EWD1024 - G

A new science, from birth to maturity

(Talk held at the Anniversary Celebration ‘of the Department of Computing Science,
ETH Zirich, on 19 October 1988.)

If we put the birth of Computing Science at the advent of the program-controllec
computer, the topic is about four decades old. These have been exciting decades
and I am grateful for my good fortune of having been involved for most of that
period, grateful because this involvement enabled me to observe that whole process
of growth from close quarters. My observations cover the whole gamut, ranging
--as they do-- from the stage that Computing Science hardly existed to the current
stage in which Computing Science is a vigorous and flourishing discipline whose
academic viability is no longer in doubt. An additional reason for personal
gratitude is that, during most of my involvement, my travels frequently took
me to the other side of the Atlantic Ocean. Such mobility has been essential
for observation "from close quarters" because American and European Computing
Science evolved guite differently. We shall return to that difference extensively.

Of course I realize that reducing the globe to just two continents is a
rather strong simplification of geography, and that,in a comprehensive study
of the history of computing science,much finer distinctions would be needed.
But I am not a professional historian and hope that you will allow me to make
this geographical simplification. In the same vein T hope that you forgive me
when, for the sake of simplicity, I cut the forty-year period up into four decades,
each of them with a rough characterization: we could characterize the fifties
as the decade of hardware, the sixties as the decade of syntax, the seventies
as the decade of semantics, and the eighties —-tentatively, for the decade is
still young-- as the decade of synthesis.

The fifties

My characterization of the fifties as the decade of hardware is not surprising
and easily justified. The whole field began with the conception of the program-
controlled computer for which von Neumann got the credit that may be due to
Turing . Buildirg such a machine so that it was sufficiently reliable was, at
the time, at the limits of technology --if not beyond!-- and it is only too under-
standable that, at the beginning, the physical equipment attracted all the attention.


../transcriptions/EWD10xx/EWD1024.html

EWD1024 - 1

Accordingly, most of the inventions of the fifties were aimed at higher
speeds, larger stores, and greater reliability. I mention as examples: transis-
tors and ferrite cores, the parity check, the B-line --later better known as the
index register-- , the real-time interrupt, automatically managed multilevel
store, and the timid beginnings of multiprocessing. Those were the days when
the goals could easily be guantified: speeds in number of operations per secend,
store size in bits, and reliability in MTBF. (The last term, standing for "Mean
Time between Fallures", strongly suggests that machines caontinued to be expected
to fail frequently.) The significance of this decade is best appreciated by
realizing how many of these innovations are still with us, in one form or the
other.

In all three technical respects, progress was impressive indeed. To give
you one example: I remember that we accepted, almost as a Law of Nature, that
machine speeds doubled each year, and all of you know that that amounts to a
factor of one thousand over the decade. But there is no such thing as a free
lunch, and the price we paid was heavy: programming remained a haphazard activity.
Firstly, programming was hardly seen as a problem; most people felt that program-
ming required na more than accuracy and enough computer access and sufficiently
short turn-around time to debug your programs. Secondly, in thase equipment-
oriented days, programming was viewed as intrinsically tied to a specific machine;
consequently, the greatest expert in the cunning exploitation of specific machine
features was regarded as the best programmer. 7o put it bluntly, the distinction

between a programmer and a hacker had not yet been made.

For the sake of completeness: it was not a decade of hardware progress
only. The fifties saw a number of efforts to ease the coding problem, such as
autocoders and FORTRAN, but, true to the spirit of the decade, each of these
coding aids was aimed at a very specific machine. Consequently, it remained
very hard to see programming as something to which science could contribute.
Finally, the fifties gave us the professional societies such as the ACM and the
BCS; true to aforementioned spirit of the decade, their names refer explicitly
to the equipment. They were not scientific societies, but professional ones,

in which practitioners could exchange their experience.



EWD1024 - 2

The sixties

Let us turn our attention to the rmext decade, the sixties. Its first month
witnessed an amazing landmark in the international history of computing, viz.
the publication of the ALGOL 60 Report, edited by Peter Naur. Three facts stand
out: firstly, ALGOL 60 was truly the outcome of international cooperation
in the best sense of the word, secondly, it has never been doubted that it was
an achievement of the highest scientific standard, and thirdly, at either side
of the Atlantic Ocean, its fate was totally different. At both sides it was

instrumental in giving shape to a young science, but the shapes were very different.

ALGOL 60 was a breakthrough by virtue of

its block structure

its parameter mechanism

its inclusion of recursion

its inclusion of the type Boolean

its "cleanness” (e.g. the absence of special constraints on index expressions)
the formal definition of its syhtax

B W N = O

the nonoperational definition of its semantics (to the extent that it was
not immediately clear how to implement it)
its stability (due to very few trouble spots)

its machine-independence.

Compared to the culture of the day, this is a truly impressive list! Allow
me to highlight three seemingly minor points. With its unambiguous identity
and scope of local variables, the block structure incorporated a radical improvement
over standard mathematical practice in which both identity and scope of dummies
are often not defined beyond "but every mathematician knows what is meant".
As to recursion, the mathematical definition of a continued fraction was "a fraction
whose numerator is an integer and whose denominator is an integer plus a fraction
whose numerator is an integer and whose denominator is an integer plus a fraction
and so on". The proper definition of a continued fraction is of course "a fraction
whose numerator is an integer and whose denominator is an integer plus a continued
fraction". [For heaven's sake, don't underestimate the quantum leap of this improve-

ment. A few years ago, I guoted these two definitions of a continued fraction




EWD1024 - 3

as an example of progress. I later heard that from this example a famous scientist
in my audience, Fellow of the Royal Society and all that, had concluded that

I was mathematically incompetent because everyone knew that circular definitions
did not make sense.] The introduction of the type Boolean as a first class citizen
is a similar milestone: to this very day, the standard mathematician cannot

read a Boolean expression without interpreting it as a statement of fact, and

for him 0 = 1 is "wrong", rather than one of the many expressions that has

the value false .

ALGOL €0 was conceived at a time that business administration and numerical
computations were viewed as the main computer applications, but the mere presence
of the ALGOL &0 Report made it immediately obvious that there was more to program-
ming than coding for these two types of applications: some people would have
to write the ALGOL compilers! Besides being viewed as data processor and as
calculator, the computer became more widely viewed as symbol manipulator as well.
ihe formal definition of the syntax was an invitation to approach the compilatiornf
in a less ad-hoc manner. Moreover, the combination of block structure, parameter
mechanism, and recursion offered the possibility of a clean presentation of algo-
rithms of a novel degree of sophistication. The topic was no longer "trivial®
and computing science became conceivable as an academically respectaple discipline.
ALGOL 60 has been more than a scientific landmark: politically, it has been
an indispensable stepping stone for Computing Science on its way to academic
respectability. fﬁ nroblem
As sald, the two sides of the Atlantic Ocean received ALGOL 60 very dif-
ferently. The superficial story i1s that ALGOL 60 was widely received in Europe
but rejected in America, where it failed to dislodge FORTRAN . I8M had penetrated
the American system of higher education by giving the more prestigious universities
its machines almost for free, thereby haoking those universities, while European
academia had had the good fortune of having been spared that largesse and had
remained free, etc. Though not without a germ of truth, this story is really
too superficial, for even American universities can unhook themselves if they
really wish to do so. The story of ALGOL 60's different fates needs refinement,
and so does its explanation.

In America, where, within a few years, Perlis coined the term "ALGOL-like



EWD1024 — 4

languages", the study of formal languages quickly emerged as a scientific topic
in its own right and ALGOL 60's main role was to provide the initial paradigms
for that scientific inquiry. It was hardly viewed as a venicle for serious pro-
gramming. And it is precisely in that last capacity that ALGOL 60 drew most
of the European attention. Europe gquickly implemented ALGOL 60 in its full
glory and used it; Tony Hoare's "quicksort" convinced the last doubters that
the inclusion of recursion was more than a whim, "Jensen's Device" showed the
full power of the parameter mechanism, and, thanks to ALGOL 60 , programming

could, and did, become serious business.

The next decade would drive that difference in attitude home to me. At
conferences in the USA, the following conversation became a standard ingredient.
Question: "And, Dr.Dijkstra, what are you currently working on?"

Answer: "Progrémming."

Reaction: "Ah, I see: Programming Languages. How interesting."

But I am rushing ahead. Both camps took ALGOL 60 seriously, both viewed
it as an opportunity and incentive for scientific investment, but they stressed

different aspects, viz. formal languages versus programming. How come?

There was an obvious difference in timing. World War II had left the USA
with a thriving economy and industry, while those were a shambles in Europe.
By 1960, Europe's recovery was well under way, but powerful computers were still
much less common than in America. It is understandable that the need for something
that would deserve. the name of Computing Science was felt more urgently in America
than in Eurcpe. Moreover, the fence around the campus that separates the academic
world from the rest of society is traditionally much lower than in Europe. Finally,
the legal status of most European universities is such that establishing a new
academic discipline usually requires a few decades of lawmaking. Finding ocut
how the techniques of scientific thought could be applied to meet the programming
challenge was a less tangible and more distant goal than developing formal language
theory: the latter topic was much more in line with the mathematical tradition
of the day and thus a target within reach. Urgency and opportunity thus made
it in the sixties a cornerstone of America's budding computing science. So much
for the difference in timing.



EWD1024 - 5

Another explanation for the different reactions to ALGOL 60 can be found
in a traditional difference in technological priorities. Right from the start,
American computing has been much more concerned with attaining speed than with
reducing equipment, be it circuitry or storage size. There is a very simple
econamic/technological explanation for this: after World War II, none of the
European laboratories had the resources needed for the development of the fastest
machines conceivable at the tihe. But that is only part of the explanation,
for there is also a cultural difference, as mentioned in passing by Alice S.Rossi*
in 1964: "Americans are easily impressed by large numbers.". By the time ALGOL &0
came around, this aspect had already created two completely different computing
cultures. I remember a conversation in 1962, in Rome. We were sitting around
a coffee table. One American boasted that he had made an "algebraic translator"
of 50,000 instructions, only to be immediately outdone by one of his compatriots,
whose algebraic translator comprised no less than 80,000 instructions. Peter
Naur broke the subsequent silence of awe by remarking that he had written an
ALGOL translator of 5,500 instructions, upon which I could outdo him with a compiler
of only 2,700 instructions. In short: our yardsticks for achievement measured
in opposite directions!

The American priority to speed had two direct consequences. Firstly, American
computing all but ignored, as too time-consuming, the closed subroutine, which,
right from the start, was the cornerstone of European computing. This attitude
would culminate in the design of the IBM/36C whose large number of explicitly
named registers actually defied a reasonable implementation of closed subroutines.
Secondly, American computing ignored ALGOL 60 as a serious programming vehicle
because --rightly or wrongly-- it was felt that ALGOL implementations were too

slow.

The sixties were the decade in which automatic computing began to gain
academic respectability, and academic departments started to emerge. The American
departments were, on the whole, soconer to be institutionalized. They were also
more ready to incorporate application areas as part of the departmental respons-
ibility, and to this very day you can find in American universities areas such

as numerical analysis and artificial intelligence being a part of the CS Depart-

* In fact in a footnote to her article "Eguality between the Sexes: An Immodest

Proposal",



EWD1024 - 6

ment.

Further American contributions from the sixties were symbolic pracessing
--I mention LISP-- and complexity theory. They were gratefully incorporated
in the American CS curriculum. Were the American departments premature? Many
people felt that way and the guestion whether Computing Science deserved the
name of a science was raised over and'over again. Newell, Perlis, and Simon
have fried to settle that discussion at the end of the decade by "Facts breed

science. Computers exist. Ergo.”. Needless to say, this did not end the discussion.

European universities too started to think about computing science. They,
too, thought deep and hard about forging an academic discipline worthy of the
name. But they were less in a hurry to institutionalize and eventually they
embarked with a probably somewhat more conscious design. For an academic discipline
to be viable, its areas should be coherent and should mutually reinforce each
ather; moreover, the material taught should have a staying power of, say, fifty
years. For the sake of coherence, and in recognition of the fact that the automatic
computer really deserves the name "general purpose", it was generally decided
that the application areas had better not be ircluded in computing science. For
the sake of staying power, it was generally decided that computing science should
dissociate itself from the fickle market place: teaching how to make do with
the equipment currently on the market was not the calling of European computing
science, and all material with a half-life of five years was_Pannedii In passing
I mention that COBOL and FORTRAN were viewed as industrial products, and therefore
not taught.

Europe's contribution to computing in the sixties consisted mainly in improving
the af% of design, such as design of operating systems, of programming languages
and of their implementations. Quite a few of such designs were engineered with
a novel delicacy. Furthermore, thinking removed itself from the physical equipment,
and programming languages were no longer understood in terms of their implementation.
(When Perlis called ALGOL 60 "a very inefficient language", the Europeans in

his audience were shocked by his patent lack of separation of concerns.)

To complete the picture of the sixties, in 1968, the existence of the software
crisis was admitted at the NATO Conference on Software Engineering in Garmisch-



EWD1024 - 7

Partenkirchen, and Wirth started the implementation of PASCAL . In 1969, C.A.R.Hoar
published his "An axiomatic approach to computer programming” and I circulated

my "Notes on structured programming"”. Let us move on to the next decade.

The seventies

I called the seventies the decade of semantics: the interest in syntax
and parsing tapered off, Dana Scott's denotational semantics provided the logical
foundation for recursion in all its glory, and formal proofs of program correctness
entered the picture.

In hindsight, the reduction in interest in syntax and parsing was more
than justified. Programs that, on account of complexity of the syntax, are hard
to parse mechanically are correspondingly hard to compose carrectly; consequently,
a straightforward syntax that simplifies the parsing eases the programming task
(something the designers of Ada overlooked).

As in the mean time can be expected, the American and European interests
in proofs of program correctness differed greatly: the American interest focussed
on the mechanization of a posteriori verification of given programs, written
in given languages; the European interest was more in a constructive approach
to the problem of program correctress, and turrmed to design methodologies or
calculi for the derivation of programs that would be correct by construction.
From the European perspective, a posteriori program verification amounted to
putting the cart before the horse; from the American perspective, the constructive
approach of the Europeans was hopelessly idealistic, because it was mathematical.

This was the decade in which I began to stress that as scientists we should clearly

distinguish between the intrinsic problems of automatic computing and the problems
caused by shortcomings of the American educational system, which traditionally

does not consider intellectual advancement its primary concern.

On the American academic scene, complexity theory continued to flourish;
automatic theorem proving attracted a lot of attention and got off the ground.
A serious concern during the seventies was how to prevent a sizeable part of
Computing Science from deteriorating inte the dishonourable art of "How to live
with the IBM/360"; in winning this battle, the less infected and intellectually



EWD1024 - 8

more autcnomous universities in Europe played a considerable role. Finally,

the advent of the personal computer revived most of the mistakes of the fifties
--but now on a more grandiose scale-- . Today, the ubiquitous personal computer
has created an equally ubiquitous misunderstanding of what computing science

is about. (At a party, two years ago, Tony Hoare and I were approached by a
mathematician who expressed his delight in meeting two such outstanding computing
scientists for he had never been able to understand what he had to do in order

to save a file on his personal computer, model so-and-so. We could not help

him and Tony asked him, whether he could recommend a book on category theory;

he could not help Tony either.)}

The seventies were a decade of frantic and expanding activity; at the
same time it revealed symptoms of decay and showed that in the academic community
some intellectual rot was setting in. Also in this respect, America was leading:
it became highly productive in rather uninspiring papers, ranging from boring
to utterly foolish. Soon, Europe would fg}%gﬂ_ﬁg;smgxamgie.

In the seventies, universities all over the Western world had a hard time.
Firstly, lecturing style deteriorated when chalk and blackboard were ousted in

favour of the overhead projector with prepared foils: instead of lectures, students
got presentations. Secondly, life on campus had been totally disrupted by the
student revolts of the late sixties, which breathed an anti-intellectualism as
vigorous as Chairman Mac's Cultural Revolution of which they were the echa.

All disciplines have suffered from these two calamities; we must bear in mind

that they hit Computing Science at a very vulnerable stage, and there are reasons

to suspect that American computing suffered even more than its European counter-
part.

The American universities are generally praised for the fact that they
are much less a world apart and that the barriers to communication across the
campus boundary are much lower than in Europe. It has its charms, but the price
can be heavy. For a university to be leading, it must offer what society needs,
rather than what society demands. The lower barriers make that the direct demands
of society are heard much more loudly and it is not surprising that American

computing science, on the whole, became more led than leading.



EWD1024 - 9

I am not referring to the local banker's pressure for more

jAdvancgprgﬁgpki_in the curriculum: all but the very smallest

institutions can resist such pressure. I am referring to the con-
flicting pressures from a society that 1s traditionally ambivalent
about technology, that welcomes gadgets almost without restriction
but equates technological expertise with the loss of innocence

that is an essential ingredient of The American Dream. In the

case of Computing Science I am referring to the pressures from

a soclety that is structurally unable to include in 1its vision

a view of programming as a branch of formal mathematics and applied
logic, and that therefore is forced to ask for snakeoil. If, then,
the campus is insufficiently shielded from those pressures and

the market forces are given too free a relign, you can draw your
conclusion: a flourishing snakeoil business, be 1t in "programming
by example™, "object-oriented programming"”, "natural language pro-
gramming™, "automatic program generation", "expert systems", "spe-
cification animation", or "computer-supported co-operative work™.
(I am not inventing these slogans: they are all honest gquotations.
I used the term "decay" and am forced to conclude that I did not

exaggerate.

A more universal problem is presented by the negative effects
of academic institutionalization: 1in the seventies, they became
quite visible for computing science. Firstly, the ridiculous frag-
mentation: these days we see special professors in "local-area
netwarks"™, "compiler construction", or "support environments".
Secondly, the diversion into elaborate trivia, caused by the Ph.D.
mechanism that requires a steady stream of well-delineated and
obviously solvable problems (if you care for them). Thirdly, the
need for an outlet for your less than gifted students (which has
introduced such topics as "human factors", "software metrics" and
"experimental computing sg;ence“l; As PDmEEtEEE,SEie”tiS?EJ we
don't need to feel particularly guilty: no academic discipline
has found a truly satisfactory solution for the education of the
unavoidable second- and third-rate researchers. Hence, we usually
ignore the dilemma, or deny its existence, but it is a negative

effect of academic institutionalization.



EWDI1024 - 10

The eighties

Let us now switch to the current decade. I shall be less
elaborate on that one for two obvious reasons: firstly, it is not
over yet, and, secondly, it is still too close to have established
its significance.

European computing science suffered from more than the traditional

problems caused by institutionalization, because many departments
were founded in such a hurry that quite a few vacancies were filled
by so-called "instant professors”. Moreaver, many a government
forced its universities into co-operative efforts with industry

(a trend from which Computing Science suffered more than, say,
Assyrian Linguistics). As a result, even genuine research potential
has been diverted to the ephemeral, shallow, or foolish. Confining

myself to Computing Science proper, I shall ignore these aberations.

Tentatively, I called the eighties the decade of synthesis.
I did so because Computing Science and Formal Mathematics got more

and more intertwined, and did so in a variety of ways.

Firstly, mechanical theorem proving or proof verification
came of age. It has definitely left the youtnful stage of toy
probiems: successful applications have ranged from deep theorems
such as Godel's Theorem, to practical challenges such as proving
the correctness of circuitry and special-purpose operating systems.
The appearance of a journal dedicated to Automated Reasoning is

a clear signal.

Secondly, the fundamentally close connection between proving
and programming, as revealed by Constructive Type Theory, is beginning
to have i1ts impact: programs are deduced from constructive existence

proofs and vice versa.

Thirdiy, logic programming has established a visible link

between proving and computing, a link that also emerges in the



EWD1024 - 11

application of complexity theory to the notion of provability.

The discovery of the existence of correct theorems that shall never
be proved because the price of the proof is prohibitive --and that
is putting it mildly-- caused some rethinking about the scope and
purpose of mathematical reasoning.

Fourthly, it is beginning to be realized, mainly on campus
but even in some pockets in industry, that the programming task
presents a fertile field for the application of the technigues
of scientific thought. The emergence of the journals "Science
of Computer Programming” at this decade's beginning and_:§t£gc§yrgq
Programming" at its end are clear symptoms. It is fascinating
to observe how this develapment works baoth ways and how, in the
wake of Programming Methodology, the somewhat wider topic of Mathe-
matical Methodology is emerging. [Since this was written in first
draft, Springer announced yet another journal: "Farmal Aspects
of Computing", with the telling subtitle "The International Journal
of Formal Methods".]

It is fascinating to observe how a breakthrough in our manipu-
lative abilities has created the opportunity of realizing an increasing
portion of Leibniz's Dream of presenting calculation, i.e. the
manipulation of uninterpreted formulae, as an alternative to tradi-
tional mathematical reasoning. Because the Dream of Leibniz aims
at providing an alternative for traditional mathematical reasoning,
traditional mathematics did not provide the most hospitable environment
for its realization; this, therefore, had to take place in a separate

discipline, which is now known as Computing Science.

It is not surprising that the computing scientist picked up
this gauntlett. By virtue of its mechanical interpretability,
each programming language presents a formal systems aof some sart,
and so the notion of a formal system is something he grew up with.
He is very familiar with formal methods because they provide the



EWD1024 - 12

only sufficiently reliable way of designing programs. Knowing,

for instance, how compilers work, he is familiar and totally at

ease with the idea of manipulating uninterpreted formulae. Finally,
he has good reason for not sharing the common fear of symbol mani-
pulation because he has the tools for mechanization at his disposal.

It is my conjecture that meeting the challenge, embodied in
the Dream of Leibniz, will provide the ultimate justification for
the existence of Computing Science as a scientific discipline in
its own right. We have to show that it is possible to be precise
and complete without making a mess of it.

Let me quote Leibniz to wish us well for the next forty years
and beyond: "Calculemus!"™,.

I thank you for your attention.

Austin, 2 October 1988

prof.dr.Edsger W.Dijkstra
Department of Computer Sciences
The University of Texas at Austin
Austin, TX 78712 - 1188

Urnited States of America

Post-delivery comment My Zirich audience was generally of the opinion that I had
been too kind to the Europeans, and I agree. For instance, I forgot to mention

all the interdisciplinary nonsense done in the wake of the official French definition
of "1'Informatigue". European computing science has been disgracefully slow

in dissociating itself, for instance, from business administration; for this,

the absence of Business Schools was no excuse. (End of Post-delivery comment.)




