Learning Predictive State Representations

Satinder Singh

BAVEJAQEECS.UMICH.EDU

Computer Science and Engineering, University of Michigan

Michael L. Littman
Department of Computer Science, Rutgers University
Nicholas K. Jong

David Pardoe
Peter Stone

MLITTMANQCS.RUTGERS.EDU

NKJQCS.UTEXAS.EDU
DPARDOEQCS.UTEXAS.EDU
PSTONEQCS.UTEXAS.EDU

Department of Computer Sciences, The University of Texas at Austin

Abstract

We introduce the first algorithm for learn-
ing predictive state representations (PSRs),
which are a way of representing the state of a
controlled dynamical system. The state rep-
resentation in a PSR is a vector of predic-
tions of tests, where tests are sequences of
actions and observations said to be true if
and only if all the observations occur given
that all the actions are taken. The problem
of finding a good PSR—one that is a suffi-
cient statistic for the dynamical system—can
be divided into two parts: 1) discovery of a
good set of tests, and 2) learning to make
accurate predictions for those tests. In this
paper, we present detailed empirical results
using a gradient-based algorithm for address-
ing the second problem. Our results demon-
strate several sample systems in which the
algorithm learns to make correct predictions
and several situations in which the algorithm
is less successful. Our analysis reveals chal-
lenges that will need to be addressed in future
PSR learning algorithms.

1. Introduction

Predictive state representations (PSRs; Littman, Sut-
ton, & Singh, 2002) are a new way, based on previ-
ous work (Jaeger, 2000, Rivest & Schapire, 1994), for
representing the state of a controlled dynamical sys-
tem from a history of actions taken and resulting ob-
servations. A distinctive feature of PSRs is that the

representation is not interpreted as a memory of past
observations, or as a distribution over hidden states,
but as a vector of prediction probabilities. For exam-
ple, the first component of the vector might be the
probability that observation 1 will occur if action a is
taken, and the second component of the vector might
be the probability that observation 1 will occur twice
in succession if action a is taken followed by action b,
and so on. For each component of the vector, there
is a sequence of alternating actions and observations
called a test. These tests, called the core tests, define
the PSR. In previous work, we have shown that PSR
representations are more general than methods based
on a fixed-length window of past experience (like k-
Markov models, in which the state is the most recent
k action—observation pairs) and are as general and at
least as compact as partially observable Markov deci-
sion process (POMDP) representations.

Another reason for interest in PSRs is that their
structures—the predictions—are directly related to
observable quantities and thus may be easier to
learn than hidden-state representations like POMDPs.
Analogous demonstrations have been made for the di-
versity representation (Rivest & Schapire, 1994) and
the observable operator representation (Jaeger, 2000).
These representations are similar to, but more restric-
tive than, PSRs. In this paper, we use the term learn-
ing to refer to the process of finding how to maintain
correct predictions for a given set of tests. The other,
perhaps larger, problem of choosing which tests to use
to define the representation, which might be called the
discovery problem, we postpone to another time.

In previous work (Littman et al., 2002), we introduced

Proceedings of the Twentieth International Conference on Machine Learning (ICML-2008), Washington DC, 2003.

PSRs as a new representation suitable for learning.
This paper introduces the first concrete learning al-
gorithm for PSRs in POMDPs. We present detailed
empirical results showing that our gradient-based al-
gorithm makes correct predictions in several sample
systems. We also present and analyze some systems
and situations in which the algorithm is less successful
and analyze the reasons for its failures. Overall, our
results suggest that our learning algorithm is a good
starting point for learning PSRs. The primary goals
of this paper are to introduce the initial PSR learning
algorithm, to analyze its empirical performance in de-
tail, and to suggest directions for future development
of PSR learning algorithms.

2. Predictive State Representations

The dynamical system that we are trying to model and
predict is assumed to operate at discrete time intervals,
to receive actions from a finite set A, and to produce
observations from a finite set O. The source of the ac-
tions, the behavior policy, is at this point arbitrary.
The system and the behavior policy together deter-
mine a probability distribution over all histories (se-
quences of alternating actions and observations from
the beginning of time).

PSRs are based on the notion of tests. A test ¢ is a fi-
nite sequence of alternating actions and observations,
q € {Ax O}*. For a test ¢ = a'o'a®0®...d'd, its
prediction given some history h = a101a205 ... a0,
denoted p(g|h), is the conditional probability of see-
ing the test’s observations in sequence given that the
test’s actions are taken in sequence from history h:
p(qlh) = prob(ogr1 = o', ...,001 = O'|h,ap1 =
a'...azy; = a'). For completeness, we define the
prediction for the null test to be one. Given a set
of n tests @ = {q1,...,qn}, its prediction wvector,
p(Qlh) = [p(a1|h),p(g2|h), . .., p(gn|h)], has a compo-
nent for the prediction for each of its tests. The set @
is a predictive state representation (PSR) if and only
if its prediction vector forms a sufficient statistic for
the dynamical system, that is, if and only if

plqlh) = f,(p(QIh)), (1)

for any test ¢ and history h, and for some projection
functions fy : [0,1]™ — [0, 1]. This means that for all
histories the predictions of the tests in () can be used
to calculate a prediction for any other test. The tests
in set @ are called core tests as they constitute the
foundation of the representation of the system. In this
paper, we focus on linear PSRs, for which the pro-
jection functions are linear—there exists a projection

r:see0

Figure 1. The float/reset example problem.

vector mg, for every test g, such that

palh) = f,(p(QIh)) = p(Q|h) "my, (2)

for all histories h. Let ¢; denote the ith core test in
a PSR. Its prediction can be updated recursively from
the prediction vector, given a new action—observation
pair a, o, by

plaog;|h) _ p(Q|h)Tmaoqi
p(aolh) PRI Tma,

where we used the fact that aog; and ao are also tests.

3)

p(gilhao) =

To illustrate these concepts, consider the dynamical
system in Figure 1, consisting of two actions and ob-
servations and described by a linear chain of 5 environ-
mental states with a distinguished reset state on the
far right. Action f causes uniform motion to the right
or left by one state, bounded at the two ends. Action r
causes a jump to the reset state. The observation is 1
when the r action is taken from the reset state, and is
0 otherwise. Littman et al. (2002) showed the predic-
tion vector for the 5 core tests f0, 0, f0r0, f0f0r0,
and fOf0f0r0 constitutes a linear PSR for this sys-
tem. Consider how the components of the prediction
vector are updated on action—observation f0. Most
of these updates are quite simple because the tests
are so similar. For example, the new prediction for
r0 is p(f0r0|h)/p(fO|h), where both numerator and
denominator are already part of the PSR. The non-
trivial case is the update for the longest core test (see
Littman et al. (2002) for details), p(f0f0f0f0r0|h) =
0.250 p(fOlh) — 0.0625 p(r0|h) + 0.750 p(f0f0r0|h),
matching the form of Equation 3. This example shows
that the projection vectors may contain negative en-
tries, which makes for a challenging learning problem.

To derive a learning algorithm, notice from Equation 3
that to update the predictions of the core tests, it is
only necessary to have predictions for all 1-step exten-
sions of all the core tests (the numerator on the right-
hand side of the equation) and the 1-step extensions
of the null test (the denominator on the right-hand
side of the equation). Collectively, we call these 1-step
extensions of the core and null tests extension tests

and denote the set of them X. For linear PSRs there
is a separate projection vector m, for each extension
test x € X. The m, vectors constitute the parameters
of the PSR, and the learning problem is to determine
from data the parameters for a given set of core tests.

3. Learning Algorithm

In this section, we present our algorithm for learning
the PSR parameters from data. At each time step t,
an action—observation pair as, o; is generated from the
dynamical system, advancing the history of data avail-
able by one step. The history prior to step ¢ is denoted
ht—1. We assume the actions are chosen according to
some known behavior policy 7 that is € soft, specifi-
cally prob(ah,) > € > 0 for all histories h and for all
a € A, to encourage exploration. A test ¢ is consid-
ered to be executed at time t if the sequence of actions
starting at time ¢ matches the sequence of actions in
g, and the outcome of such a test, x,¢, is 1 if the se-
quence of observations starting at time ¢ matches the
sequence of observations in ¢, and is 0 otherwise. A
learning algorithm has to use the history to estimate
the PSR parameters, as well as use these estimated
parameters to maintain an estimated predictive state
representation. We will denote estimated parameter
vectors by m and estimated prediction vectors by p.

One way to derive a learning algorithm is to define an
appropriate error function and then use the gradient
of the error function with respect to the parameters to
derive the learning rule. What is an appropriate error
function for evaluating a model of a dynamical system?
Whereas learning algorithms for history-window and
belief-state approaches minimize prediction error for
immediate or one-step observations, we instead use a
multi-step prediction error function

Error(t) = Z[P(1'|ht71)_ﬁ(x|htfl)]27 (4)

zeX:

where X; contains all extension tests possible from
time ¢ (i.e. those that begin with action a).

In the appendix, we argue that it is computationally
difficult to directly use the true gradient of the er-
ror function and so instead we will use a simple and
myopic approximation to the gradient in our learning
algorithm. Formally, letting E; denote the set of ex-
tension tests that are executed at time ¢ (note that all
x € E; must be of the form a;oq for some ¢ € Q U ¢,
where ¢ is the null test), the learning rule is:

N N 1 T A
Ve € By, My < 1M+ atT[Xz,t _ptTmz]pt
x,t

Vo ¢ Et, mz — mz; (5)

where p; = p(Q|hi—1) is the estimated state vector
at time ¢, «a; is the step-size parameter (which can
change over time), and wy , is the importance sampling
weight! for extension test * = ajoq at time t. Our
learning algorithm updates the parameter vectors for
all executed extension tests to make them more likely
to predict their outcomes. The parameter vectors of
extension tests that are not executed are not updated.
The updated parameters are then used to compute
the next estimated state vector pry1 = p(Q|ht) using
estimated parameters in Equation 3. We bound the
entries of the p.y1 vector by clipping them at 1 and
7 > 0; we found that not doing so sometimes made the
learning rule less stable.

Our learning algorithm capitalizes on the fact that the
history data provides outcomes for the extension tests
that are executed. In practice, the algorithm will do an
update for time-step ¢ when it has a history of length
t + k where k is the length of the longest extension
test. This way, the algorithm can look forward in time
to determine the extension tests executed from ¢ and
their outcomes to use as training data.

Of course, other multi-step prediction error gradient
algorithms are possible; our learning algorithm ignores
the effect of changing the parameters on the input
pe itself, and other algorithms that are less myopic
and “unroll” the parameter changes backwards in time
can be derived (see appendix). The performance of
gradient-based learning algorithms depends, of course,
on various properties of the error landscape: the pres-
ence or absence of local minima, the size of the basins
of attraction and stability of the various minima, the
noisiness of the stochastic gradient estimate, and so on.
Our learning algorithm is the computationally sim-
plest gradient-based rule to explore, and our empirical
results help uncover properties of the error landscape.

4. Empirical Results

In this section, we present detailed empirical results
designed to expose the strengths and weaknesses of
our learning algorithm.

!The importance sampling weight compensates for
unbalanced exploration within tests and is defined as
follows: assume without loss of generality that ¢ =
a‘o'a’0?...a'o', then wyy = IO, prob(a’|htys,), where
hi+i is the history at time ¢ 4 ¢. For the special case
of £ = a0, the importance sampling weight wy, = 1.
These weights are only relevant if the behavior policy is a
function of past observations. In our experiments, we use
observation-independent behavior policies and hence omit
importance sampling weights.

ONLINE LEARNING FOR FLOAT/RESET
0.1 T T T T T

0.001 |

OBSERVATION PREDICTION ERROR

0.0001 |

1e-05

L L L L L L L L L
0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06 2e+06
TIME STEP

Figure 2. Prediction error for ten runs of our learning al-
gorithm on float/reset.

4.1. Does it Work?
FIrsT RESULTS

Our first results are on the simple dynamical system
of Figure 1. We simulated float/reset, choosing ac-
tions uniformly randomly at each time step, and used
the sequence of action—observation pairs to learn the
parameters via Equation 5. We used the core tests
from Section 2. The error measured at time-step ¢
is the squared error between the true one-step ob-
servation probabilities and the estimated observation
probabilities. So, if the probability that the dynami-
cal system would choose observation o at time ¢ given
the history is p(o,t) and the learned model estimates
this probability as p(o,t), then the performance is
ZtT:1 >, (p(o,t) — p(o,t))?/T. This measure has the
useful property that a model has zero error if and only
if it produces correct predictions. It is also indepen-
dent of the core tests being used and is useful for di-
rect comparisons with existing methods based on other
representations. Even though the true one-step obser-
vation probabilities are not generally available, in this
case we can use our knowledge of the underlying sys-
tem parameters to compute them solely for the pur-
poses of measuring the error.

We computed the average error per time step over in-
tervals of 10,000 steps and plotted the sequence of
errors for 10 runs in Figure 2 as learning curves. The
step sizes for each run started at 0.1 and were halved
every 100, 000 steps to a lower-bound of 0.00001. The
components of the estimated state vector were upper-
bounded at 1.0 and lower-bounded at 0.0001. The
error decreases to 0.0001 in each run, but does not go
to zero in part because of the lower-bound clipping.

COMPARISON TO HISTORY-WINDOW AND EM

For our second example, we highlight the advantage of
PSRs over history-window and EM based approaches

u: see0 u: see0

rseel

I: see0 r: see0

l:seel

Figure 3. A simple two-state test system that no k-Markov
model can represent.

on an extremely simple 3-action, 2-observation system,
flip, illustrated in Figure 3. It can be defined using
two states. The observation 1 is made when the state
changes, and 0 is made otherwise. Action u keeps the
state the same, action [causes a deterministic transi-
tion to the left state, and action r causes a determinis-
tic transition to the right state. The example was in-
spired by one used by Finney et al. (2002) that proved
nettlesome to a history-window-based approach.

Because the u action provides no state information,
the higher the probability of choosing it, the less effec-
tive a k-Markov model will be in capturing the state
information. At the same time, the higher the proba-
bility of choosing u, the less important it is to track the
state, as most of the time the true observation will be
0. Error is maximized for a 1-Markov model when the
probability that u is chosen on any step is 1/2. Error
decreases for k-Markov models with increasing &, but
it can never be driven to zero because there is always
some probability of a sequence of u actions filling up
the history window.

We simulated flip, choosing actions according to the
same behavior policy described above (u with proba-
bility 1/2, and each of [and r with probability 1/4).
We used sequences of 1000 action—observation pairs as
a batch training set and another 100,000 to serve as a
testing set. As before, error is measured by the sum
of squared differences between the 1-step observation
predictions from the learned model and those of the
true model.

We used a constant step-size parameter of 0.1 and ex-
perimented with two different sets of core tests: two
tests that constitute a sufficient statistic (chosen using
prior knowledge of the system; Littman et al., 2002)
and the set of all 1-step tests (also a sufficient statis-
tic) and the results were qualitatively identical. In
100 runs, the algorithm’s testing error never exceeded
0.0001 and the median error was 4.0 x 10~%; our learn-
ing algorithm learned a correct model of the dynamical
system every time.

In contrast, we repeatedly simulated k-Markov mod-
els on this example and obtained average errors of

0.125 (1-Markov), 0.0625 (2-Markov), and 0.0312 (3-
Markov). It is interesting to note that the parameters
of a 1-Markov model and a PSR with all 1-step tests as
core tests are very similar; both consist of prediction
information for each action—observation pair. How-
ever, a 1-Markov model looks backward and has per-
step error of 0.125 on flip, whereas the corresponding
PSR looks forward and represents flip perfectly.

We also tried to learn POMDP representations for flip
using a direct implementation of the EM algorithm?,
first proposed for POMDPs by Chrisman (1992). We
attempted to learn models with 4, 5, 6, 7, or 8 states.
The learning code we used learned POMDPs in which
observations are only conditioned on states, and so a
4-state model is needed to represent flip (one for the
left state arriving from the right, one for the left state
otherwise, one for the right state arriving from the left,
and one for the right state otherwise). In 25 learning
runs, EM learned a correct 4-state model 48% of the
time, 5-state model 64% of the time, 6-state model
84% of the time, 7-state model 95% of the time, and
8-state model 100% of the time. For consistent results
that avoid local optima, EM requires far more than the
minimum number of required states. Because the hid-
den states of a POMDP can only be trained indirectly,
EM quite often fails to find appropriate models.

Note that there are more sophisticated algorithms for
learning POMDP models (Nikovski, 2002) that need to
be compared systematically to our learning algorithm;
our main purpose in presenting these comparative re-
sults is to demonstrate that our learning algorithm is
indeed solving a non-trivial task.

POMDP BENCHMARKS

Emboldened by our success so far, we tested the per-
formance of our learning algorithm on several of the
problems from Cassandra’s POMDP page (Cassandra,
1999). To determine the tests, we used the algorithm
presented by Littman et al. (2002), which efficiently
searches through the space of tests to find ones that
produce linearly independent outcome vectors. We
modified the search to be breadth first, which we have
found produces shorter tests when there are multiple
sets of tests that constitute a PSR. The majority of the
tests were one step long on the problems we looked at,
and no test was longer than two steps except in the
Hallway problem. For each problem we ran our algo-

2Our experiments used Kevin Murphy’s Bayes Net
Toolkit: http://www.cs.berkeley.edu/ murphyk/Bayes/
bnt.html. EM ran for a maximum of 100 iterations or un-
til two successive iterations changed the log likelihood by
less than 0.0001.

Problem || Core | Act | Obs | Awvg. error with policy:

tests actions | ext. tests

Tiger 2 312 0.000006 | 0.0000043

Paint 2 412 0.00001 0.000011

Cheese Maze 11 4 17 0.00037 0.00081

Network 7 412 0.001287 | 0.000826
Bridge Repair 5 12 |5 0.00606 0.003389
Shuttle 7 315 0.026685 | 0.026661

4x3 Maze 10 416 0.066509 | 0.066399
Hallway 58 5] 21 0.166763 | 0.196041

Table 1. Results for selected problems from Cassandra’s
POMDP page. The first column is the name of the prob-
lem. The next 3 columns denote the number of core tests
used, the number of actions, and the number of observa-
tions. The last two columns show the performance of our
learning algorithm for two different behavior policies.

rithm for ten million steps, starting with a step size
of 0.1 and decreasing it by 10% every 100,000 steps
down to a minimum of 0.00001. Results are presented
in Table 1. Our error measure is the same one-step ob-
servation probability error we used for the float/reset
problem in Section 4.1. Column 5 is the error pro-
duced when the behavior policy is uniformly random
over the actions. Column 6 presents results with a be-
havior policy that chooses randomly from among the
extension tests and executes it to completion before
deciding again — this policy will be motivated at the
end of the next subsection. Clearly our learning algo-
rithm works better on some problems than others.

Figure 4 shows the 4x3 maze (Russell & Norvig, 1994)
problem from Table 1 on which our learning algorithm
was less successful. It is a fairly straightforward grid-
world in which movement is allowed in four directions,
and the transitions are stochastic. Each action has
an 80% chance of causing movement in the expected
direction and a 10% chance of causing movement in
either perpendicular direction. Moving into a wall has
no effect. The observations indicate the presence of
walls on the left side, right side, both sides, or nei-
ther side. The states labeled ‘+’ and ‘-’ are special
goal states producing those observations, and taking
any action in either of these states causes a transi-
tion to a different random state. We will use this 4x3
maze problem below in analyzing why our learning al-
gorithm fails to find good models in some problems.

4.2. Further Analysis

This section analyzes various aspects of the perfor-
mance of our learning algorithm.

INSTABILITY OF GLOBAL MINIMUM

Here we ask the following question: how stable is
the global minimum of the multi-step prediction er-

B
R

LI N

Figure 4. The 4x3 maze. Each state is labeled with the

observation it produces.

ror function (Equation 4) we used to derived our al-
gorithm? As a first experiment in the 4x3 maze, we
used the true prediction vectors at each time step and
updated our projection (parameter) vectors normally
using our learning algorithm. That is, during learning
we used our knowledge of the underlying system to
calculate the true prediction vectors, instead of calcu-
lating them using our estimated projection vectors as
we would normally do. Doing so led to very low errors,
confirming that at least when the myopic assumption
made by our learning algorithm is met, it learns well.
Next, we did an experiment in which we started the
projection vectors at the global minimum by setting
them to analytically derived optimal values and then
updated them normally (i.e., with estimated projec-
tion vectors) using our learning algorithm. Even with
a small step size of 0.00001, the projection vectors drift
away from the global minimum and the error rises sig-
nificantly. This behavior shows an instability around
even the global minimum that presents a significant
problem for our learning algorithm.

To empirically confirm that at least the ezpected my-
opic gradient at the global minimum of the error func-
tion is zero, we ran the same experiment as above ex-
cept in batch-mode wherein we collected the changes
proposed in the projection vectors instead of actually
making them. The average change in the projection
vectors converges to zero as we increase the size of
the batch confirming that the expected myopic gradi-
ent is indeed zero. The online and batch results taken
together seem to imply that small errors in the pro-
jection vectors caused by the noise in the stochastic
myopic gradient can feed into the errors in the pre-
diction vectors which can feed back into the errors in
the projection vectors and so on to make the updates
unstable around error-function minima.

SENSITIVITY TO PARAMETERS

To get a picture of the error surface near the global
minimum mentioned above, we experimented with
slightly perturbing the correct projection vectors and
observing the resulting error. To each component of
each correct projection vector, we added a uniformly

| Range || Lowest error | Average error | Highest error |

.01 0.52383 0.632442 0.789186
.001 0.0963113 0.159012 0.256983
.0001 0.0101525 0.0156923 0.0232892
.00001 0.00167324 0.00372457 0.00671833
.000001 || 0.000195849 | 0.000537839 0.0011597

Table 2. Average error for ten runs of 4x3 maze with per-
turbed projections.

| Range || Lowest error | Average error | Highest error |
.01 1.11288e-004 | 2.88210e-004 | 4.89520e-004
.001 1.63735e-006 | 3.46128e-006 | 6.33837e-006
.0001 2.73582e-008 | 4.73308e-008 | 1.09015e-007
.00001 1.67552e-010 | 5.77677e-010 | 1.48383e-009
.000001 || 2.81815e-012 | 4.84912e-012 | 1.02960e-011

Table 3. Average error for ten runs of float/reset with per-
turbed projections.

random perturbation amount in the range [—z, z] for
values of x between 0.01 and 0.000001. We then up-
dated the prediction vector for 100,000 steps without
updating the weights, and recorded the average error
over all steps. The results are presented in Table 2.
For comparison, Table 3 gives the results of the same
experiment on float/reset. The error increases rapidly
as the weights move away from the solution to the 4x3
maze, while the error surface around the solution to
float/reset is much more shallow.

While these relative sensitivity results for float/reset
and 4x3 maze do not by themselves explain the differ-
ing performance of our learning algorithm on these two
problems, they do suggest a correlation between quali-
tative aspects of the error surface and the performance
of our learning algorithm.

RoOBUSTNESS TO EXTRA OR FEWER TESTS

Here we consider the effect of having extra core tests or
too few core tests on the performance of our learning
algorithm for a problem on which it does well, namely
the float/reset problem.

Extra Core Tests: We can add to the core tests
used for float/reset in Section 4.1 by adding extra f0
pairs before the longest core test fOf0f0r0. Gradually
increasing the number of core tests in this fashion does
not appreciably change the final error, though it does
increase the variance in this error. Figure 5 shows the
result of including core tests of this form up to and
including eight float actions before the reset.

Missing core tests: What if we don’t include some

ONLINE LEARNING FOR FLOAT/RESET WITH EXTRA CORE TESTS
1 T T T T T T T T T

0.1 {f

OBSERVATION PREDICTION ERROR
o
g

0.001 |

0.0001 L L L L L L L L L
0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06 2e+06

TIME STEP

Figure 5. These trials included extra core tests that took
the form of n f0 tests followed by an r0, for 4 <n < 8.

ONLINE LEARNING FOR FLOAT/RESET WITH THE THREE SHORTEST CORE TESTS
01

0.001 |

OBSERVATION PREDICTION ERROR

0.0001

L L L L o
0 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06 2e+06
TIME STEP

Figure 6. These trials only included three core tests: fO0,
r0, and fOr0. The “steps” correspond to learning-rate
changes.

of the 5 core tests used for float/reset in Section 4.17
In such a case, the reduced set of tests will not be
a PSR. Figure 6 shows that our learning algorithm
achieves the same level of performance with only the
three shortest core tests, f0, 70, and f0r0, as it does
with the original five. Further experimentation reveals
that sets of core tests that include these three achieve
error close to 0.0001; while any set that omits any one
of these three core tests achieves no better than ten
times that error.

While the effect of extra or missing core tests is likely
to be domain dependent, the fact that our results on
float/reset are robust to changes in the core tests is
encouraging with regards to the possibility of eventu-
ally combining core-test discovery with learning. On
the other hand, the fact that one needs certain subsets
of tests to get significant reduction in prediction error
suggests that discovering the core tests by some incre-
mental generate and test approach may be difficult.

BEHAVIOR POLICY MATTERS

We also performed a separate series of experiments
with our learning algorithm in simple scalable grid-
worlds with 4 actions (move N,S,E;W) and two ob-
servations (1 if an action would cause a move off the
edge of the grid, and 0 otherwise). For lack of space
we will not present many of the experimental details
here but simply report a finding. Note that a result
of using a uniform random policy is that the probabil-
ity of the execution of a test goes down exponentially
with its length. This unbalanced experience with tests
of different lengths prevented our learning algorithm
from learning effectively in grid worlds. We tried a
different behavior policy that chose randomly among
extension tests and executed their action sequences to
completion before making another choice. This uni-
form extension-test behavior policy balances experi-
ence with the different tests more evenly and allowed
our learning algorithm to learn in the same grid worlds
that it was having trouble with earlier.

5. Discussion

Our learning algorithm uses the simplest approxima-
tion to the gradient of the multi-step error function.
Our empirical results show that, despite this fact, it is
able to learn a good model for some dynamical sys-
tems. Our analysis of the cases where it fails has
already led to our making changes in the learning
algorithm that have improved its performance. For
example, the discovery that long core tests occur in-
frequently and hence don’t get as many updates and
thereby contribute significantly to the error led us to
two changes: 1) to use shorter core tests (by using
breadth-first search), and 2) to use a behavior policy
that explores tests rather than primitive actions. In
addition, our analyses of how stable the global min-
ima are and how sensitive the prediction error is to
slight changes in the parameters lead us to believe that
the difficulty our learning algorithm had in some do-
mains is explained in part by the different error land-
scapes in different systems. For example, the global
minimum seems to be more stable and less sensitive
for the float/reset problem (which was easy to learn)
than for the 4x3 maze (which was hard to learn). We
speculate that this difference will be encountered with
most gradient-based learning algorithms. In addition,
there are still other potential ways in which the per-
formance of our learning algorithm could be improved.
For instance, it is possible that with other heuristics
commonly used with gradient algorithms like random
restarts or the use of a momentum term, our learning
algorithm’s performance can be further improved. Re-

gardless, our learning algorithm is an important first
step towards the development of robust algorithms for
learning with PSRs. In our future work, we intend to
explore both less-myopic gradient-based algorithms as
well as non-gradient algorithms.

Appendix

We show that our learning algorithm is a myopic ver-
sion of the gradient algorithm for the following multi-
step prediction error function:

Error(t) = Z [p(z|hi—1) — p(a|he—1)]?
reX|q,
= Z [p(1’|ht71)—ﬁT(Q|ht71)mz]2> (6)
reX|q,

where X|,, are all the extension tests that begin with
action a;. The gradient algorithm will iteratively move
the parameters in the direction of the gradient. The
gradient of the error function with respect to the pa-
rameter vector m, is as follows: for z € X),,

({)E;in;t(ﬂ _(2[p(m|ht71) — Y (Qlhs 1)1
[P(Q[he-1) + %}:‘l)mx]), (7)
while for z ¢ X|,,
EE;rToz(t) = _(2[p(w|ht—1) — 9" (Qlhe—1)1ins]

(8)

Unfortunately, the gradient of the error function is
complex to compute because the derivative of the es-
timated state, %ﬁ(@mt,l), requires taking into ac-
count the entire history (or much of it, depending on
the mixing time). We will instead be myopic and take
the estimated state as “given”, that is, assume the
derivative of the estimated state with respect to any
of the parameters to be zero. In that case, we can

define the following correction term: for all z € X
Do(t) = —Xeex,,, (2pelhi-1) = BT (Qlhu-1)iia]

PQIM 1)), (9)

where xzex,, is an indicator function that is 1 if
r € Xj,, and is 0 otherwise. Of course, we cannot
use D, (t) because we do not have access to p(z|ht—1).
Instead, we have access to x,,: with probability w, ¢,
and so we instead use the stochastic correction term

1 . .
d:(t) = —Xzex,, - (2[Xz,t — T (Qhy—1)17,]
T,

Q)

omy,

B(Qlhi-1)) (10)

in our learning algorithm. It can be seen that
B hi_1,a,1d2(t)} = Dy (t), where Ej; p,_, o, is expec-
tation given behavior policy =, history h;_;, and the
action at time t. Therefore, the effect of the learning
algorithm defined in Equation 5 is to follow the my-
opic approximation of the multi-step prediction error
gradient, in expectation.

Acknowledgments

We are grateful to Richard Sutton for numerous inspir-
ing interactions on PSRs and for many specific ideas
and suggestions on what would make a good algorithm
learning PSRs. Natalia Hernandez Gardiol and Daniel
Nikovski provided pointers to relevant materials.

References

Cassandra, A. (1999). Tony’s pomdp page.
http://www.cs.brown.edu/research/ai/pomdp/
index.html.

Chrisman, L. (1992). Reinforcement learning with
perceptual aliasing: The perceptual distinctions ap-
proach. Proceedings of the Tenth National Confer-
ence on Artificial Intelligence (pp. 183-188). San
Jose, California: AAAT Press.

Finney, S., Gardiol, N. H., Kaelbling, L. P., & Oates,
T. (2002). Learning with deictic representation
(Technical Report AIM-2002-006). MIT AI Lab.

Jaeger, H. (2000). Observable operator models for dis-
crete stochastic time series. Neural Computation,
12, 1371-1398.

Littman, M. L., Sutton, R. S., & Singh, S. (2002). Pre-
dictive representations of state. Advances in Neural
Information Processing Systems 14 (pp. 1555-1561).

Nikovski, D. (2002). State-aggregation algorithms for
learning probabilistic models for robot control. Doc-
toral dissertation, Robotics Institute, Carnegie Mel-
lon University, Pittsburgh, PA.

Rivest, R. L., & Schapire, R. E. (1994). Diversity-
based inference of finite automata. Journal of the
ACM, 41, 555-589.

Russell, S. J., & Norvig, P. (1994). Artificial intelli-
gence: A modern approach. Englewood Cliffs, NJ:
Prentice-Hall.

