the problem they dealt quite satisfactorily, viz. with
the problem of extracting a sublibrary from the total library of subroutines.
A characteristic of the organization was the introduction of a closed nomen-
clature for the elements of the extracted sublibrary, this in contrast to
the open nomenclature for the elements of the total library. Less satis-
factory was the free duplication (or the uncontrolled dissipatinn) of all
sarts of allocation results formed in the varicus stages of the assembly

Process.

In the EDSAC organization cne could get away with the crude solution
of duplication thanks to a number of simplifying circumstances. [mention

the following ones:

a) Always the whole machine was allocated to the execution of a single
program; as a result it sufficed to have an organization that could embed
the assembled program in that fixed and constant environment as provided by

"the machine".

b) The machine was "simple" in that it had only a one-level store in

which each location was as good as any other.

c) The main components of the assembly --master routine and library sub-
routings-- were “"simple"™ in the sense that they were components of a con-

stant size that was well-known 1n advance.

In short: the problem of duplicated volatile information was avoided by not
introducing volatility. In this note we shall attempt a more systematic
study of the ways in which duplicated volatile information can be avoided:

we can try to avoid either volatility, or duplication!

A crucial observation is that some duplications are unavoidable, at
leagt if we accept as dogma the purpose of creating an environment from
which the open nomenclature that covers the whole library has disappeared.

A program may call explicitly the library subroutines A and B , both of

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD07xx/EWD719.html

EwD719 - 1

which may need library subroutine C ; in that case the preset parameters
of A as well as those of B will contain a reference to C . As the
dogma excludes the use of the library name of C(in those preset parame-

ters, a local terminology has to be duplicated.

Because we want to avoid the duplication of volatile information,

these multiple references to £ must be in a nomenclature that we can af-
ford to keep constant. In the EDSAC conventions we have seen two technigues.
Without the assembly routine M1 the programmer had to decide the storage
layout once and for all, and the references to C in the preset parameters
of A and B would be in terms of the address of C's “first instruction".
With the assembly routine M1 the preset parameters of A and B could
refer to C in terms of its "ordinal number”, The latter has the advaniage
that then the references are independent of the lengths of subroutines {as

implied by their allocatian in stare).

if we take a program as the unit of assembly, we are allowed to take
each subroutirne's ordirmal number in that program as providing a sufficiently

constant nomenclature that we may duplicate in the preset parameters.

Having thus avoided duplication of first addresses of subroutines on
the input tape we should explore what would be involved in keeping them vol-
atile, The answer is simple: don't copy them, neither during program as-
sembly, nor during program execution., Still confining ourselves to the sit-
uation in which the complete machine is at a single program's disposal, we

come to the following machinery during program execution.

To start with we would need --with apologies for the acronym-- a pro-
gram routine table PRT with an entry for each ordinal number used in the
program; each entry will "lead to" -~and here I have ih}%\‘"bﬂ&“‘j UsSach o
vague terminology-- the corresponding routine's current "address of first

instruction®,

The program routine table PRT is needed to call a routine: given

the routine's ordinal number it will provide the current address of the rou-

EWDTI9 - 2

tine's first instruction, an address that is needed for the selection of
the next instruction to be executed. The access to PRT in order to pro-
cess the ordinal number of the called routine introduces some overhead on
the procedure call; as soon as the routine has been called, however, its
successive instructions can be selected with full speed as before, if we
maintain the EDSAC's "instruction counter" as the register containing the

address of the location containing the next instruction to be executed,

Note, however, that maintaining such an instruction counter is a dan-
gerous thing to do: upon subroutine call it is filled with a copy of "the
address of the routine's first instruction™, information that we wanted to
keep volatile! We must keep such an undesirable copy under strict control;

I suggest that we do not allow further copies of it to be made. This implies
that we must provide an alternative for the EDSAC way of supplying at sub-
routine call the return information. Instead of copying the contents of the
imstruction counter --i.e. supplying the current address of the call-- we
must supply a non-volatile characterization of the place of the call., With-
in the context of the program such a non-volatile characterization is pro-
vided by the ordinal number of the calling routine, together with the call's
position relative to the location of the calling routine's first instruction.
From the need to provide such non-volatile return information we deduce that
in addition to PRT the machinery requires a further status variable, CRN
say, for the "Current Routine Number". 1In the subroutine call CRN is re-
defined and set to the ordinal number of the routine called, while its old
value is saved in the return information; wupon return from the subroutine
it is reset to the ordinal number of the calling routine, whose execution is
continued. (The status variable CRN can be viewed as a non-volatile ex-

tension of the instruction counter.)

So much for not duplicating addresses of first instructions. What
about the ordinal numbers? As long as each single program has the whole
machine at its disposal and can be regarded as a unit of assembly, the sit-

uvatian is relatively simple.

On the final tape each library subroutine is punched in terms of clos-

EWDT719 - 3

ing letters and preceded by cantrol combinations that define the preset pa-
rameters in terms of ordinal numbers that are subsiitued for the closing
letters during the input of the program. As a result the subroutine call
as stored contains, just as the return jump generated during program execu-
tion, the ordiral number of the target routine. The entries of the FPRT

contain for each routine the address of its first instruction.

An alternative would have been not to process the preset parameters
during program input by substituting them for the closing letters, but to
store them in little tables, one for each subroutine. We might call them
SCLT's, short for Subroutine Closing Letter Tables. The 5CLT belonging
to & subroutine would contain an entry for each closing letter used in the
subroutine; each entry would mention the ordinal number of the subroutine
corresponding to the closing letter in question., &£ach PRT-entry would
lead, besides to the address of the subroutineg's first instruction, to its
SCLT, e.g. by mentioning the latter's starting address. The bit patterns
representing the library bodies are now allowed to contain their original
closing letters; during program execution each closing letter can be trans-
lated into the corresponding ordinal number because the current SELT can
be accessed because its starting address can be found in the PRT under
control of the current routine number CRN . (This would be a second use

of the status variable L[RN .)

The second alternative has been mentioned, not because it is particu-
larly attractive, but because the first alternative --substituting the or-
dinal numbers all through the binary texts-- does not work as soon as we
wauld like to store several programs simultanecusly, but in such a way that
they can share the bit patterns of library subroutines used by several of
them. The ordinal numbers supply per program a closed terminology for the
library subroutines used in that very same program. The sublibraries ex-
tracted for the different programs will, in general, overlap only partly;
it is, in general, therefore unavoidable that the same library subroutine
will be denoted in different programs by different ordinal numbers. In the
cagse af simultaneausly stored programs sharing the bit patterns of common

library subroutines the first alternative therefore doesn't work.

EWD719 - 4

In order not to complicate matters still further we shall assume from
now on that the mutual dependence of library subroutines as to be catered
for by program assembly is fixed by (the current state Df) the library, i.e.
we now disregard the form of programmer control over the assembly process as
mentioned in the Note on pg. EWDT718 - 7., Under that assumptian the mutual
dependence of the library subroutines is fully determined by the union of
the subroutines possibly needed by each of the programs. For the sake of
the argument 1 assume that that union is still a small fraction of the total
library, small enough, in any case, to justify extraction and intreduction
of a "union nomenclature" that only covers the union of the library routines

possibly needed by the currently loaded programs.

The fact that we have to play a new sort of game may dawn upon us as
soon as we realize that, without renumbering, it is impossible to keep the
union nomenclature fully closed. When only the first program is loaded the
union nomenclature can be kept closed. When the second program is loaded in
addition to the first, we can still keep the union nomenclature closed by
assigning the next numbers to the further library subroutines needed by the
second program. Because at the moment of the loading of the first program
it was unknown which library procedures it would share with the second pro-
gram, gaps in the union nomenclature must be expected when the execution of
the first program terminates before the execution of the secand program does
so. By always assigning in the case of extension the first currently free
number --"trying to fill the left-most gap"-- we seem to do the best we can
do when we wish to keep the nomenclature as well closed as possible: thus
the maximum value assigned never exceeds the union's maximum size in the
past. 1In this case 1 think that the first free number strategy is quite ac-
ceptable and I assume in the sequel that it has been adopted for the union

nomenclature.

It stands tao reasan to expect, analagously to the PRT for each pro-
gram, for the installation as a whole a URT , short for Union Routine Table,
with an entry for each routine of the library that may be needed by at least
one of the programs currently loaded. In contrast to the PRT's, the URT

need not be fully closed: in the middle of it we may have entries marked:

EWD719 - 5

"currently free". While a member of the union of selected subroutines, each
subroutine has a constant "union number”, which acts as the selector for its

entry in the URT

Again we have essentially two choices for the bit pattern to be stored.
In the one case we regard the union nomenclature sufficiently constant to
allow its duplication. The role of the PRT in uniprogramming is fully
taken over by the WRT , and all programs and all subroutines refer to the
subroutines in terms of union numbers. The machine needs the status variable
CRN as before, the only difference being that its cantents is now inter-
preted as union number, the ordinsl numbers having disappeared from the
scene. Also all return information is represented in terms of union numbers.
A consequence is that when the same program is loaded at two different oc-
casions, the bit patterns representing the program at those two occasions
will differ from each other, the union numbers used being all different.
Such free duplication of union numbers makes the internal representation of
each program dependent on the environment in which it happens to be embedded,
and I do not regard that as very asttractive: such an organization really
forces us to treat union numbers used by a program as non-volatile during its

complete execution.

Suppose now that in our multiprogramming enviromment we would like to
be able to interrupt a program execution, but in such a way that an inter-
rupted computation can be resumed at a later stage, say a2 week or a month
later. Suppose, furthermore, that during the interruption the installation
proper must be able to shed the interrupted computation completely, i.e. all
information pertaining to the interrupted computation will be dumped or an
external medium --a megnetic tape, say-- and the installation proper must be
allawed to continue operating fully independently af the fact that there ex-
ists an interrupted computatien to be resumed at some later moment. Well,
that implies that we cannot allow the interrupted program to "reserve" unioen
numbers: upon resumption it has to refer to the library subroutines in a
different unign nomenclature. In other wurdé, we now have to consider the
union nomenclature as volatile and, therefore, have to ask ourselves how its

free duplication can be avoided.

EWD719 - 6

We can solve the problem by a proper combination of the machinery con-
sidered previously, extended with one status varisble (which is really a
consequence of the transition from uni- to multiprugramming); I shall call
this statusvariable CPR , short for "Current Program Reference". In the
order of increasing multiplicity, the machinery consists of the following

companents.

0. For the installation proper as a whole:

0.0 a Union Routine Tahle URT
selector: wunion number
entry : address of subroutine's first instruction
Remark. Duplication of union numbers occurs, but is restricted: a
routine's union number occurs in one PRT-entry of each program that needs

the routine, directly, or indirectly. (End of Remark.)

g.1 a status varisble CPR equal to the starting address of the PRT of

the program currently under execution

0.2 a status variable CRN egual to ordinal number of the currently ex-
ecuted routine, as assigned to it in the program currently under ex-

ecution.

1. Per program loaded:

1.0 a Program Routine Table PRT
selector: ordinal number
entry t routine's union number (see Remark under 0.0)
starting address of routine's OSCLT in this program.
Remark. Duplication of ordinal numbers occurs, but is restricted: a
routine's ordinal number in this program occurs in one SCLT-entry for each
subroutine selected for this program that refers to it; furthermore crdinal

numbers are duplicated in the return information. {(End of Remark.)

2. Per program loaded per subroutine selected for it:

2.0 a Subroutine Closing Letter Table

selector: clasing letter

EWD719 - 7

entry: ordinal number in this program of the subroutine the

closing letter refers to (see Remark under 1.0)

The bit patterns representing the library routine bodies contain their
original closing letters. The closing letters provide a terminnlogy local
to the binary text, which is translated via an SCLT in the terminoclogy local
to the program in which the routine is invoked:; wvia a PRT this terminology
local to the current program is translated into the union nomenclature. (Note
how the PRT is determined by the current program, and the SCLT by the cur-

rent program/routine combinatiun.)

It first sight it seems a tortuous way of doing, Consider a library
routine A with union number UA , calling a library routine [with wnion
number UC ., Let A be called from two programs in which it haz the ardinal
numbers O0At and O0A2 respectively, and in which the library routine C
has the ordimal numbers O0OC! and OC2 respectively. The closing letter
under which the binary text of A refers to [has always to lead to UC,

but the — due }o }echnical }roukle in the }npewri\~ef com Yinued
n homdwrilin%_ Po}k cx\cm% which dg'pends o~ the '\c\em"i\-b
0? the Curfeml' progrom: with OR¢ Se‘echns n PRT(
the SDCLT s ?ouw\cl hol contains the emlrn OCe¢ with
OC¢ seleching m PRI we geb UC . TThe point is
hat besides ucC R Lhich moy I__?_" be Olu.}o\ica"ec‘, we
heed OC:¢ as well, homels ?ar }he relurn in?o-rrno.}im
omd ?cn‘ bhe Se*)-ins U’P CRN.

Revmark., Ln the meombime the ﬁexi\bi\i\-:) Ynen honeol
in the Note on)og EWD718-7 s back again . (End

cr? /Remar\?.)

Historical No‘e. The \os\' o-rso.mza\iom descri\oedx is
much more ambikious than 1 dared Yo consider whie

EWDF19-8

destgn'ma ‘}he THE Nu“‘iProaro‘mminﬂ Stﬁs\'em in -Hwe

mid-‘sikhes. —nne rob)em 0O Sub\}\oronj Se\echc«n

wos owoided ‘133 a\w%s S\-orinej "%e, (‘crmp\e\-e \i-
bror(j) tohich wasn'} Very \315, m the ’ms)u“a)lan

proper , ohich | an,.-.\es lo ks drum , had a shore
Yhat ,a} e -hme. was Considereol }orse.

In Po-rma\-icm)to be s\‘mol was Su‘bdivideo('mh;

$0-Ca“€d ”Paaes” =Yy ConseCuxlveluj hum\aereot

words durins i}s \iPe.})me each Pege was iden -
h?’led. \3-3 O unigue br}' \oduern ’ Fhus \omvia‘ing a

”g\obal "’ Nnomen c\a\'ure » w\nic)\ Was Qee\a du.]a\ica‘eo\
ol '»\r‘ouﬁ)w the Scj.s\em. As a result Me library

Waos U‘@zr&)"’opro{ }o CLane 5 éven ex}'%dins i\' wos
no\' S‘\mp\e.

Furthermore i} had 3o be o so-called “Vood-
%01—30‘535\'%: Clurih?_} Pmsram Camp;\o.\rion one
OF more YPoage Jromes In coare would be allocated
Yo -“ne P'Of’)mm ()w -»te Course oP i)s enkire CxeCu\-im
omd the numbers UP Yhese 1fovmes weuld be Preelb
d‘u}o\ico\)eo{ o O‘P Yhe o):i)ec }ex}! Laler we had

o asions ; } ur Voss \xi'b;h)
CEan OE)CC\:')]:}Q.-;CQ\ ON:\.QS-Q ° °° OP Pe LU

Q(’ﬁna-r\i. Ih nne \as\' O\rrOvnsemem\‘ \%e Olup]ica\—imn
U’? Uuniemn hum‘be«r’s 1S So modes} 'n')au“ \“enumbering
COn]06 Comsidered. Ds a reSu“"H:e (‘ou\Ol Yémoain

o closed ¥0¥mmo\og,c3. (End oP(Re/mor\h)

X *
L

EwDFg -9

While Carrying oul +he above Omo\casis T was
P\easanuuj Surprised Wwhemn o\osef-rviha how C‘Ew
the %Md%ce wos Jhol come ?rom Yhe commbination
0'?'”12 hwo design Princ;)p‘es — avoid -\—)ne, Qequ‘w}
Processma o open hom%c\a\-ures omok aveid -lhe
dup\ica\-imn o Vo\o\-i\e in-Po-rmalion—.. -nwe pr‘mci)o\es
%em Se\ves Qre ho} Vevrn Sur‘pr'nsmg,)Du)- H\eﬁr‘ Com-

}D'nncn\'icrn 15 Sur’:ris'mg\s eg)ec)-'rve.

R Bho\\ r‘emar\R S\'\O‘JO‘ \ae made . \J}m\- S%ou\o‘)oe

%

regardeoi as '”Vo\o}i\e” oy as hcm—Vo\a\-‘;\e " 91‘303.\5
depends ow he envisaoed Way o? using, the in-
5)"0\\‘0)"\%: remem\;e«- -\'\'Io.\‘ Anier ﬂumb% s\wu\o\ Be
reogorded as Vo\a)r'n\e. W\\em We W%}' XQ révmove
}:?errup)eo(CO’W\}O\A\'O\)'IOT\S Pro-m ”\2 'ths.\'o.“o\\‘icm oro per
in 2uch o Woy Hok -)'\\eﬂ com be resuwmed laler.
Bu} ol::se,rve lr\'-e. irnP\u&nce an -n\e]’JroPoSeo{ mo;c.\wi-
her:j‘. T\'\is was oan ‘\«n{)\u%ce q)- qw\e o O\e‘oi\ed
Jevel. T} gives an indicalon wha machine chesign
15 Se hard. 1 n\in\? Y WOu\d Be kri“ing ¥0 olePGmd
Yhe \C\s} arraﬂe)m%},euen i? 13 Yurns ou\' H—.p}

no one buis)\es ;0 ‘m}efm]:} me‘n\ﬁms, \:}us} Yo

be sale!

Platoonstraat S 29 Oclober 1479
5671 AL NUENEN Pder. Edsger \\I.’Dg\?s\rra
The Netherlomds r‘_?)urroudns Wes earch Telow

