
Evolving Neural Network Ensembles for Control Problems

David Pardoe
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712

dpardoe@cs.utexas.edu

Michael Ryoo
Department of Electrical and

Computer Engineering
The University of Texas at Austin

Austin, TX 78712

mryoo@mail.utexas.edu

Risto Miikkulainen
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712

risto@cs.utexas.edu

ABSTRACT
In neuroevolution, a genetic algorithm is used to evolve a
neural network to perform a particular task. The standard
approach is to evolve a population over a number of gen-
erations, and then select the final generation’s champion as
the end result. However, it is possible that there is valuable
information present in the population that is not captured
by the champion. The standard approach ignores all such
information. One possible solution to this problem is to
combine multiple individuals from the final population into
an ensemble. This approach has been successful in super-
vised classification tasks, and in this paper, it is extended
to evolutionary reinforcement learning in control problems.
The method is evaluated on a challenging extension of the
classic pole balancing task, demonstrating that an ensemble
can achieve significantly better performance than the cham-
pion alone.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Experimentation

Keywords
neural networks, genetic algorithms, ensembles, reinforce-
ment learning

1. INTRODUCTION
In neuroevolution, a genetic algorithm (GA) is used to

evolve a neural network to perform a particular task, such as
pattern classification or robot control [13, 11]. The standard
approach is to evolve a population over a number of gener-
ations, and then select the fittest individual from the final
generation, known as the champion, as the end result. How-
ever, it is possible that there is valuable information present
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in the population that is not captured by the champion. For
example, in a classification problem, some individuals may
correctly classify an input that the champion does not. Such
information is not utilized in the standard approach.

One possible solution to this problem is to combine mul-
tiple individuals from the final population into an ensem-
ble [14, 9, 3]. This approach has primarily been used in
supervised classification tasks, in which the correct output
is provided for each input used in training. In this paper,
this approach is extended to reinforcement learning tasks in
which only a reward signal is provided. As a result of this
difference, a method of creating ensembles designed specifi-
cally for control problems is needed.

In Section 2, the algorithms commonly used for evolving
neural network ensembles are reviewed, and in Section 3,
these methods are extended to reinforcement learning tasks.
In Section 4, the experimental domain, an extension of the
classic pole balancing problem to chasing a moving target, is
introduced. The performance of the ensemble is shown to be
superior to that of the champion alone in Section 5. These
results are compared and contrasted with related work in
Section 6, and directions for future work are outlined.

2. ENSEMBLES OF NEURAL NETWORKS
Neural network ensembles are composed of several net-

works and a method for combining their outputs [10, 7].
Each individual network receives the same input and out-
puts its own decision. Based on outputs from several differ-
ent networks, the combination algorithm decides the final
output. Ideally, the performance of the entire ensemble will
be superior to the performance of any individual network it
contains. Two main choices must be made when designing
ensembles: a method of training the networks in a way that
encourages diversity of behavior, and a mechanism to decide
the final output based on outputs from individual networks.

2.1 Training the networks
When training networks to be used in ensembles, it is im-

portant that the outputs of the networks are diverse – other-
wise, there could be no benefit from combining the networks.
While a wide variety of algorithms exist for promoting diver-
sity among ensemble members in supervised learning (e.g.
bagging [2] and boosting [4]), this paper focuses on evolu-
tionary methods, in particular neuroevolution. In the neu-
roevolution approach, the weights and topologies of neural
networks are represented as genomes which are evolved over
a number of generations through a GA using mutation and
crossover operations.



Although standard GA methods are not designed with the
goal of developing ensemble members, maintaining a diverse
population is important for evolution in general. If no at-
tempt is made to preserve diversity, genomes will converge
until they are largely the same. After that point, crossover
will have little effect and progress will depend mostly on
mutation, increasing the likelihood that the population be-
comes trapped at a local minimum.

Several methods of maintaining population diversity, gen-
erally referred to as speciation (or niching), exist for GAs.
One example is the island model , in which the population is
divided into non-interacting subpopulations, and diversity is
essentially promoted by chance. Another example is fitness
sharing, in which fitness is divided among nearby neigh-
bors. Neighbors can be determined through a comparison
of network structure (explicit fitness sharing) or of behavior
(implicit fitness sharing). The result is that networks are
rewarded for uniqueness. The choice of speciation method
is extremely important for neuroevolution of ensembles, as
the final population must remain sufficiently diverse to make
the creation of an ensemble beneficial.

2.2 Combination algorithm
Once a population of networks has been trained, an algo-

rithm must be chosen for combining them into an ensemble.
Four common combination algorithms are now described,
and their applicability to control problems considered.

In the majority voting approach, each network in the en-
semble casts a (possibly weighted) vote for the output. In
cases where only a small number of discrete outputs are pos-
sible, this method might perform reasonably well. However,
in many control problems the outputs represent real-valued
quantities, such as a force to apply or an angle to turn, and
no two networks will share exactly the same output.

Another possibility is to take a weighted average of the
networks’ outputs. While this method might seem appro-
priate for continuous actions, it can in fact lead to disaster.
For example, consider designing a robotic car controller that
chooses an angle in which to turn. If the controller receives
inputs indicating that another car is heading directly to-
wards it, it should either turn left or right. However, if a
combination algorithm based on averaging network outputs
is used, the average of several left and right turns might be
no turn at all, which is the worst possible action. In the
case of discrete actions, such an approach may simply be
ill-defined. For instance, the available actions could be“sit”
and “walk”, which cannot be averaged in any meaningful
way.

A third option is the winner-takes-all approach, in which
the output of the network with the strongest activation is
chosen (e.g., in the case of sigmoidal outputs, the output
closest to 0 or 1). While this approach avoids the problems
associated with the two previous methods, it is only suitable
for problems in which a network’s output can be interpreted
as a measure of confidence in a binary decision. It cannot
be used with real-valued actions.

A final choice is to use a gating network. In this approach,
a network outside the ensemble is trained to form a proper
combination of the outputs of the ensemble members (simi-
lar to experts in supervised learning [6]) as a function of the
input signal. In essence, the gating network learns which
experts to trust for various inputs. The output of the gat-
ing network can be interpreted either as the weights for a

linear combination of the experts’ outputs, or as a decision
on which individual expert to follow. The latter method is
used in the approach to evolving ensembles described in the
next section.

3. NEUROEVOLUTION OF ENSEMBLES
In this section, an approach is presented for applying en-

sembles of neural networks to control problems. To evolve
the population of networks, NeuroEvolution of Augment-
ing Topologies (NEAT) [12] is used. NEAT evolves both
the topologies and weights of neural networks, starting with
minimal networks and gradually adding complexity over time.
NEAT’s approach to speciation is depended on to ensure
diversity in the population. In NEAT, speciation is per-
formed using a form of explicit fitness sharing. Individuals
are grouped into species based on a comparison of topolog-
ical similarity, and then compete only within their species.
This technique allows novel structures to evolve indepen-
dently and realize their potential without having to compete
with other successful solutions. The size of each species is
limited by the shared fitness of its members. Although spe-
ciation based only on topological similarity does not guar-
antee that the behavior is diverse as well, for most problems
the resulting diversity is in practice sufficient.

The population evolves until the fitness of its best individ-
ual remains the same for many generations. The individuals
that will serve as experts are then selected by choosing the
fittest individual from a number of different species. Fi-
nally, NEAT is used again to evolve a gating network that
will make use of the experts. For the input to the gating
algorithm the same input is used as for the experts, i.e. the
current state of the control problem. The gating network has
one output for each expert. For the reasons described in the
previous section, the highest output is taken to represent the
expert whose output should be chosen at the current step.
One benefit to this method is that the gating network can
be evaluated first, after which the output of only one of the
experts needs to be computed, saving a significant amount
of computation time when the number of experts is large.

This approach is similar to that of hierarchical reinforce-
ment learning, in which control policies are learned on mul-
tiple levels (see [1] for an overview). In the simplest case
of two levels, low-level policies are learned to choose among
the primitive actions defined by a control problem, while
a higher-level policy chooses among the abstract “actions”
represented by the low-level policies. In general, once a low-
level policy is chosen, it is followed until a termination con-
dition is met, meaning that the high-level policy is actually
choosing between temporally extended actions. Although
the gating network chooses an expert at each time step, its
effect can be viewed as a partitioning of the problem’s state
space into regions, with one expert assigned to each region.
Thus, this approach fits into the hierarchical reinforcement
learning framework if the gating network is viewed as the
means of checking for the termination condition, where the
condition for termination is that the current state input has
left the region of the currently active expert.

One issue that must be considered when using this ap-
proach is that the behavior of the experts when used as
part of an ensemble may be unpredictable if their networks
involve recurrent connections. Recurrency is often useful
in control problems where the state representation is non-
Markovian, because it represents a way for a neural network



to “remember” information from the past. For instance,
in a control problem involving moving objects, if the in-
put representing the current state provides only the posi-
tions of objects, recurrency might allow networks to deduce
information such as the velocities of the objects that can-
not be determined directly from the input at the current
time step. The ability to utilize recurrency in this manner
has been demonstrated by NEAT for various pole balancing
problems [12]. However, if only the output of one expert is
computed at each time step, the behavior of recurrent ex-
perts may change. While the output of all experts could
be computed at each time step, problems could still arise if
an expert used recurrency to remember past actions it had
output, but these actions were not the ones taken by the
ensemble. For these reasons, in the following experiments,
recurrency was allowed in the gating network but not in the
expert networks.

4. THE POLE CHASING PROBLEM
To test this method of evolving ensembles, an extension

of the classic control problem of pole balancing is used. In
the standard pole balancing problem, a pole is attached to
the top of a cart with a hinge, forming an inverted pendu-
lum, and the cart can move along a track of limited length.
The goal is to learn how to apply force to the cart to keep
the pole from falling over while keeping the cart within the
boundaries of the track. A number of learning methods have
been shown to be effective in learning to perform this task,
including NEAT [12].

Because the goal in this paper is to show that the cham-
pion of an evolutionary process can be outperformed by an
ensemble, a more difficult control problem than standard
pole balancing is needed. While a number of extensions such
as double pole balancing [12] and balancing a pole in two
dimensions [5] have been explored in the literature, these
problems can also be solved using existing methods. For
evaluating the approach presented in this paper, a problem
is needed for which current methods are unable to consis-
tently learn an optimal solution, and for which the perfor-
mance of solutions can easily be quantified.

To meet this need, a problem called the pole chasing prob-
lem is now introduced (see Figure 1; Appendix). In this
problem, the task is not only to keep the pole from falling,
but also to move the tip of the pole to a desired position.
A randomly moving particle represents the target position,
and the goal is to minimize the average distance over time
between the tip of the pole and the particle, while keep-
ing the pole up and the cart on the track. In addition, a
telescoping pole is now used that can be slowly extended or
retracted, within a limited range. This new ability makes
it possible for the tip of the pole to be brought closer to
the particle than before, but it complicates the system dy-
namics because the pole’s behavior depends on its length.
At the same time, the dimensionality of the action space is
doubled. The particle’s motion is described by a velocity
and angle of movement, and these are updated at each step
according to an acceleration and angular velocity that follow
random walks. Collisions with a bounding box surrounding
the track are elastic, and momentum is not modeled.1

1A video of the pole chasing problem, along with re-
lated information, is available at http://nn.cs.utexas.
edu/keyword?NEATEnsembles
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Figure 1: The pole chasing problem. As with the

standard pole balancing problem, the pole must be

kept upright and the cart must remain on the track.

In addition, the tip of the pole is to be brought as

close as possible to the randomly moving particle.

The pole can be extended or retracted.

The state space is represented by the following nine vari-
ables:

1. the cart’s x coordinate,

2. the cart’s velocity,

3. the pole’s angle,

4. the pole’s angular velocity,

5. the length of the pole,

6. the x coordinate of the particle,

7. the y coordinate of the particle,

8. the change in the particle’s x coordinate since the last
step, and

9. the change in the particle’s y coordinate since the last
step.

The outputs to be determined at each step, representing the
actions to take, are:

1. the sideways force to apply to the cart, and

2. the amount by which to change the pole length.

Both outputs are real values restricted to a specific interval.
An episode ends when the pole falls, the cart leaves the

track boundary, or some maximum number of time steps is
reached. While the goal is to minimize the average distance
from the pole to the particle, the fitness function used also
includes a reward for simply keeping the episode going, in
order to speed up the initial stages of learning. The fitness
function is defined as the total reward over an episode, where
the reward at each time step is

reward = 1 +

(

1 −

particle distance

maximum particle distance

)



5. EXPERIMENTAL RESULTS
The method detailed in Section 3 was tested on the pole

chasing problem with a maximum episode length of 10,000
steps and for ensemble sizes ranging from two to ten experts.
The ANJI implementation of NEAT2 was used, based on the
default parameters provided (including a population size of
one hundred), with the exception that recurrent connections
were not allowed. In each of the 30 runs, the population was
trained for 150 generations. For each ensemble size tested,
the appropriate number of experts was chosen, and the gat-
ing network was trained for 50 generations. In each run,
the number of species in the final population was at least
ten, permitting the choice of up to ten experts from different
species.

A representative run (using eight experts) is shown in Fig-
ure 2, which shows the decrease over time in the average
distance between the pole and the particle. (Note that this
is not equivalent to the fitness function: the reward for sim-
ply keeping the pole from falling is not represented in this
plot, because for each point shown the maximum episode
length was reached.) It turns out that the ensemble, con-
trolling the pole after generation 150, immediately improves
over the population’s final champion. The ensemble further
improves its performance over a few generations to reach its
minimum result, and performance remains level afterward
(i.e., training beyond 50 generations produces no improve-
ment). This result suggests that it is not particularly dif-
ficult for the gating network to learn how to partition the
state space, but that only a fixed amount of improvement is
possible.

As can be observed in Figure 2, the fitness evaluation is
somewhat noisy. To address this problem, the results of sev-
eral episodes could be averaged when evaluating each indi-
vidual’s fitness. However, in addition to multiplying the al-
ready significant time required for computation, this method
actually reduced the quality of the solutions evolved. Appar-
ently, in the early generations, individuals that aggressively
chase the particle are somewhat less able to keep the pole up-
right than more conservative individuals, and increasing the
number of samples increases the likelihood that an aggres-
sive individual’s fitness will be hurt by an extremely poor
episode, reducing that individual’s chances of being chosen
to reproduce. When only one sample is taken, such aggres-
sive behaviors are given more time to develop, eventually
leading to individuals that are both aggressive and stable.
Fitness evaluations are therefore performed using only one
episode during evolution. However, when evaluating the fi-
nal populations of both the standard and gating networks,
the average of 30 episodes is taken.

Figure 3 shows the average improvement over the single
champion for each ensemble size tested, where the improve-
ment is measured by the decrease in the average distance
between the pole and the particle. A significant improve-
ment can be observed even with only two experts. The best
results are observed when eight experts are used, although
the differences between the performances of six, eight, and
ten experts are not statistically significant.

Figure 4 shows the results of the 30 runs when using eight
experts. The x-axis represents the average distance between
the pole and the particle for the champion after 150 gen-
erations, and the y-axis shows the amount by which this

2http://anji.sourceforge.net

distance is decreased after the ensemble has evolved. In 28
of the 30 runs, the performance of the ensemble is supe-
rior to the performance of the single champion. In the two
cases where the average distance increases, the amount of
increase is well under 1%, possibly the result of noisy eval-
uations, while in 13 runs the average distance decreases by
over 10%, including 34% in one case. The average improve-
ment seen from the champion to the ensemble is statistically
significant at the 99% confidence level according to a paired
t-test.

6. DISCUSSION AND FUTURE WORK
The goal of this paper was to demonstrate that the per-

formance of the final champion can be improved by forming
an ensemble from the final population. As the experimental
results show, this method produces consistent improvements
across the wide range of runs, confirming this hypothesis.

One interesting aspect of the results is that the perfor-
mance between the champions of the 150th generation var-
ied significantly. Although in most runs fitness reached a
plateau by the 150th generation, it is possible that given
more time to evolve, this variance would decrease. In lim-
ited testing of longer runs, there were cases where popula-
tions that hit an early low-fitness plateau later improved.
However, many hundred generations were needed for any
improvement to appear, the level of fitness reached never ex-
ceeded the level reached by the more successful runs within
150 generations, and sometimes fitness actually decreased
over time. Given these observations, it appears that the
most efficient way to build a good controller in real-world
applications is to simply perform several shorter runs and
use the best.

Previous work on utilizing an entire evolved population of
neural networks through the use of ensembles has focused
on classification problems. While control problems present
a very different set of challenges, it is possible that some
of the ideas explored in the classification setting could be
adapted to the control setting as well. For instance, Yao
and Liu [14] used a GA to search for the optimal subset
of the population to use in the ensemble, finding that the
full benefit from using an ensemble could be obtained us-
ing much less than the full population. In further work [8],
they developed a coevolutionary approach to encourage in-
dividual networks to specialize on part of the input space
through implicit fitness sharing. In a similar coevolution-
ary approach, Garcia et. al. [9] proposed that a population
of ensembles could be evolved along with the population of
networks. Fitness evaluation can then take place using a
form of multi-objective optimization; for instance, networks
can be evaluated on how well the ensembles in which they
participate perform, how accurate they are on the training
data, and how strongly their output is correlated with that
of other networks. Bruce and Miikkulainen [3] showed how
networks could be evolved to output both a classification
and a confidence factor. Classification accuracy was shown
to be significantly higher when the output of the most confi-
dent network was used instead of the champion’s output. All
of these methods could be incorporated into the neuroevo-
lution of ensembles for control problems, possibly improving
the performance reported in this paper.

One particular possibility for future work suggested by
these methods is explicitly encouraging specialization while
evolving the networks. This paper has mainly considered
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how to utilize the final population of networks, while as-
suming it would contain a useful amount of diversity due to
speciation. Just as networks used for classification can be
encouraged to specialize on a portion of the training data,
networks used for control could be encouraged to specialize
on a part of the problem’s state space. Such specialization
would complement the development of a gating network that
chooses one expert for each input. However, evaluating the
fitness of specialized individuals is difficult. When feedback
takes the form of a reward signal, action choices cannot be
evaluated in isolation, because the value of taking an action
depends on future as well as immediate rewards. These fu-
ture rewards, in turn, depend on future actions that may
end up being chosen by another member of the ensemble.
This problem may be solvable by a coevolutionary approach
where both the experts and the gating network evolve simul-
taneously, with the fitness of an expert network depending
on the success of the gating networks that use it.

The current approach could also be extended by contin-
uing to evolve the experts once their roles are defined by
the gating network, or even evolving them from scratch at
that point. In preliminary experiments, it was found that
performance could be slightly improved by re-evolving one
expert while leaving the others fixed. How to systematically
make use of such improvements is an interesting direction
for future work.

7. CONCLUSION
In this paper, a method is is presented for evolving en-

sembles of neural networks to perform control tasks in a
reinforcement learning setting. Experimental results show
that given a population resulting from an evolutionary pro-
cess, better performance can be obtained by combining indi-
viduals into an ensemble than by simply using the champion
individual. The method described here is sufficiently general
in principle that it can be used in conjunction with any ap-
proach to evolving a population of individuals representing
policies for a control problem, making it widely applicable.
As in classification tasks, ensembles can therefore be used
to significantly increase the performance of neuroevolution
in solving control problems.
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Appendix

Table 1: Parameters for the pole chasing problem.

Parameter Value or Range

cart and pole
mass of cart 1.0 kg
mass of pole 0.1 kg
pole length [0.5, 1.5] m
force [-10, 10] N
position on track [-2.4, 2.4] m
angle of pole from vertical [-50, 50] degrees
time per step 0.05s

particle
velocity [-2, 2] m/s
angular velocity [-360, 360] degrees/s
step size of random walk for vel. [-0.1, 0.1] m/s
step size of r. walk for ang. vel. [-.05, .05] m/s
x position [-2.4, 2.4] m
y position (from base of pole) [0.5, 1.5] m


