Prof. Dr. Edsger W. Dijkstra, interview 84/83/1780 at home
(cy 1985, Rogier Fentener van Vlissingen Aprilt 88,1985

Interview Prof. Dr. Edsger W. Dijkstra, Austin,
84-83-1985
(c) Rogier F. van Vlissingen

Biographical Details

1938: Born in Rotterdam, Holland

1948-1954;: Studied Mathematics and Theoretical Physics
at the University of Leyden

1952-1942: Worked at the Mathematical Center In
Amsterdam - first ever person on payroll as programmer
1957: Married -~ Justice of the peace would not accept
programmer as profession for the records, so theoretical
phrsicist used instead.

1942-1973: Professor of Mathematics at the Technical
University of Eindhoven, Holland

1973~1984: Burroughs Research Fellow and Professor
Extraordinarius at Eindhoven - ‘Burroughs’ smallest
research lab was my study.’

1984: Professor and Schlumberger Centennial Chair im
computer sciences at the University of Texas at Austin.

Q Given some of the drastic statements that you have made
about the quality of software, is anything changing, are
we progressing to better products?

A That depends, over the last fifteen rears the gap
between computing science and our best industries and
computing practice in industry has widened. Very much.
Mainly due to the fact that computing science at the
universities has made such progress. Now industry is
employing younger staff that has had a much better
training than in the past. Over the years 1 have
tectured on programming all over the worid and the major
reaction from the audience was usually: “"What a pity my
boss is not here.’ That is a very sad comment, but the
moral of the story is that if industrial practice
suffers it is largely due to the conservatism, technical
incompetence, of the managers of those projects. If
however the internal organization and hierarchy of
industria) programming organizations can be changed,
there is room for great progress., And I think it will
change, because the pressure from below becomes stronger

and stronger.

Q in practice it often appears that pressures of

1

Prot. Dr. Edsger W. Dijkstra, interview 84/83/1985 at home
(c) 1%85, Rogier Fentener van VYlissingen Aprit 8,198%

production reward clever programming over good
programming: how are we progressing in making the case
that good programming is also cost effective?

A Weltl, it has been said over and over again that the
tremendous cost of programming is caused by the fact
that it is done by cheap labor, which makes it very
expensive, and secondly that people rush into coding.
One of the things people learn in colleges nowadays is
to think first; that makes the development more cost
effective. I know of at least one software house in
France, and there may be more because this story is
already a number of years old, where it is a firm rule
of the house, that for whatever software they are
commi tted to deliver, coding is not allowed to start
before seventy percent of the scheduled time has
elapsed. So if after nine months a project team reports
to their boss that they want to start coding, he will
ask: "Are you sure there is nothing else to do?" If they
say yes, they will be told that the product will ship in
three months. That company is highly successful.

Q There is a perception that the spread of personal
computers is bringing with it a spread of alleged
computer literacy. The “PC revolution’ is thought to
ready the lay user more for computer based soclutions and
should thus help the progress of computer use in
corporations. Is there any substance to this perception
or is this development maybe just muddring the water?

A Two comments to this question. One comment is that your
view of industrial programs as pointed out in the
question is narrow. There are all sorts of programs that
hardly have users, if you think of a telephone exchange,
or digital controls in cars or airplanes. As to the
programming products that are used by people, I hardly
have first hand experience, my impression is that an
enormous amount of user time is wasted figuring out what
the system does and how to control it, which is the
consequence of two sorts of happenings. First of all
that the designers have failed to keep the interface of
a system as simple as possible — which is a challenge;
but as socon as you realize that the main challenge of
computer science is how not to get lost in the
complexities of their own making, it is quite clear that
this is a major task. Secondly, the scene is very much
burdened by the fact that a large fraction of the people
involved are functionaily illiterate; particularly in
the Linited States.

Prof. Dr. Edsger W. Dijkstra, interview 84/83/1985 at home
(c) 1985, Rogier Fentener van VYlissingen April 8,1985

G Do vou really feel that this is more the case here than
in Holtand?

A Oh yves. In Europe a much larger fraction of the
population can write. People in America have really
suffered from the combination of TV, which makes reading
superfluous, and the telephone. A few years ago I was at
CalTech and that is a hiqh quality place and everybody
recommends it because the students are so bright. A
graduate confessed to me ~ no he did not confess, he
just stated it, that he did not care about his writing,
since he was preparing himself for an industrial career.
Poor industry!

Q@ This leads to another question: in the production of
software is

(= 1 prefer the term design of software, since it is an
abstract procuct.

Q Ok, in the design of software is there a significant
difference between what is going on in Europe and in
this country?

A Yes. American computer science if practical remains much
closer to the actual machine, and if theoretical is much
more theoretical, whereas my personal fascination with
the topic is the fact that the fruitful area of overlap
of practical and theoretical is so huge. What is really
nice from a theoretical point of view is usually
eminently useful, and what is a really good practical
idea always has something deep underlying it. And my
fascination with the topic is that there is a large area
where the traditional distinctions between pure and
applied is meaningless. I always refuse to be called a
pure computer scientist if that implies that I am
unpractical, I also refuse to be called a practical
computer scientist if that means that what I do is
thecretically shallow, or tousy. That srnthesis between
pure and applied, where the distinction disappears is
more readily realized in the European scene than here.
Traditionally the distinction between pure and applied
mathematics has always been very strong in the USA. A
simple example is the fact that it is quite common in
universities here to have separate departments for pure
mathematics and say statistics and operations research.
Such a separation would be unheard of in most European
universities. Secondly, the American computer industry
carries more weight, and as a result there is a tendency
to see computing exclusively in an industrial context.

3

Frof. Ir. Edsger W. Dijkstra, interview ©4/@3/198% at home
(c) 198%, Rogier Fentener van Vlissingen April 8,198%

a Does this difference have any bearing on the nature of
products developed in Europe as opposed to in the USA -
speaking of products used by people, are they more
user~-friendly to use that modish word?

[User—friendliness is a word that never should have been
invented.

2] What word should have been invented to connotate the
idea?

A The idea is wrong' It is a long story about the user,

which I will try to condense. The point is that the
computer user, as functioning in the development of
computer products is not a real person of flesh and
blood but a literary figure, the creation of literature,
rather poor literature. 15 years ago I noticed that
Dutch computer scientists developing products, when
talking of the needs of the user would use - in the
middle of a Dutch sentence ~ the American word user,
which of course is perfectly transiatable, as you and I
both know. Our cigarette packages have english on them
as well..oveusesj but then I discovered that in spite of
all their anglophobia, the word user is perfect French.
Then I discovered that it is also perfect Russian and
the two of us also know more Japanese than you think.
Well the mere fact that that little word is not
transliated, but it is taken over as a foreign body, in
Dutch, French, Russian and Japanese discussions, means
that it has lost its original meaning. Now, if you start
to analyze the many character traits of that literary
figure, you discover that he is most uninspiring. He is
stupid, education resistant if not education proof, and
he hates any form of intellectual demand made on him, he
cannot be delighted by something truly beautiful,
because he lacks the education to appreciate beauty.
Large sections of computer science are paralyzed by
accepting this moron as their typical customer. Rare are
the computer companies that are prepared to make a
Mercedes, the analog the high quality product for the
discerning customer. As it turns out, particulariy in
the USA mathematics is the pinnacle of user
unfriendliness, if you read the catalogs of text book
publishers, then it is quite clear that the major
recommendation that they give a book is that it is
amathematical, that it does not require mathematical
knowledge, etc. So, user friendliness is, among other
things the cause of a frantic effort to hide the fact
that eo ipso computers are mathematical machines.

4

Prof. Dr. Edsger W. Dijkstra, interview @4/03/198% at home

(c) 1985, Rogier Fentener van Vlissingen April 8,198%5
Q What is to be done for the industry to break that
impasse?
A 1t may not be possible. Five or six years ago Harlan B.

Mills has falsely argued that the computing industry,
the computer users and the educational institutions were
in a complete deadlock situation. The industry does not
feel responsible for educating the peoplie, for they are
extremely conservative in their products; so that sets
the standard of the demands of users for industry.
Universities do not dare to teach the real stuff in
their undergraduate curriculum, because the industry and
the future emplorers are not looking for that. His
conclusion was that breaking this deadlock was a federa!
responsibility. I think universities can. If they do not
do that, they foresake their role. What is the
implication of being a leading institute? What is most
needed is, at a number of good universities, a few
strong departments of unfashionable computer science.
Whether this is planned or not, I think some professors
of computer science just will not be suppressed. They
can not be tamed to present a lot of Jjunk.

Q And you intend to be one of those not suppressed......?
A I have never been that!
Q In that fight for liberation, is your move to the US of

special significance?

A No, because 1 carry out my work just as I did before. I
got a very nice offer and the reason that [welcomed it
was that, having eleven years with Burroughs Corp. -
eleven wonderful years, for which I am very grateful to
the company - but in course of those years my interest
broadened beyond the technical needs of the computing
industry. At lteast as the computer industry perceived
them. I felt that a return to the university campus
would be appropriate.

G Is the USA the paradise for computer science that it is
made out to be?

A No.

Q Why would you say that?

o

FProf. Dr.

(c)

19@5,

Edsger W. Dijkstra, interview ©4/03/1985 at home
Rogier Fentener van Vlissingen April 8,198%5

Because it is in danger of being supported to death. It
is certainly not a paradise for computer science. One of
the things a computer scientist has to do is to
distinguish between the intrinsic problems of computer
science and the use of computers in society. And we
should for instance clearly distinguish between problems
of computer science and problems generated by an
educational system. We should also clearly separate the
problems of computer science and those generated by the
traditional interface between the industry and its
customers. User satisfaction is not a quality criterion
for & computer product.

What would make you say that?

1 was introduced to user satisfaction as a quality
criterion 20 years ago and 1 found it ridiculous. You
can achieve it in all sorts of wars. For instance by not
educating your customers; telling them that it cannot be
any better. Postulating that the fact that software has
bugs is a law of nature. You can even achieve it by
intimidation. The worst part of it is that the goal is
too fuzzy to give any technical aid. No, user
catisfaction as a criterion is very typically American,
because the American interface between the supplier and
his customers, is that a supplier leaves the last stages
of quality control to the customer. That is why you
always see “satisfaction guaranteed’ and if not you may
return it: ther’l1l mend it endlessly. Something has
happened with the design of programming languages.
Programming languages of course have to be user
friendly, programmers have to like them. For a long time
features of programming languages wWere included on
account of their supposed popularity -~ the main
criterion was will people like it — again stemming from
a rather dismal perception of the user. The great change
in programming languages came from the fact that we
started giving formal definitions of the semantics of
programming language concepts. Something you need if you
want to be able to prove things about the programs
written in it. And even if you do not intend to that
formal way, it was an extremely healthy exercise for
programming language designers. Formalization acted as
an early warning system: if the forma]l definition of a
feature gets very messy and complicated, then you should
noct ignore that warning.

Can you explain some more about those language
developments that have these better features?

Prof. Ir. Edsger W. Dijkstra, interview ©4/83/1985 at home
{c) 1985, Rogier Fentener van Vlissingen April 88,1985

A The versions that computer scientists are experimenting
with are languages that are not setected for their
potential appeal to the uneducated, but are screened by
criteria such as mathematical power in a very rigorous
sense, mathematical eiegance and that kind of research
produced all sorts of things. Some stay within the
framework of imperative programming languages, because
we know so well how to implement them very efficiently.
Others are exploring functional programming ltanguages.

Q Can you explain the difference between the two?

A 1 can try in a minute. Others are trying to be in their
considerations even less constructive. They define the
answers by a number of logical equations, leaving it to
the implementation to find the solution to that set of
equations. The net effect of it seems to be that a full
system for really acceptable programming wili be at the
same time a full system that will suffice for the
description of constructive mathematics. What is
happening is that the gap between a program a computer
may execute and the mathematical proof that the answer
exists is narrowing.

The simplest way to characterize the difference between
imperative programming languages and non—-imperative ones
is that in the reasoning about imperative programming
you have to be aware of the “state’ of the machine as is
recorded in its memory. In conjunction with that there
is a clear distinction between a program on the one end
and the information processed on the other. In the case
of functional programming you create a language in which
you can write all sorts of expressions and evaluating an
expression then means massaging that expression until
you have it in the shape that you want to have it in.

a You are speaking of the leading edge of research of
computer l1anguagesS.....

A Yes, What it is again in danger of being supported to
death because one of the hopes of functional programming
is that in the execution of programs written in a
functional style it will be easier to exploit a lot of
concurrency.

Q How much of this research is at this point flowing back
into industry applications?

A Little but more than you think. I know of a definitely
industrial environment, to wit a huge software house

2

Prof. Dr. Edsger W. Dijkstra, interview 94/93/198% at home
(c) 198BS, Rogier Fentener van Vlissingen April B,1985

that is part of a large oil company and whose charter is
primarily to satisfy the software needs of the parent
company, so this is most definitely an industrial
environment, where in the case of a new program to be
developed they made a prototype using a functional
programming language in an amazingly short time. In fact
in something like better than one tenth of the time an
other technique would have required. They have an
implementation of this functional programming language,
but not a very good one; as a result the prototype was
unacceptably siow, but the experience was that it was a
very important intermediate step towards the final
product. So we have seen already that, though invisible
in the final product, novel programming languages and
implementation techniques are beginning to play a role
behind the scene. This is going to have a profound
impact on the software community as a whole - you see
the point is that whenever you try to benefit in the
development of programs from the availability of
machines then obviously the first candidate for
automation are those aspects of the programming process
that are more or less routine jobs. As a result the
really difficult stuff remains. With all our so-called
programming tools the net effect is that programming
becomes more and more difficult. The easy parts are
automated away and the difficult parts remain and that
has now reached the stage that it requires of the
software developer quite a degree of mathematical
sophistication. I was very amused when some time ago in
a strictly industrial environment 1 observed a heated
discussion. The discussion involved a whole bunch of so
called higher order functions - higher order functions
are considered too fancy to even talk about by many
mathematicians, they are functions that have functions
for their argument and may return a function as a value
- it was in a group of industrial computer scientists,
and they talked about higher order functions as if they
were the most normal thing in the world.

Q So it is happening....

A It is happening, ves'! 1+ 1 were to take a number of my
tradi tional mathamatical colleagues and expose them to
this discussion, they would not have the foggiest notion
of what was going on and if they did they would not
believe it.

G It sounds like the improvements in effectiveness that
you speak of should get everybody’s attention real fast
- €0 again when is the impact going to be noticeable?

8

Praof. Ir. Edsger W. Dijkstra, interview ©4/33/1285% at home
(c) 19B%, Rogier Fentener van Vlissingen fApril 8,198%5

A You know Max Planck‘s answer when he was asked when
quantum mechanics would be accepted by the physical
community?....... "When the current generation of
physicists has died!®

Q That gives us hope?

A Yes. You should realize that in any field the time lag,
the delay between a significant scientific progress and
its acceptance by the scientific community at large not
to mention the moment that it finds its way into a
product should be measured in generations. The reasons
for dissatisfaction with the way I have been educated -
on the whole 1 am extremely happy with my education -
are that nobody warned me about that time lag of a few
generations, I had to discover that all by mrself with a
lot of frustration.

aQ What is happening to the generation of current students
that you referred to before, who bring some of these
concepts if not some of the products with them?

A Twenty years ago or so I came to the conclusion that the
only people I could educate would become misfits.

G Does that leave industry any hope?

A Oh yves, the point is we can educate the scientists, who
educate the industry, so as to make the industry ready
to employ them. The backwardness of industry is not &
scientific problem. Industry is becoming aware of the
problems caused by its own inertia. By definition of
course this took a long time. People are reacting to it,
whether it is successful or not no one knows.... General
Motors wants to develop a new car in a completely new
company!

Q So you are saying that this route was take to break
through that inertia?

A Sure. It is a way of starting afresh.

Q On the matter of cooperation between industry and
university research, do you feel that things are done
better here or in Holland. Or can both learn from each
other?

Frof. Dr.

(c)

1985,

Edsger W. Dijkstra, interview ©4/03/1985 at home
Rogier Fentener van Vlissingen April B,19B85

That is hard for me to judge, because since I am here I
have had no experience with the cooperation with
industry. One of the reasons in ‘73 for my joining
Burroughs Corp. as a research fellow was that in the
preceding decade ! had observed that it was extremely
hard to penetrate industry from a campus, from outside.
In the next ten years I discovered it was hard from the
inside as well, though easier. This applies to industry
on both sides of the Atlantic. It is definitely so that
industry here is more used to giving support to
individual research - that has always been the case. It
is hardly possible to be a professor and not also be a
consultant. But many consultants do their own thing.

Do you feel that Holland should learn from this American
approach?

My overall impression is that it does not matter what
mistakes the USA makes, because they will be faithfully
copied in Europe only 26 years later. Europe can learn
an immense amount from the United States. By studyring
what is happening and then not copring it. In some
aspects we might even try to copy it.

What are you thinking of specifically?

Oh, the ease with which you can 1ncorporate, I believe
it costs $3 or so0.....

Considering possible breakthroughs, are we at this
moment constrained by technology, by programming
techniques, or maybe both?

John McCarthy of Stanford University has made the remark
a long time ago and it is still very valid, that the
greatest bottleneck is not to be found in hardware but
in our programming ability.

Speaking of programming bottlenecks — what will the
impact of the research in artificial intelligence be?

Can you research something that is not science? 1 feel
that the effort to use machines to try to mimic human
reasoning is both foolish and dangerous. It is foolish
because if you look at human reasoning as is, it is
pretty lousy; even the most trained mathematicians are
amateur thinkers. Instead of trying to imitate what we

1o

Frof. Or. Edsger W. Dijkstra, interview ©4/03/198% at home
{c) 1985, Rogier Fentener van Vlissingen April 8,198S5

are good at, I think it is much more fascinating to
investigate what we are poor at. It is foolish to use
machines to imitate human beings, while machines are
very good at being machines, and that is precisely
something that human beings are very poor at. Any
successful Al project by ite very nature would castrate
the machine.

Q Computer science has become very popular, are there too
many students, are there too few students - and do you
see any change in the level of preparedness of the
entering student between now and say ten years ago?

A The topic is devastatingly popular. Because computing is
now supposed to cure all the ills of the world and more.
1 once gave a short summary of the fact that over the
centuries scientific effort had been a complete
disaster. The first scientic effort of course was the
production of the elixir that would give eternal youth,
but very rapidly they discovered that there was little
point in living eternally, if you would live in eternal
poverty, so the next major scientific project was how to
turn anything into gold. Now it was quite clear that the
planning of these two major research efforts was berond
the powers of the seers of the day, so for sound
managerial reasons the next hot issue became the
accurate prediction of the future. As time went by the
original goals were forgotten. Medicine divorced itself
from quackery, chemistry divorced itself from alchemy
and astronomy divorced itself from astrology. However
there is still some feeling of guilt in the academic
community, because as soon as promising new branch of
science or technology emerges, it is saddled up with the
old hopes. The current boom in computing is an immediate
reflection of absolutely unrealistic hopes. So if you
ask whether there are too many or too few students: an
order of magnitude toce many. From a scientific point of
view you would like to weed out the l1ot. Keep the
brightest 2% and do business. The current generation of
freshmen coming in is not only ill prepared, they have
been misguided.

@ Are you suggesting that the personal computer boom has
fostered fruitless play rather than

A Yes. | have said it before in public and I am perfectly
willing to repeat it that someone introduced to
computers via Basic is in all probability mentally
mutilated beyrond redemption. That is no joke. A major
branch of the Siberian Academy of Arts and sciences is

11

Frof. Dr. Edsger W. Dijkstra, interview @4/03/1985 at home

(c)

1985, Rogier Fentener van Vlissingen April B,198%

aimed at keeping Basic out of Siberian high schoois.

So what will get in?

Probably Basic.

0f other languages that are becoming popular, are there
any that offer any better hope?

Oh yes. The popularity of Pascal is very encouraging.
Not because it is ideal. but it is definitely orders of
magni tude better than any of its competitors. Besides
that it is interesting because it is a one man product,
without any form of political or industrial backing. It
has gained its popularity in slightly over a decade,
because at the time of its inception it was so much
better than anything else available.

We have seen Lisp emerge in documenting programming
constructs?

Lisp was great at the time of its inception if only for
a radically new way of using machines. It has suffered
the fate of having been elevated to a status of de facto
standard with all its defects. Despite its conceptual
novelty a lot of the design of Lisp is terribly
amateurish even by the standards of the time. When I
read the first Lisp manual, the Lisp 1.5 manual,

‘published in 1941, 1 could not believe my eves. It was

an extremely poor language. Now it has become the
defacto standard of the &l community, which now suffers
from Lisp, the way the rest of the world suffered from
Fortran.

Is the field of computer science approaching maturity in
any sense, or where are we?

Well, we is a rather mixed 1ot aren’t we? Let me give
you three dates 19468, 1973 and 1984,

In 1968 IBM published an ad in Datamation showing Suzie
Meyer smiling in full color. Suzie Meyer announced that
she had solved all her programming problems by the
simple trick of switching over to PL/l. It is a great
pity that Datamation did not publish a picture of Suzie
Meyer four years later!

1975 was about the time that the Swedish logician Per
Martin-Loeff convinced himself of the fact that a well
documented program was an object logicaltly isomorphic

12

FProf. Dr.

(c)

1985,

Edsger W. Dijkstra, interview 04/03/1985 at home
Rogier Fentener van Vlissingen Aprial B,1985

with a constructive mathematical proof. In that sense
the word constructive refers to the most puritan of all
mathematics.

By 1984 the computer science community had taken notice
of that fact. Late 1983 I attended a small industrial
conference on programming. One message came across loud
and clear and that was that in development of programs
formal techniques would not only be indispensible, but
would have to be applied on a scale without precedent,
Now if you compare that with Suzie Meyer then we have
travelled long and far.

As a final question I would like to ask you what is the
most interesting research project that you see right now
i¥f you had to name one?

I can name only one but it is in very broad terms. It is
how to increase our powers of reasoning by orders of
magni tude and how to apply as part of that forma)
techniques on a scale without precedent. My firm belief
is that the potential impact of the computer on
mathematics in general will be as profound in the
century to come as the influence of physics on analysis
has been in the preceding century.

13

	van Vlissingen001.pct
	van Vlissingen002.pct
	van Vlissingen003.pct
	van Vlissingen004.pct
	van Vlissingen005.pct
	van Vlissingen006.pct
	van Vlissingen007.pct
	van Vlissingen008.pct
	van Vlissingen009.pct
	van Vlissingen010.pct
	van Vlissingen011.pct
	van Vlissingen012.pct
	van Vlissingen013.pct

