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Abstract

Multitask learning (MTL) via a shared representation
has been adopted to alleviate problems with sparsity
of labeled data across different learning tasks. Active
learning, on the other hand, reduces the cost of labeling
examples by making informative queries over an unla-
beled pool of data. Therefore, a unification of both of
these approaches can potentially be useful in settings
where labeled information is expensive to obtain but
the learning tasks or domains have some common char-
acteristics. This paper introduces two such models –
Active Doubly Supervised Latent Dirichlet Allocation
(Act-DSLDA) and its non-parametric variation (Act-
NPDSLDA) that integrate MTL and active learning in
the same framework. These models make use of both
latent and supervised shared topics to accomplish mul-
titask learning. Experimental results on both document
and image classification show that integrating MTL and
active learning along with shared latent and supervised
topics is superior to other methods which do not employ
all of these components.
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1 Introduction

Building an automated object detector in computer
vision is often challenging. Object categories abound
in nature and it is expensive to obtain sufficient labeled
examples for all of them. Computer vision researchers
have attempted to overcome this challenge by either
gathering large datasets of web images [11, 14, 35] or
by formulating new methods that reduce the amount of
human supervision required.

One such method, partly inspired by human per-
ception and learning from high-level object descriptions,
utilizes attributes which describe abstract object prop-
erties shared by many categories [13, 22, 21, 1]. These
attributes serve as an intermediate layer in a classifier
cascade. If the shared attributes transcend object class
boundaries, such a classifier cascade is beneficial for
transfer learning [26] where fewer labeled examples are
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available for some object categories compared to oth-
ers [22]. For example, in the aYahoo image dataset [13]
used in our experiments, there are 12 classes, includ-
ing carriage, donkey, goat, and zebra. Each image is
also annotated for 64 relevant visual attributes, such
as “has head” and “has wheel.” Learning to recognize
such attributes improves classification across multiple
related classes. Another well-known approach to reduc-
ing supervision is active learning, where a system can
request labels for the most informative training exam-
ples [28, 16, 18, 21].

In this paper, our objective is to combine these
two orthogonal approaches in order to leverage the
benefits of both – learning from a shared abstract
feature space and making active queries. In particular,
we build on a recent approach proposed in [1] where
multitask learning (MTL) [6] is accomplished using
both shared supervised attributes and a shared latent
(i.e. unsupervised) set of features. MTL is a form
of transfer learning in which simultaneously learning
multiple related “tasks” allows each one to benefit from
the learning of all of the others. This approach is in
contrast to “isolated” training of tasks where each task
is learned independently using a separate model.

The paper is organized as follows. We present
related work in Section 2, followed by the descrip-
tions of two of our models Active Doubly Supervised
Latent Dirichlet Allocation (Act-DSLDA) and a non-
parametric variation of the same (Act-NPDSLDA) in
Sections 3 and 4 respectively. Experimental results on
both multi-class image and document categorization are
presented in Section 5. Finally, future directions and
conclusions are presented in Section 6.

Note on Notation: Vectors and matrices are
denoted by bold-faced lowercase and capital letters,
respectively. Scalar variables are written in italic font,
and sets are denoted by calligraphic uppercase letters.
Dir(), Beta() and multinomial() stand for Dirichlet,
Beta and multinomial distribution respectively.

2 Background and Related Work

2.1 Statistical Topic Models LDA [3] treats doc-
uments as a mixture of topics, which in turn are de-
fined by a distribution over a set of words. The words
in a document are assumed to be sampled from multi-
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ple topics. The unsupervised LDA has been extended
to account for supervision by labeling each document
with its set of topics [31, 34]. In Labeled LDA (LLDA
[31]), the primary objective is to build a model of the
words that indicate the presence of certain topic labels.
Some other researchers [2, 44, 9] assume that super-
vision is provided for a single response variable to be
predicted for a given document. In Maximum Entropy
Discriminative LDA (MedLDA) [44], the objective is to
infer some low-dimensional (topic-based) representation
of documents which is predictive of the response vari-
able. Essentially, MedLDA solves two problems jointly –
dimensionality reduction and max-margin classification
using the features in the dimensionally-reduced space.

2.2 Active Learning via Expected Error Re-
duction Of the several measures for selecting labels
in active learning algorithms, a decision-theoretic ap-
proach called Expected Error Reduction [33] has been
used quite extensively in practice [21, 37]. This ap-
proach aims to measure how much the generalization
error of a model is likely to be reduced based on some
labeled information y of an instance x taken from the
unlabeled pool U . The idea is to estimate the expected
future error of a model trained using L ∪ 〈x, y〉 on the
remaining unlabeled instances in U , and query the in-
stance with minimal expected future error. Here L de-
notes the labeled pool of data. One approach is to min-
imize the expected 0/1 loss:

(2.1) x∗
0/1 = argmax

x

∑
n

Pκ(yn|x)

(
U∑

u=1

1− Pκ+〈x,yn〉

(
ŷ,x(u)

))
.

where κ+〈x,yn〉 refers to the new model after it has been
re-trained with the training set L∪〈x, yn〉. Note that we
do not know the true label for each query instance, so we
approximate using expectation over all possible labels
under the current model. The objective is to reduce the
expected number of incorrect predictions.

2.3 Active Knowledge Transfer There has been
some effort to integrate active and transfer learning in
the same framework. In [19] the authors utilized a max-
imum likelihood classifier to learn parameters from the
source domain and use these parameters to seed the EM
algorithm that explains the unlabeled data in the tar-
get domain. The example which contributed to max-
imum expected KL divergence of the posterior distri-
bution with the prior distribution was selected in the
active step. In [30], the source data is first used to train
a classifier, the parameters of which are later updated in
an online manner with new examples actively selected
from the target domain. The active selection crite-
rion is based on uncertainty sampling [37]. Similarly,
in [8], a näıve Bayes classifier is first trained with ex-
amples from the source domain and then incrementally

updated with data from the target domain selected us-
ing uncertainty sampling. The method proposed in [38]
maintains a classifier trained on the source domain(s)
and the prediction of this classifier is trusted only when
the likelihood of the data in the target domain is suffi-
ciently high. In case of lower likelihood, domain experts
are asked to label the example. Harpale & Young [15]
proposed active multitask learning for adaptive filter-
ing [32] where the underlying classifier is logistic regres-
sion with Dirichlet process priors. Any feedback pro-
vided in the active selection phase improves both the
task-specific and the global performance via a measure
called utility gain [15]. Saha et al. [36] formulated an
online active multitask learning framework where the
information provided for one task is utilized for other
tasks through a task correlation matrix. The updates
are similar to perceptron updates. For active selection,
they use a margin based sampling scheme which is a
modified version of the sampling scheme used in [7].

In contrast to this previous work, our approach em-
ploys a topic-modeling framework and uses expected er-
ror reduction for active selection. Such an active se-
lection mechanism necessitates fast incremental update
of model parameters, and hence the inference and es-
timation problems become challenging. This approach
to active selection is more immune to noisy observa-
tions compared to simpler methods such as uncertainty
sampling [37]. Additionally, our approach can query
both class labels and supervised topics (i.e. attributes),
which has not previously been explored in the context
of MTL.

2.4 Multitask Learning Using Both Shared La-
tent and Supervised Topics In multitask learning
(MTL [6]), a single model is simultaneously trained to
perform multiple related tasks. Many different MTL
approaches have been proposed over the past 15 years
(e.g., see [41, 26, 27] and references therein). These in-
clude different learning methods, such as empirical risk
minimization using group-sparse regularizers [20, 17],
hierarchical Bayesian models [43, 23] and hidden con-
ditional random fields [29]. In an MTL framework, if
the tasks are related, training one task should provide
helpful “inductive bias” for learning the other tasks.

In particular, Acharya et al. [1] proposed
two models – Doubly Supervised Latent Dirichlet
Allocation (DSLDA) and its non-parametric counter-
part (NPDSLDA) which support the prediction of mul-
tiple response variables based on a combination of both
supervised and latent topics. In computer vision termi-
nology, the supervised topics correspond to attributes
provided by human experts. In both text and vision
domains, Acharya et al. [1] showed that incorporating



both supervised and latent topics achieves better pre-
dictive performance compared to baselines that exploit
only one, the other, or neither. In our paper, we extend
these models to include active sample selection. This
extension is non-trivial and requires several modifica-
tions to the inference and learning methods. With that
objective in mind, the next two sub-sections discuss the
incremental EM algorithm and the online support vec-
tor machine used to adapt DSLDA.

2.5 Incremental EM Algorithm The EM algo-
rithm proposed by Dempster et al. [10] can be viewed
as a joint maximization problem over q(.), the condi-
tional distribution of the hidden variables Z given the
model parameters κ and the observed variables X. The
relevant objective function is given as follows:

(2.2) F (q,κ) = Eq[log(p(X,Z|κ))] +H(q),

where H(q) is the entropy of the distribution q(.).
Often, q(.) is restricted to a family of distributions Q.
It can be shown that if θ∗ is the maximizer of the above
objective F then it also maximizes the likelihood of the
observed data. In most of the models used in practice,
the joint distribution is assumed to factorize over the

instances implying that p(X,Z|κ) =

N∏
n=1

p(xn, zn|κ).

One can further restrict the family of distributions Q
to maximize over in Eq. (2.2) to the factorized form:

q(Z) =

N∏
n=1

q(zn|xn) =

N∏
n=1

qn.

An incremental variant of the EM algorithm that
exploits such separability structure in both p(.) and q(.)
was first proposed by Neal & Hinton [25]. Under such
structure, the objective function in Eq. (2.2) decom-

poses over the observations F (q,θ) =

N∑
n=1

Fn(qn,κ), and

the following incremental algorithm can instead be used
to maximize F :

• E step: Choose some observation n to be updated

over, set q
(t)
n′ = q

(t−1)
n′ for n′ 6= n (no update) and

set q
(t)
n = argmax

qn

Fn(qn,κ
(t−1)).

• M step: κ(t) = argmax
κ

F (q(t),κ).

2.6 Online Support Vector Machines The online
SVM proposed by Bordes et al. [4, 5] has three dis-
tinct modules that work in unison to provide a scalable
learning mechanism. These modules are named “Pro-
cessNew”, “ProcessOld” and “Optimize”. All of these
modules use a common operation called “SMOStep”

and the memory footprint is limited to the support vec-
tors and associated gradient information. The module
“ProcessNew” operates on a pattern that is not a sup-
port pattern. In such an update, one of the classes is
chosen as the label of the support pattern and the other
class is chosen such that it defines a feasible direction
with the highest gradient. It then performs an SMO
step with the example and the selected classes. The
module “ProcessOld” randomly picks a support pattern
and chooses two classes that define the feasible direction
with the highest gradient for that support pattern. “Op-
timize” resembles “ProcessOld” but picks two classes
among those that correspond to existing support vec-
tors.

3 Active Doubly Supervised Latent Dirichlet
Allocation (Act-DSLDA)

We will treat examples as “documents” which consist
of a “bag of words” for text or a “bag of visual words”
for images. Assume we are given an initial training
corpus L with N documents belonging to Y different
classes. Further assume that each of these training
documents is also annotated with a set of K2 different
“supervised topics”. The objective is to train a model
using the words in a document, as well as the associated
supervised topics and class labels, and then use this
model to classify completely unlabeled test documents
for which no topics or class labels are provided.

When the learning starts, L is assumed to have
fully labeled documents. However, as the learning
progresses more documents are added to the pool L
with class and/or a subset of supervised topics labeled.
Therefore, at any intermediate point of the learning
process, L can be assumed to contain several sets:
L = {T ∪ TC ∪ TA1

∪ TA2
∪ · · · ∪ TAK2

}, where T
contains fully labeled documents (i.e. with class and
all supervised topics labeled), TC are the documents
that have class labels, and 1 ≤ k ≤ K2, TAk

are the
documents that have the kth supervised topic labeled.
Since, human-provided labels are expensive to obtain,
we design an active learning framework where the model
can query over an unlabeled pool U and request either
class labels or a subset of the supervised topics.

Please note that the proposed frameworks support
general MTL; however, our datasets, as explained in
Section 5, happen to be multiclass, where each class
is treated as a separate “task” (as typical in multi-
class learning based on binary classifiers). However, the
frameworks are not in any way restricted to multiclass
MTL. The Act-DSLDA generative model is defined as
follows. For the nth document, sample a topic selection
probability vector θn ∼ Dir(αn), where αn = Λnα
and α is the parameter of a Dirichlet distribution of



dimension K, the total number of topics. The topics
are assumed to be of two types – latent and supervised,
and there are K1 latent topics and K2 supervised topics
(K = K1 + K2). Latent topics are never observed,
while supervised topics are observed in the training data
but not in the test data. Henceforth, in each vector or
matrix with K components, it is assumed that the first
K1 components correspond to the latent topics and the
next K2 components to the supervised topics. Λn is
a diagonal binary matrix of dimension K × K. The
kth diagonal entry is unity if either 1 ≤ k ≤ K1 or
K1 < k ≤ K and the nth document is tagged with
the kth topic. Also, α = (α(1),α(2)) where α(1) is a
parameter of a Dirichlet distribution of dimension K1

and α(2) is a parameter of a Dirichlet distribution of
dimension K2.

In the test data, the supervised topics are not
observed and one has to infer them from either the
parameters of the model or use some other auxiliary
information. Since one of our objectives is to query
over the supervised topics as well as the final category,
we train a set of binary SVM classifiers that can
predict the individual attributes from the features of the
data. We denote the parameters of such classifiers by
{r2k}1≤k≤K2

. This is important to get an uncertainty
measure over the supervised topics. To further clarify
the issue, let us consider that only one supervised topic
has to be labeled by the annotator for the nth document
from the set of supervised topics of size K2. To select
the most uncertain topic, one needs to compare the
uncertainty of predicting the presence or absence of the
individual topics. This uncertainty is different from that
calculated from the conditional distribution calculated
from the posterior over θn.

For the mth word in the nth document, sample
a topic znm ∼ multinomial(θ′n), where θ′n = (1 −
ε){θnk}k1k=1ε{Λn,kkθnk}Kk=1+k1

. This implies that the
supervised topics are weighted by ε and the latent
topics are weighted by (1 − ε). Sample the word
wnm ∼ multinomial(βznm

), where βk is a multinomial
distribution over the vocabulary of words corresponding
to the kth topic.

For the nth document, generate Yn =
arg maxy r

T
1yE(z̄n) where Yn is the class label as-

sociated with the nth document, z̄n =

Mn∑
m=1

znm/Mn.

Here, znm is an indicator vector of dimension K. r1y

is a K-dimensional real vector corresponding to the yth

class, and it is assumed to have a prior distribution
N (0, 1/C). Mn is the number of words in the nth

document. The maximization problem to generate Yn
(i.e. the classification problem) is carried out using the

max-margin principle and we use online SVMs [4, 5]
for such updates. Since the model has to be updated
incrementally in the active selection step, a batch SVM
solver is not applicable, while an online SVM allows
one to update the learned weights incrementally given
each new example. Note that predicting each class is
treated as a separate task, and that the shared topics
are useful for generalizing the performance of the model
across classes.

3.1 Inference and Learning Inference and param-
eter estimation have two phases – one for the batch case
when the model is trained with fully labeled data, and
the other for the active selection step where the model
has to be incrementally updated to observe the effect of
any labeled information that is queried from the oracle.

3.1.1 Learning in Batch Mode Let us denote the
hidden variables by Z = {{znm}, {θn}}, the observed
variables by X = {wnm} and the model parameters by
κ0. The joint distribution of the hidden and observed
variables is:

(3.3) p(X,Z|κ0) =
∏N
n=1 p(θn|αn)

∏Mn

m=1 p(znm|θ
′
n)p(wnm|βznm

).

To avoid computational intractability, inference and
estimation are performed using variational EM. The
factorized approximation of the posterior distribution
with hidden variables Z is given by:

(3.4) q(Z|{κn}Nn=1) =
∏N
n=1 q(θn|γn)

∏Mn

m=1 q(znm|φnm),

where θn ∼ Dir(γn) ∀n ∈ {1, 2, · · · , N}, znm ∼
multinomial(φnm) ∀n ∈ {1, 2, · · · , N} and ∀m ∈
{1, 2, · · · ,Mn}, and κn = {γn, {φnm}}, which is the
set of variational parameters corresponding to the nth

instance. Further, γn = (γnk)Kk=1 ∀n, and φnm =
(φnmk)Kk=1 ∀n,m. With the use of the lower bound
obtained by the factorized approximation, followed by
Jensen’s inequality, Act-DSLDA reduces to solving the
following optimization problem1:

min
q,κ0,{ξn}

1

2
||r1||2 − L(q(Z)) + C

N∑
n=1

ξnITC ,n,

(3.5)
s.t. ∀n ∈ TC , y 6= Yn : E[rT1 ∆fn(y)] ≥ 1− ξn; ξn ≥ 0.

Here, ∆fn(y) = f(Yn, z̄n) − f(y, z̄n) and {ξn}Nn=1 are
the slack variables, and f(y, z̄n) is a feature vector
whose components from (y−1)K+1 to yK are those of
the vector z̄n and all the others are 0. E[rT1 ∆fn(y)] is

1Please see [44] for further details.



the “expected margin” over which the true label Yn is
preferred over a prediction y. From this viewpoint, Act-
DSLDA projects the documents onto a combined topic
space and then uses a max-margin approach to predict
the class label. The parameter C penalizes the margin
violation of the training data. The indicator variable
ITC ,n is unity if the nth document has a class label (i.e.
n ∈ TC) and 0 otherwise. This implies that only the
documents that have class labels are used to update the
parameters of the online SVM.

Let Q be the set of all distributions having a fully
factorized form as given in (3.4). Note that such a
factorized approximation makes the use of incremental
variation of EM possible in the active selection step fol-
lowing the discussion in Section 2.5. Let the distribution
q∗ from the set Q optimize the objective in Eq. (3.5).
The optimal values of the corresponding variational pa-
rameters are same as those of DSLDA [1]. The optimal
values of φnm depend on γn and vice-versa. Therefore,
iterative optimization is adopted to maximize the lower
bound until convergence is achieved.

During testing, one does not observe a document’s
supervised topics and instead an approximate solution,
as also used in [31, 1], is employed where the vari-
ables {Λn} are assumed to be absent altogether in the
test phase, and the problem is treated as inference in
MedLDA with K latent topics.

In the M step, the objective in Eq. (3.5) is
maximized w.r.t κ0. The optimal value of βkv is again
similar to that of DSLDA [1]. However, numerical
methods for optimization are required to update α1 or
α2. The update for the parameters {r1y}Yy=1 is carried
out using online SVM [4, 5] following Eq. (3.5).

3.1.2 Incremental Learning in Active Selection
The method of Expected Entropy Reduction requires
one to take an example from the unlabeled pool and
one of its possible labels, update the model, and observe
the generalized error on the unlabeled pool. This
process is computationally expensive unless there is an
efficient way to update the model incrementally. The
incremental view of EM and the online SVM framework
are appropriate for such updates.

Consider that a completely unlabeled or partially
labeled document, indexed by n′, is to be included in
the labeled pool with one of the (K2 + 1) labels (one
for the class label and each different supervised topic),
indexed by k′. In the E step, variational parameters
corresponding to all other documents except for the n′th
one are kept fixed and the variational parameters for
only the n′th document are updated. In the M-step, we
keep the priors {α(1),α(2)} over the topics and the SVM
parameters r2 fixed as there is no easy way to update
such parameters incrementally. From the empirical

point of view, these parameters do not change much
w.r.t. the variational parameters (or features in topic
space representation) of a single document. However,
the update of the parameters {β, r1} is easier. Updating
β is accomplished by a simple update of the sufficient
statistics. Updating r1 is done using the “ProcessNew”
operation of online SVM followed by a few iterations of
“ProcessOld”. The selection of the document-label pair
is guided by the measure given in Eq. (2.1). Note that
since SVM uses hinge loss which, in turn, upper bounds
the 0–1 loss in classification, use of the measure from
Eq. (2.1) for active query selection is justified.

From the modeling perspective, the difference be-
tween DSLDA [1] and Act-DSLDA lies in maintaining
attribute classifiers and ignoring documents in the max-
margin learning that do not have any class label. Online
SVM for max-margin learning is essential in the batch
mode just to maintain the support vectors and incre-
mentally update them in the active selection step. One
could also use incremental EM for batch mode train-
ing. However, that is computationally more complex
when the labeled dataset is large, as the E step for each
document is followed by an M-step in incremental EM.

4 Active Non-parametric DSLDA
(Act-NPDSLDA)

A non-parametric extension of Act-DSLDA (Act-
NPDSLDA) automatically determines the best number
of latent topics for modeling the given data. It uses
a modified stick breaking construction of Hierarchical
Dirichlet Process (HDP), recently introduced in [40], to
make variational inference feasible. The Act-NPDSLDA
generative model is presented below.

• Sample φk1 ∼ Dir(η1) ∀k1 ∈ {1, 2, · · · ,∞} and
φk2 ∼ Dir(η2) ∀k2 ∈ {1, 2, · · · ,K2}. η1,η2 are the
parameters of Dirichlet distribution of dimension V .
Also, sample β′k1 ∼ Beta(1, δ0) ∀k1 ∈ {1, 2, · · · ,∞}.

• For the nth document, sample π
(2)
n ∼ Dir(Λnα

(2)).
α(2) is the parameter of Dirichlet of dimension K2.
Λn is a diagonal binary matrix of dimension K2 ×K2.
The kth diagonal entry is unity if the nth word is
tagged with the kth supervised topic. Similar to the
case of Act-DSLDA, in the test data, the supervised
topics are not observed and the set of binary SVM
classifiers, trained with document-attribute pair data,
are used to predict the individual attributes from the
input features. The parameters of such classifiers are
denoted by {r2k}1≤k≤K2

.
• ∀n,∀t ∈ {1, 2, · · · ,∞}, sample π′nt ∼ Beta(1, α0).

Assume π
(1)
n = (πnt)t where πnt = π′nt

∏
l<t(1 − π′nl).

∀n, ∀t, sample cnt ∼ multinomial(β) where βk1 =

β′k1
∏
l<k1

(1 − β′l). π
(1)
n represents the probability of



selecting the sampled atoms in cn.
• For the mth word in the nth document, sample

znm ∼ multinomial((1−ε)π(1)
n , επ

(2)
n ). This implies that

with probability ε, a topic is selected from the set of
supervised topics and with probability (1 − ε), a topic
is chosen from the set of unsupervised topics. Sample
wnm from a multinomial given by Eq. (3).
• For the nth document, generate Yn =
arg maxy r

T
1yE(z̄n) where Yn is the class label as-

sociated with the nth document, z̄n =

Mn∑
m=1

znm/Mn.

The maximization problem to generate Yn (i.e. the
classification problem) is carried out using an online
support vector machine. The joint distribution of the
hidden and observed variables is given in Eq. (1).

4.1 Inference and Learning

4.1.1 Learning in Batch Mode As an approxima-
tion to the posterior distribution over the hidden vari-
ables, we use the factorized distribution given in Eq.
(2). κ0 and κ denote the sets of model and variational
parameters, respectively. K̄1 is the truncation limit of
the corpus-level Dirichlet Process and T is the trunca-
tion limit of the document-level Dirichlet Process. {λk}
are the parameters of the Dirichlet, each of dimension
V . {uk1 , vk1} and {ant, bnt} are the parameters of Beta
distribution corresponding to corpus level and docu-
ment level sticks respectively. {ϕnt} are multinomial
parameters of dimension K̄1 and {ζnm} are multinomi-
als of dimension (T +K2). {γn}n are parameters of the
Dirichlet distribution of dimension K2.

The underlying optimization problem takes the
same form as in Eq. (3.5). The only difference lies in
the calculation of ∆fn(y) = f(Yn, s̄n) − f(y, s̄n). The
first set of dimensions of s̄n (corresponding to the unsu-

pervised topics) is given by 1/Mn

∑Mn

m=1 cnznm
, where

cnt is an indicator vector over the set of unsupervised
topics. The following K2 dimensions (corresponding to

the supervised topics) are given by 1/Mn

∑Mn

m=1 znm.
After the variational approximation with K̄1 number
of corpus level sticks, s̄n turns out to be of dimension
(K̄1 + K2) and the feature vector f(y, s̄n) constitutes
Y (K̄1 +K2) elements. The components of f(y, s̄n) from
(y − 1)(K̄1 + K2) + 1 to y(K̄1 + K2) are those of the
vector s̄n and all the others are 0. The E-step update
equations of Act-NPDSLDA are similar to NP-DSLDA
[1]. The M-step updates are similar to Act-DSLDA and
are omitted here due to space constraints.

4.1.2 Incremental Learning in Active Selection
Assume that a completely unlabeled or partially labeled
document, indexed by n′, is to be included in the labeled

pool with the k′th label. In the E step, variational pa-
rameters corresponding to all other documents except
for the n′th one is kept fixed and the variational pa-
rameters for only the n′th document are updated. The
incremental update of the “global” variational parame-
ters {uk1 , vk1}

K1

k1=1 is also straightforward following the
equations given in [1]. In the M-step, we keep the priors
{η1,η2,α

(2)} and the SVM parameters r2 fixed but the
parameters r1 are updated using online SVM.

5 Experimental Evaluation

5.1 Data Description Our evaluation used two
datasets, a text corpus and a multi-class image
database, as described below.

5.1.1 aYahoo Data The first set of experiments was
conducted with the aYahoo image dataset from [13]
which has 12 classes – carriage, centaur, bag, building,
donkey, goat, jetski, monkey, mug, statue, wolf, and
zebra. Each image is annotated with 64 relevant visual
attributes such as “has head”, “has wheel”, “has torso”
and others, which we use as the supervised topics.
aYahoo has been used as a benchmark dataset for
knowledge transfer with intermediate “attributes” in
computer vision [22, 21]. After extracting SIFT features
[24] from the raw images, quantization into 250 clusters
was performed using K-means clustering algorithm,
defining the vocabulary for a “bag of visual words”.
Images with less than two attributes were discarded.
The resulting dataset of 2,275 images was equally split
into training and test data.

5.1.2 ACM Conference Data The text corpus
consists of conference paper abstracts from two groups
of conferences. The first group has four conferences re-
lated to data mining – WWW, SIGIR, KDD, and ICML,
and the second group consists of two VLSI conferences –
ISPD and DAC. The classification task is to determine
the conference at which the abstract was published. As
supervised topics, we use keywords provided by the au-
thors, which are presumably useful in determining the
conference venue. A total of 2,300 abstracts were col-
lected each of which had at least three keywords and
an average of 78 (±33.5) words. After stop-word re-
moval, the vocabulary size for the assembled data is
13,412 words. The number of supervised topics (i.e.
keywords) is 55. The resulting dataset was equally split
into training and test data.

5.2 Methodology Act-DSLDA and Act-NPDSLDA
are compared against the following simplified models:

• Active Learning in MedLDA with one-vs-all clas-
sification (Act-MedLDA-OVA): A separate MedLDA
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Table 1: Distributions in Act-NPDSLDA

model is trained for each class using a one-vs-all ap-
proach leaving no possibility of transfer across classes.
Supervised topics are not included in such modeling and
the class labels are also obtained using active learning.

• Active Learning in MedLDA with multitask learning
(Act-MedLDA-MTL): A single MedLDA model is
learned for all classes where the latent topics are shared
across classes. Again, supervised topics are not used and
the class labels are obtained using active learning. This
baseline is intended to be stronger than Act-MedLDA-
OVA where the latent topics are not shared.

• Act-DSLDA with only shared supervised topics (Act-
DSLDA-OSST): A model in which supervised topics are
used and shared across classes but there are no latent
topics. Both the supervised topics and the class labels
are queried using active selection strategy.

• Act-DSLDA with no shared latent topics (Act-
DSLDA-NSLT): A model in which only supervised top-
ics are shared across classes and a separate set of latent
topics is maintained for each class. Both the supervised
topics and the class labels are queried using active selec-
tion strategy. This model has richer representational ca-
pacity compared to Act-DSLDA-OSST which does not
use any latent topics at all.

• Random selection of only class labels (RSC) – A
MedLDA-MTL model where examples with only class
labels are selected at random but supervised topics are
not used at all. Note that designing a DSLDA based
model where only class labels are selected at random is
tricky as one needs to balance the number of supervised
topics queried and the number of class labels selected
at random. This baseline shows the utility of active
selection of classes in the MedLDA-MTL framework.

• Random selection of class and attribute labels
(RSCA) – A DSLDA model where both queries for class
and the supervised topics are selected at random. This
baseline is weaker than RSC since the supervised topics
are generally less informative compared to class labels.
Both RSC and RSCA are used to exhibit the utility of

active learning for both class and supervised topic se-
lection.

5.3 Results In the experiments with both image and
text data, we start with a completely labeled dataset L
consisting of 300 documents. In every active iteration,
we query for 50 labels (class labels or supervised topics).
Figs. 1 and 2 present representative learning curves
for the image and the text data respectively, showing
how classification accuracy improves as the amount of
supervision is increased. The error bars in the curves
show standard deviations across 20 trials.

5.4 Discussion Act-DSLDA and Act-NPDSLDA
quite consistently outperform all of the baselines, clearly
demonstrating the advantage of combining both types
of topics and integrating active learning and transfer
learning in the same framework. Act-NPDSLDA per-
forms about as well or better as Act-DSLDA, for which
the optimal number of latent topics has been chosen
using an expensive model-selection search.

As to be expected, the active DSLDA methods’ ad-
vantage over their random selection counterpart (RSC)
is greatest at the lower end of the learning curve. Act-
MedLDA-OVA does a little better than RSCA show-
ing that the active selection of class labels helps even if
there is no transfer across classes. Act-MedLDA-MTL
consistently outperforms Act-MedLDA-OVA as well as
RSC showing that active transfer learning is beneficial
for MedLDA-MTL. Act-DSLDA-OSST does better than
both Act-MedLDA-MTL and RSC towards the lower
end of the learning curve but with more labeled infor-
mation this model does not perform that well since it
does not use latent topics. Act-DSLDA-NSLT also per-
forms better than Act-DSLDA-OSST because the for-
mer utilizes latent topics.

Figs. 3 and 4 show the percentage (out of 50
queries) of class labels and supervised topics queried
by Act-DSLDA at each iteration step in the vision and
text data, respectively. Initially, the model queries for



Figure 1: aYahoo Learning Curves Figure 2: ACM Conference Learning Curves

Figure 3: aYahoo Query Distribution Figure 4: ACM Conference Query Distribution

more class labels but towards the end of the learning
curve, more supervised topics are queried. By the
14th iteration, the class labels of all the documents in
the training set are queried. From the 15th iteration
onwards, only supervised topics are queried. This
observation is not that surprising since the class labels
are more discriminative compared to the supervised
topics and hence are queried more. However, queries of
supervised topics are also helpful and allow continued
improvement later in the learning curve.

6 Future Work and Conclusion

This paper has introduced two new models for active
multitask learning. Experimental results comparing to
six different ablations of these models demonstrate the
utility of integrating active and multitask learning in
one framework that also unifies latent and supervised
shared topics. One could additionally actively query for
rationales [42, 12] and further improve the predictive
performance. The computational complexity of the
proposed models largely depends on the active selection
mechanism adopted. For large scale applications, one
needs to use better approximation techniques for active
selection as suggested in [16, 39].
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