
UTSeaSim Documentation

September 9, 2012

1

UTSeaSim documentation
September 9, 2012

Contents

1 Introduction 3

2 Top Level requirements and functionality of the UTSeaSim 3
2.1 Simulation Flow . 3
2.2 Inputs and Outputs . 4

2.2.1 Inputs . 4
2.2.2 Outputs . 4

2.3 How To Run . 4
2.3.1 Command-Line flags . 5
2.3.2 Example Runs . 6

3 Functionality of the Sea Environment Module 6

4 Functionality of the Ship Module 7
4.1 Ship’s Physical Properties . 7
4.2 Ship’s Perception Capabilities . 7
4.3 Ship’s Motion Model . 8

5 Functionality of the Decision Making Module 9
5.1 World Model . 9
5.2 Decision Making Strategy . 9
5.3 Communication . 9
5.4 Obstacle Avoidance . 10
5.5 Rules of the sea . 10

2

UTSeaSim documentation
September 9, 2012

1 Introduction

The UTSeaSim simulator is a custom-designed naval surface navigation simulator. It uses realistic
2D physical models of marine environments and sea vessels, and runs both in GUI and in non-GUI
modes.

The simulator’s core contains three main modules: a Sea Environment module, a Ship module,
and a Decision-Making module. The sea environment module includes models of winds, water
currents, waves, and obstacles. The ship module models all relevant aspects of a ship, including the
ship’s physical properties, sensing capabilities, and ship actuators. The decision making-module
implements an agent that controls a ship autonomously, as well as communicating with other agents
to coordinate strategies. At each time step, the agent receives the perceptions sensed by the ship,
processes them to update its current world state, and decides on control actions for the ship based
on its current world state and its decision-making strategy. The following sections describe the
functionality of the system and the main simulation modules.

2 Top Level requirements and functionality of the UTSeaSim

Here we briefly describe the high-level flow of the computation, the inputs and outputs of the
simulator, and the command line flags used, including some examples.

2.1 Simulation Flow

The “main()” function of the simulator is the if statement at the bottom of the main.py file, which
invokes the run() function (also in the main.py file) with some command line flags. The run()
function implements the simulation high-level flow, which can be described as follows:

• Load the task and task-related data from an input configuration file.

• Load environmental model from input configuration files.

• Initialize ships and ship-controlling agents for the loaded task, based on command-line flags.

• Run simulation for n steps, where n can be determined in a command-line flag. A simulation
step advances the world state as a result of agents’ actions and exogenous changes in the
environment. Simulation can run both in GUI and in non-GUI modes, depending on a
command-line flag.

• Write simulation results to file. In general, results could be any simulation data that is of
interest to the user and can be gathered during the simulation. The type of results to be
written are determined by a command-line flag.

Each simulation step simulates the world change after one second. In general all the units in
the simulator are standard: meters, seconds, Kg, and so on. Note that the frame rate in the
GUI is by default 60 frame-per-second, so simulation is displayed in a pace that is 60
times faster than real-time.

3

UTSeaSim documentation
September 9, 2012

2.2 Inputs and Outputs

A typical run of the simulator simulates autonomous ships navigating in the sea according to some
plan, and writing some data that was gathered during the simulation. Below are the inputs and
outputs of a simulation.

2.2.1 Inputs

The inputs to the simulator are environmental conditions, task definition file, and command-line
flags:

• Environmental conditions: By default, environmental conditions are defined in the files
./input files/wind.py, ./input files/waterCurrents.py, ./input files/waves.py, ./input files/obstacles.py,
where ’.’ is the ‘src’ directory containing the simulator’s source files. These environmental
condition files are text-based files that choose and parametrize one of the existing environ-
mental models (defined in the source file seaModels.py). In order to override one of these files,
it is recommended to generate a new file, put it under ./input files, and call it from the task
definition file (see next). Several example files for different conditions exist under ./input files.

• Task definition file: By default, the task definition file is the text file ./input files/task.py
(a different path could be specified using the command line options -f and -d). This file is
treated as a python source file, however it should be relatively easy to understand and change.
To facilitate the usage of it, this file already contains an array of examples for different task
definitions. A task definition chooses one of the existing supported tasks (an open list that can
be easily extended), and defines task-related data, including possibly overriding environment
condition files, defining patrol points, and any other data that is required for a task. In the
future, we could add support for additional formats, if needed.

• Command-Line Flags: See section below.

2.2.2 Outputs

In general, the simulation can output any data that is gathered during the ship navigation simula-
tion. Currently, it can output:

• Traversal Times Graph Data: Contains all the patrol nodes, along with a list of the travel
times between pairs of points.

• Point Visit-Frequencies: This data is gathered during a multi-agent patrol, and maps each
patrol node to the average frequency in which it was visited by the patrolling ships.

By default, the simulator would output the traversal times graph data. This can be overrided as a
part of a task definition, as demonstrated in the task definition file.

2.3 How To Run

Before running the simulator, environmental condition files and a task definition file must exist
(default files already exist, and could be changed as required). Next, to run the simulator, one
needs to be in the ‘src’ directory that contains the source files and type:

4

UTSeaSim documentation
September 9, 2012

python main.py [options]

Where options are the command line flags, which are described next.

2.3.1 Command-Line flags

The command line flags can be displayed in a usage message, when running (from inside the src
directory):

python main.py -h

The following message is then displayed:

$$> python main.py -h
Usage:
USAGE: python main.py <options>
EXAMPLE: python main.py --option <value> # TODO complete with real values

- #TODO explain what the example command do

Options:
-h, --help show this help message and exit
-q, --quietTextGraphics

Generate minimal output and no graphics [Default:
False]

-k NUMSTEPS, --numSteps=NUMSTEPS
Number of steps to simulate [Default: 10000]

-d DIR, --inputFilesDir=DIR
the DIR in which input files are searched for
[Default: input_files]

-f TASKFILE, --taskFile=TASKFILE
A task-definition-language file. The file is searched
for under the input files directory (defined by the
flag -d) [Default: task.py]

-t SHIPTYPE, --shipType=SHIPTYPE
The ship’s model [Default: basic]

-w WORLDMODEL, --worldModel=WORLDMODEL
World model that the agent maintains [Default:
complete]

-s STRATEGY, --strategy=STRATEGY
Agent’s desicion making strategy [Default:
staticpatrol]

-y, --rulesOfTheSea Respect the rules of the sea and yield when needed
[Default: False]

Brief options descriptions:

• -h: Displays a usage message.

5

UTSeaSim documentation
September 9, 2012

• -q: When chosen, the simulator would run in non-GUI mode (by default, a GUI mode is
invoked)

• -k: Number of simulation step to run. One step simulates a second.

• -d: Change the directory in which input files are searched for. Usually, there is no need to
use this flag.

• -f: The name of the task definition language file, which is the main input file to the simulator.
This file is assumed to be inside the input files dir, which is controlled by the -d flag and is
by default ./input files/ under the src directory.

• -t: Choose the type of a ship to be simulated. Currently there is only one type, so this option
can be ignored.

• -w: The type of world model the agent maintains. Currently there is only one type, which is
a fully observable world model, so this option can be ignored.

• -s: The agent’s decision making strategy. The default strategy is basicpatrol (cyclic patrol
along paths of (x,y) points, given in the task definition file).

• -y: Respect the rules of the sea and yield when needed (by default this is turned off)

2.3.2 Example Runs

Below are a few example runs with explanations.

• python main.py – Opens the GUI and loads the environmental conditions and a basic dynamic
patrol task. It uses the input files/task.py as its task definition file. To start press the “run”
button.

• python main.py -q – Runs the same example, in a non-GUI mode. The output file that is
written is edgeGraphData.py

3 Functionality of the Sea Environment Module

The sea environment implements different models of winds and currents that affects the ship’s
motion. We first refer to the HTML documentation of the code, and later describe the module’s
functionality. In the HTML documentation (inside the ‘doc’ directory), there are two relevant
parts. For looking at the environmental model itself:

• Open index.html

• In the main frame, click seaModels.

A summary of all the related classes will be opened. Clicking on any one of them would take you
to the corresponding class. For looking at the ship response to the environmental conditions:

• Open index.html

6

UTSeaSim documentation
September 9, 2012

• On the left frame click on shipModels.Ship

• In the main frame, click on the function: getOffsetByEnvConditions()

The documentation of the function will be opened. A link to the source code of the function is on
the right.

The environment conditions model is currently encapsulated inside the Sea class. This class is
nothing but a container for Wind, WaterCurrents, Waves and Obstacles classes. Each of the first
three classes has only one function: getSpeedVectorInLocation(), which returns, for location (x,y),
the speed vector of the wind, water, or the waves respectively. Currently a few simple models
are implemented, in which the wind is static and constant, and also the currents are static and
constant, but can be different in different areas of the sea. The fourth class, namely Obstacles, is a
container of polygon obstacles.

A ship’s response to the sea conditions is computed inside the ship itself, as different ships
respond differently to the environment. Therefore, each ship has a function getOffsetByEnvCondi-
tions(), the documentation of which was mentioned above, that is responsible for computing the
ship’s offset due to the environment conditions in its (x,y) location. Currently the computation is
done based on the ship’s orientation, the wind direction, and the currents direction. The environ-
mental effects model is somewhat simplistic: the wind and the current just offsets the ship in their
direction, proportionally to their speed, each with a different proportionality constant.

4 Functionality of the Ship Module

The ship module models the ships’ physical properties, motion modelling and perception capabili-
ties. We describe each of these next. For each of these, we first refer to the HTML documentation
of the code, and later describe the module’s functionality.

4.1 Ship’s Physical Properties

In the HTML documentation (inside the ‘doc’ directory):

• Open index.html

• In the main frame click on shipModels

• In the main frame click on Ship

The documentation of the Ship class will be opened. The Ship class has properties like mass, length
and proportionality constants that affect the computation of the drag forces and accelarations
operating on the ship.

4.2 Ship’s Perception Capabilities

In the HTML documentation:

• Open index.html

• On the left frame, click on shipModels.Ship

7

UTSeaSim documentation
September 9, 2012

• In the main frame click on the method: getPercepts()

The documentation of the function will be opened. A link to the source code of the function is
on the right. Our sensing model for the environment is encapsulated inside a ship. The simulator
sends its full world state to the ship, and the ship, depending on it’s model, extracts from it only
the data that it percepts can give it, and send it to the agent that controls the ship. Currently we
use the complete state model as percepts, without any filtering, as a simple implementation. Later,
this can easily be plugged out and replaced by a more sophisticated perception module that adhers
the same interface. In general, any perception module can be plugged into any ship.

4.3 Ship’s Motion Model

• Open index.html

• In the main frame, click on simulationEnvironment.simulationEnvironment

• In the main frame click on the method: updateShipExternalState()

The documentation of the function will be opened. A link to the source code of the function is on
the right. In this function, we compute the ship’s state in the next time step, based on the current
world state (the environment), the ship’s engine and steering, and the time passed. Currently, we
approximate ship movement using the following model:

• For forward motion, we model forward force that operates on the ship by the engine, and a
drag, which is quadratic in the ship’s speed.

• For turning, there is an rotational torque that is applied by the rudder, and is proportional
to the ship’s speed, and to the projection of the rudder on the lateral direction. There is also
a rotational drag force, that is quadratic in the ship’s angular speed, (need to check about
the accuracy of this modelling).

• Based on the above forces and the ship’s mass, we compute the forward and angular acceler-
ations.

• Then, based on the average forward and angular speed in a given time step, computed using
the above accelerations, we infer the turn radius, and based on that, compute the ship position
at the end of this time-step.

Some approximations we make:

• Although the angular acceleration depends on forward speed, which keeps being changed, we
still assume constant forward speed (the avg. speed in this time step) during the computation
of angular acceleration.

• Forward acceleration computation does not take into account the effects of turning which
might slow it down.

• Forward acceleration depends on the drag, which is changing with speed change, but we
approximate the drag based on the initial speed of a time step

8

UTSeaSim documentation
September 9, 2012

5 Functionality of the Decision Making Module

The decision making module is encapsulated inside an Agent class. An agent repeatedly processes
percepts, updates its belief about the world state and uses its decision making strategy to choose
actions to take (usually steering and engine commands to the ship). In order to make decisions,
the agent can use a communication module to communicate with other agents. In the HTML
documentation:

• Open index.html

• In the main frame click on agents

• The Agent class is the base class for an agent. There are also classes for agent world models,
and decision making strategies, described next.

The agent is composed of two main parts: its world model (class AgentWorldModel) and its decision
making strategy (class AgentStrategy). In order to implement a new agent, one needs to inherit
one or both of these interface classes. We will briefly describe them next, along with some other
features of the desicion making module.

5.1 World Model

The world model is responsible for processing the percepts coming in from the ship, and for building
a state of the world, possibly in an incremental manner based on the agents beliefs and perceptions.
As an example for an agent world model, a world model that is currently implemented is the
AgentWorldModelCompleteWorld, which models a fully observable environment. This model assumes
that the ship has perfect perceptions and that it receives the complete world state every cycle, so
no belief maintenance is needed. In the future, we will add world models with partial observability
and sensing of the environment.

5.2 Decision Making Strategy

The decision making strategy uses the existing world state that is built and maintained by an
AgentWorldModel class, and use it to decide on actions, based on the agent’s goals. Two examples
for decision making strategies are AgentBasicPatrolStrategy and AgentCoordinatedPatrolStrategy.
The first one implement a a cyclic patrol, and the second one implements dynamic, coordinated
patrol, with the options of ships joining or leaving the patrol.

5.3 Communication

An agent can communicate with other agents for planning and executing its task. The interface
function getOutgoingMsg() is used by the simulation environment to extract an agent’s outgoing
messages and deliver them to the specified receipients. Delivering is done by calling the receipient’s
receiveMsg() function. Besides sending a message to another agent, an agent can send a message
to the simulation environment itself, usually to report some statistics.

9

UTSeaSim documentation
September 9, 2012

5.4 Obstacle Avoidance

Obstacle avoidance behavior is implemented inside the top level class AgentBasicPatrolStrategy (see
above). When AgentBasicPatrolStrategy starts to navigate to the next way point, it checks whether
the path is blocked by obstacles. If the path is not blocked it navigates directly to the point, using
a PID controller (http://en.wikipedia.org/wiki/PID_controller) for the steering and engine
commands. If the path is blocked, an RRT algorithm (http://msl.cs.uiuc.edu/rrt/) computes
a bypass and navigate through it. A few current limitations

• The ship only approximately follow the RRT path, as its controls are not fine tuned for very
fine maneuvers. As a result, a ship might collide with an obstacle, when the computed bypass
is close to the obstacle.

5.5 Rules of the sea

The decision making module has a basic implementation of obeying the rules of the sea. In brief,
a ship computes whether there is a potential collision on its navigation path, and in case needed,
the ship takes a preventive action. The preventive action is in general: if there are no ships on the
right then turn right, otherwise stop.

10

http://en.wikipedia.org/wiki/PID_controller
http://msl.cs.uiuc.edu/rrt/

	Introduction
	Top Level requirements and functionality of the UTSeaSim
	Simulation Flow
	Inputs and Outputs
	Inputs
	Outputs

	How To Run
	Command-Line flags
	Example Runs

	Functionality of the Sea Environment Module
	Functionality of the Ship Module
	Ship's Physical Properties
	Ship's Perception Capabilities
	Ship's Motion Model

	Functionality of the Decision Making Module
	World Model
	Decision Making Strategy
	Communication
	Obstacle Avoidance
	Rules of the sea

