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Abstract: Auction mechanism design has traditionally been a largely analytic process, relying on assumptions
such as fully rational bidders. In practice, however, bidders behave unpredictably, making them difficult to model
and complicating the design process. To address this challenge, we present an adaptive auction mechanism: one
that learns to adjust its parameters in response to past empirical bidder behavior so as to maximize an objective
function such as auctioneer revenue. In this paper, we give an overview of our general approach and then present an
instantiation in a specific auction scenario. The algorithm is fully implemented and tested. Results indicate that the
adaptive mechanism is able to outperform any single fixed mechanism.

1 Introduction

Recent years have seen the emergence of numerous auction platforms that cater to a variety
of markets such as business to business procurement and consumer to consumer transactions.
Depending on factors such as bidder strategies and product types, varying the parameters of the
auction mechanism, such as auctioneer fees, minimum bid increments, and reserve prices, can
lead to widely differing results. This paper considers learning auction parameters to maximize
auctioneer revenue as a function of empirical bidder behavior.

Mechanism design has traditionally been largely an analytic process. Assumptions such as full
rationality are made about bidders, and the resulting properties of the mechanism are analyzed in
this context [1]. Typically, the design process is incremental, involving reevaluating the assumptions
made about bidders in light of auction outcomes. In particular, these assumptions pertain to bidders’
intrinsic properties and to the manner by which these properties are manifested in bidding strategies.

Even when the assumptions about bidders can be successfully modified to explain past results,
the process requires human input and is time consuming, undermining the efficiency with which
changes can be made to the mechanism. In e-commerce settings in which a large number of auctions
for similar goods may be held within a short time frame, such as auctions on e-Bay or Google
keyword auctions, this is a serious drawback.

To address these challenges, we propose a substantially different approach to mechanism design:
self-adaptive auction mechanisms that change in response to observed bidder behavior. In this paper,
we consider an auction with a single continuous parameter, and present a metalearning process
by which the method of parameter optimization is itself parameterized and optimized based on
simulated experiences with different populations of bidders. The main contribution of this paper
is the specification, implementation, and empirical testing of an adaptive mechanism designed to
maximize auctioneer revenue in the face of an unknown population of bidders.

2 An Adaptive Approach

The strategies employed in an auction by bidders are often unknown to the seller. Nonetheless, the
effectiveness of the auction mechanism can vary drastically as a function of the bidding strategies
used. In settings in which a large number of similar auctions are held, it may be reasonable to assume
that the behavior of bidders remains somewhat consistent, suggesting the possibility of learning
about bidder behavior through experience. For example, the bidders on a particular Google keyword
may remain the same for some time, and identical items on eBay will likely attract similar buyers.
For such settings, we propose adaptive mechanism design, an online empirical process whereby
the mechanism adapts to maximize a given objective function based on observed outcomes. Because



we allow for situations in which bidder behavior cannot be predicted beforehand, this process must
be performed online during interactions with real bidders. (In this paper, the term “online” refers
to the fact that adaptation takes place during the course of actual auctions, and not the fact that
auctions take place electronically — although that may also be the case.)

In our view of adaptive mechanisms, a parameterized mechanism is defined such that an adaptive
method can be used to revise parameters in response to observed results of previous auctions,
choosing the most promising parameters to be used in future auctions. Any number of continuous
or discrete auction parameters may be considered, such as reserve prices, auctioneer fees, minimum
bid increments, and whether the close is hard or soft.

The adaptive method is an online machine learning algorithm aiming to characterize the function
from mechanism parameters to expected revenue (or any other objective function). Because the
learner can choose different auction parameters at each step (thus effectively selecting its own
training examples), and the target output is continuous, the problem is an active learning [2]
regression problem. A key characteristic is that the learning is all done online during actual
auctions, so that excessive exploration of various parameter settings can be costly.

The only assumption about bidders is that their behavior is consistent in some way (e.g. bidders
associated with a particular industry tend to bid similarly) so that it is possible to learn to predict
auction results as a function of the mechanism, at least in expectation.

The use of an adaptive mechanism provides the possibility of identifying optimal auction
parameters even without explicitly modeling the bidders. However, when predictions can be made
about the types of behavior to be expected, this knowledge can usefully influence the method of
adaptation. Specifically, one can use a method of adaptation that is itself parameterized, and then
choose the parameters that result in the best performance under expected bidder behavior.

The steps in the “metalearning” process of choosing an adaptive auction mechanism to max-
imize a particular objective function are thus as follows: 1) Choose the parameterization of the
auction. 2) Make predictions about possible bidder behavior that allow for simulation. Sources for
these predictions may include analytically derived equilibrium strategies, empirical data from past
auctions in a similar setting, and learned behaviors. 3) Choose the method of adaptation and its
parameters. 4) Search the space of parameters of the adaptive method to find those that best achieve
the objective in simulation.

We now present an illustrative application of this approach to a particular auction scenario.

3 An Auction Scenario

We consider an English auction in which bidders submit ascending bids, and assume that the seller
may set a reserve price indicating the minimum acceptable bid. For the sake of simplicity, we
assume that two bidders participate in each auction. We base the behavior of these bidders on the
model of loss averse bidders described by Dodonova [3]. A loss averse bidder considers the utility
from a gain to be lower than the disutility from a loss (“losing” an item for which he previously
had the highest bid) of the same magnitude. Specifically, if the marginal utility from winning an
auction is z, then the marginal disutility from losing the same object is avx, where o > 1.

Under the equilibrium derived by Dodonova, the first bidder will submit a bid in the beginning
of the auction if his valuation is higher than the reserve price, while the second bidder enters
the auction only if by doing so he can guarantee a positive expected utility. This equilibrium can
cause the seller’s optimal reserve price to be 0 under certain conditions, and can also result in a
non-convex revenue as a function of reserve price, with one maximum close to zero and another
at a much higher reserve price, as will be illustrated in Figure 1. Thus the auctioneer has potential



incentives to set both a low reserve price and a high reserve price, a conflict that must be taken into
account when choosing a method of searching for the optimal reserve price.

We consider a scenario in which a seller interacts repeatedly with bidders drawn from a fixed
population. In particular, the seller has 1000 identical items that will be sold one at a time through
a series of English auctions. The seller sets a (potentially different) reserve price for each auction,
thus indirectly affecting the auction’s outcome. The seller’s goal is to set the reserve price for each
auction so that the total revenue obtained from all the auctions is maximized. If a complete model
of the behavior of the population of bidders were available, the seller could determine the optimal
reserve price analytically. However, as this information is not available, the seller must identify the
optimal reserve price through online experimentation guided by an adaptive mechanism.

A bidder is characterized by i) an independent, private value v for the sold item, and ii) a
degree of loss-aversion a. The seller knows that bidders have independent, private values, and
are likely loss averse, but does not know the actual distributions from which « and v are drawn,
or the strategies bidders will employ. However, the seller assumes that the population of bidders
(characterized in this case by distributions over valuations and «) does not change over time. Thus,
the behavior exhibited by bidders will be the same for each auction in ezpectation, allowing the
seller to draw inferences from past auction results.

Although the seller cannot completely characterize the bidder population, we assume that the
seller can predict and simulate a possible distribution over populations. As an example of how
a such a distribution might be generated, a seller introducing a new product to the market might
identify similar items that have been sold in the past and observe the behavior of bidders on each
item, treating each group as a distinct population. In our experiments, the seller simulates a bidder
population as having Gaussian distributions over valuations and « values, chosen according to
the distribution over populations. Further details are omitted due to space limitations; however,
from the standpoint of the adaptive mechanism described in Section 4, it is only important that the
seller is able to simulate a population drawn from this distribution and wants to find the adaptive
parameters that give the best performance under this distribution.

To illustrate the task faced by the seller, we generated 10,000 bidder populations according to
the seller’s distribution, and found the average revenue for each reserve price between 0 and 1 at
intervals of 0.01. The average revenue for each reserve is shown by the solid line in Figure 1. A
reserve price of 0.54 yields the highest average revenue, 0.367. If we were required to select a
single reserve price for the seller to use, we would chose this price. However, for each individual
bidder population there is a distinct choice of reserve that yields the highest average revenue. In
particular, the dotted line in Figure 1 shows the number of times that each reserve was optimal. Two
important observations can be made: i) despite the variety in bidder populations, the optimal reserve
price is frequently in one of two small regions (including near zero, as is expected with loss averse
bidders); ii) nevertheless, most choices of reserve are optimal
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those auction parameter settings that appear most promising
given the seller’s beliefs about possible bidder populations.



4 Implementation and Results

As specified at the end of Section 2, for the auction scenario with the goal of maximizing revenue
over 1000 auctions, we have 1) chosen the auction parameterization (the reserve price represents
a single, continuous parameter), and 2) the seller has provided a means of generating bidder
behavior. In this section, we complete the remaining tasks of 3) specifying our adaptive method
and its parameters, and 4) presenting a means of identifying the parameters that result in optimal
performance. We then present the results of applying the approach described to the auction scenario.

4.1 Method of adaptation

We now describe an adaptive method that discretizes the problem by restricting the seller to
choosing one of k choices for the reserve price at each step, where the ith choice is a price of
(1—1)/(k —1). (An extension of this method that does not require discretization is straightforward
and appears promising, but we leave its discussion to future work.) The resulting problem can be
viewed as an instance of the k-armed bandit problem, a classic reinforcement learning problem [4].
In such problems, the expected value of each choice is assumed to be independent, and the goal
of maximizing the reward obtained presents a tradeoff between exploring the choices, in order to
increase the knowledge of each one’s result, and exploiting the choice currently believed to be best.

The approach to solving k-armed bandit problems that we use is sample averaging with softmax
action selection using the Boltzmann distribution. In this approach, the average revenue for each
choice, avg;, is recorded, and at each step the probability of choosing 7 is (e2*%/7)/ (Zle e™9i/7),
where 7 represents a temperature determining the extent to which exploitation trumps exploration.
The temperature is often lowered over time to favor increasing exploitation due to the fact that
estimates of the result of each choice improve in accuracy with experience.

Softmax action selection has parameters controlling the temperature and controlling the initial
estimates of each choice’s reward. We vary the temperature throughout an episode by choosing
starting and ending temperatures, 7, and 7,4, and interpolating linearly. To calculate the average
revenue for each choice, we require for each choice a record of both the average revenue, avg;,
and the number of times that choice has been tried, count;. Although the straightforward approach
would be to initialize the averages and counts to zero, one common technique, known as optimistic
initialization [4] is to set all initial averages to a value higher than the predicted value of the largest
possible revenue. Each choice is therefore likely to be explored at least once near the beginning of
the episode. We employ a variation on this technique in which we choose values for the averages and
counts that encourage heavy initial exploration of those choices believed most likely to be optimal
given the predictions of bidder behavior. For instance, if the revenue from a particular choice is
expected to be high on average but have a high variance, assigning a high initial count and average
to that choice would ensure that it is explored sufficiently: several trials resulting in low revenue
would be needed to significantly lower the computed average. This approach amounts to starting
out with what we will call initial ezperience. The choice of initial experience and temperatures are
made by the search procedure we will describe shortly. Thus for a given choice of k, this will be a
search over 2k + 2 parameters (including 74+ and 7e,,4).

4.2 Parameter search

Now that we have chosen a method of adaptation and have a means of generating bidder behavior,
we are ready to search for the set of parameters that results in the best expected performance. For
any given set of parameters, we can obtain an estimate of the expected revenue from an episode by
generating a population of bidders and running an episode using those parameters. This estimate
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will be highly noisy, due to the large number of random factors involved in the process, and so we
are faced with a stochastic optimization task.

To solve this task, we use Simultaneous Perturbation Stochastic Approximation (SPSA) [5], a
popular method of stochastic optimization based on gradient approximation. For initial parameters,
we use a somewhat optimistic value of 0.6 for each avg; and a value of 1 for each count;. Tsiar
and 7,4 are set to 0.1 and 0.01, respectively. Ideally, the parameter £ would be part of the search
process as well, but as our search method requires a fixed number of parameters, we have chosen
what appears to be the best value after running searches with several values of £.

It should be noted that although this process of searching for the optimal parameters can be
time consuming (in our experiments, a few hours were required), the process takes place in offline
simulation before the actual auctions begin. When the adaptive method is applied during the actual
auctions using the resulting parameters, each choice of a new reserve price takes only a small
fraction of a second.

4.3 Results

To evaluate our adaptive method, we first searched for the best possible set of parameters, including
k., as described above. We found that a value of 13 was optimal for k. The learned parameters are
presented in Figure 2. Initial experience is displayed visually by plotting a circle for each avg; with
area proportional to count;. The initial experience appears reasonable given Figure 1. The values
of avg are mostly similar and fairly high, but the values of count are much higher for the choices
in the more promising regions. As a result, it will take longer for the computed average revenue of
these choices to fall, and so these choices will be explored more heavily early in an episode.

We next generated a set of 10,000 bidder populations, and found the average revenue per episode
using both the initial and the learned parameters. The average revenues per auction are shown in Fig-
ure 4, while a plot of the average revenue for each auction over an entire episode is shown in Figure 3.
The average total revenue in each case is higher than the revenue resulting from using the best fixed
reserve price, 0.54, indicating that the use of
an adaptive mechanism is indeed worthwhile
in this scenario. The difference observed be- ‘
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in an episode, using learned parameters leads to much higher revenues during the early part of
an episode. Thus, the learned parameters are effective at focusing initial exploration; providing
sufficient initial experience to permit a higher initial degree of exploitation; or both.

5 Related Work

To our knowledge, only a few recent articles have begun to explore the subject of adapting auction
mechanisms in response to bidder behavior. Cliff [6] and Phelps et al. [7] consider continuous
double auctions, using genetic algorithms and genetic programming, respectively, to evolve both
bidder strategies and auction rules. Byde [8] studies the space of auction mechanisms between the
first and second-price sealed-bid auction, using a genetic algorithm to learn the bidders’ strategies
in response to different mechanisms. The primary difference between these previous approaches
and the method advocated in this paper is that these approaches use simulation to produce fixed
mechanisms, while our aim is to develop mechanisms that are self-adapting in an online setting.

The process of identifying the parameters of the adaptive mechanism can be viewed as an
instance of metalearning [9]. In metalearning, the goal is to improve the performance of a learning
system for a particular task through experience with a family of related tasks. In our case, the
learning system is the adaptive mechanism, and the family of related tasks is the set of different
bidder populations generated during simulation.

6 Conclusions and Future Work

In this paper, we have presented a novel approach to mechanism design. Instead of relying on
analytical methods that depend on specific assumptions about bidders, our approach is to create
a self-adapting mechanism that adjusts auction parameters in response to past auction results. We
have analyzed and experimented with a specific auction scenario involving loss averse bidders and
varying seller reserve prices. We have shown how information about potential bidder behavior can
guide the selection of the method of adaptation and significantly improve auctioneer revenue.

There are several directions in which this work could be extended. Many auction parameters are
available for tuning, ranging from bidding rules to clearing policies. The problem becomes more
challenging in the face of multidimensional parameterizations.

Our on-going research agenda also includes examining the effects of including some adaptive
bidders in the economies that are treated by adaptive mechanisms.
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