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Abstract

As a format for describing the meaning of natural language sentences, probabilistic logic com-
bines the expressivity of first-order logic with the ability to handle graded information in a principled
fashion. But practical probabilistic logic frameworks usually assume a finite domain in which each
entity corresponds to a constant in the logic (domain closure assumption). They also assume a closed
world where everything has a very low prior probability. These assumptions lead to some problems
in the inferences that these systems make. In this paper, we show how to formulate Textual Entail-
ment (RTE) inference problems in probabilistic logic in a way that takes the domain closure and
closed-world assumptions into account. We evaluate our proposed technique on three RTE datasets,
on a synthetic dataset with a focus on complex forms of quantification, on FraCas and on one more
natural dataset. We show that our technique leads to improvements on the more natural dataset, and
achieves 100% accuracy on the synthetic dataset and on the relevant part of FraCas.

1 Introduction

Tasks in natural language semantics are becoming more fine-grained, like Textual Entailment (Dagan
et al., 2013), Semantic Parsing (Kwiatkowski et al., 2013; Berant et al., 2013), or fine-grained opinion
analysis. With the more complex tasks, there has been a renewed interest in phenomena like nega-
tion (Choi and Cardie, 2008) or the factivity of embedded clauses (MacCartney and Manning, 2009;
Lotan et al., 2013) – phenomena that used to be standardly handled by logic-based semantics. Bos
(2013) identifies the use of broad-coverage lexical resources as one aspect that is crucial to the success
of logic-based approaches. Another crucial aspect is the ability to reason with uncertain, probabilistic in-
formation (Garrette et al., 2011; Beltagy et al., 2013). Lexical information typically comes with weights,
be it weights of paraphrase rules (Lin and Pantel, 2001; Ganitkevitch et al., 2013), confidence ratings of
word sense disambiguation systems, or distributional similarity values, and reasoning with such infor-
mation and finding the overall best interpretation requires the ability to handle weights. This is possible
in the framework of probabilistic logic (Nilsson, 1986).

In this paper we do not talk about why one should use probabilistic logic for natural language seman-
tics, we focus on the how, as it turns out that some practical design properties of probabilistic reasoning
systems make it necessary to make changes to the meaning representations. One characteristic of prac-
tical probabilistic logic frameworks such as Markov Logic (Richardson and Domingos, 2006) is that
they assume a finite domain, in particular they assume that the entities in the domain correspond to the
constants mentioned in the set of formulas at hand. This is the domain closure assumption (DCA), a
strong assumption that reduces any inference problem to the propositional case. It also has far-reaching
consequences on the behavior of a system. For example, suppose we know that Tweety is a bird that
flies: bird(T ) ∧ fly(E) ∧ agent(T, E) (There is a flying event of which Tweety is the agent. We use
this Neo-Davidsonian representation throughout the paper, as it is also produced by the wide-coverage
semantic analysis system we use). Then we can conclude that every bird flies, because by the DCA we
are only considering models with a domain of size one. Of that single entity, we know both that it is a
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bird and that it flies. In a natural language inference setting, such as Textual Entailment, this is not the
conclusion we would like to draw. So we need to use a nonstandard encoding to ensure that existential
and universal quantifiers behave in the way they should.

Another issue that we face is that practical probabilistic logic frameworks usually have to construct
all groundings of the given formulas before doing inference. The closed-world assumption (CWA) – the
assumption that nothing is the case unless stated otherwise – helps to keep memory use for this grounding
step in check (Beltagy and Mooney, 2014). However, the CWA comes with inference problems of its
own, for example it would let us infer from The sky is blue that No girl is dancing because by the CWA
we assume that no entity is dancing unless we were told otherwise.

In this paper, we concentrate on entailment, one of the fundamental criteria of language understand-
ing. We show how to formulate probabilistic logic inference problems for the task of Recognizing Textual
Entailment (RTE, Dagan et al. (2013)) in a way that takes the domain closure assumption as well as the
closed-world assumption into account. We evaluate our approach on three RTE datasets. The first is a
synthetic dataset that exhaustively tests inference performance on sentences with two quantifiers. We get
100% accuracy on this dataset. We also evaluate on the first section of the FraCas dataset (Cooper et al.,
1996), a collection of Textual Entailment problems tailored focusing on particular semantic phenomena.
We restrict our analysis to sentences with determiners that our current system handles (excluding “few”,
“most”, “many” and “at least”), and we get 100% accuracy on them. Also, we evaluate on the RTE part
of the SICK dataset (Marelli et al., 2014) and show that our approach leads to improvements.

2 Background and Related Work

2.1 Recognizing Textual Entailment

Recognizing Textual Entailment (RTE) (Dagan et al., 2013) is the task of determining whether one nat-
ural language text, the Text T , Entails, Contradicts, or is Neutral with respect to another, the Hypothesis
H . Here are examples from the SICK dataset (Marelli et al., 2014):

• Entailment
T: A man and a woman are walking together through the woods.
H: A man and a woman are walking through a wooded area.

• Contradiction
T: A man is jumping into an empty pool
H: A man is jumping into a full pool

• Neutral
T: A young girl is dancing
H: A young girl is standing on one leg

2.2 Statistical relational learning

Statistical Relational Learning (SRL) techniques (Getoor and Taskar, 2007) combine logical and statisti-
cal knowledge in one uniform framework and provide a mechanism for coherent probabilistic inference.
They typically employ weighted formulas in first-order logic to compactly encode complex probabilistic
graphical models. Weighted rules allow situations in which not all clauses are satisfied. These frame-
works typically operate on the set of all groundings of a given set of formulas. A probabilistic logic
program defines a probability distribution over the possible values of the ground atoms where they are
treated as random variables. In addition to a set of rules R, a probabilistic logic program takes an evi-
dence set E asserting some truth values about some of the random variables. Then, given a query formula
Q, probabilistic logic inference calculates the probability P (Q|R,E) which is the answer to the query.



2.3 Markov Logic Networks

Markov Logic Networks (MLN) (Richardson and Domingos, 2006) are one of the statistical relational
learning frameworks. MLNs define a probability distribution over worlds (equivalently, truth assign-
ments to ground atoms), where a world’s probability increases exponentially with the total weight of the
ground clauses that it satisfies. Probability of a given world x is denoted by:

P (X = x) =
1
Z

exp

(∑
i

wini (x)

)
(1)

where Z is the partition function, i ranges over all formulas Fi is the MLN, wi is the weight of Fi and
ni(x) is the number of true groundings of Fi in the world x. The marginal inference of MLNs calculates
the probability P (Q|E,R), where Q is a query, E is the evidence set, and R is the set of weighted
formulas.

Alchemy (Kok et al., 2005) is the most widely used MLN implementation. It is a software package
that contains implementations of a variety of MLN inference and learning algorithms. However, devel-
oping a scalable, general-purpose, accurate inference method for complex MLNs is an open problem.

2.4 Markov Logic Networks for Natural Language Semantics

Logic-based natural language semantics follows the framework of Montague Grammar as laid out in
Montague’s “Proper Treatment of Quantification in Ordinary English” (Montague, 1973). Recent wide-
coverage tools that use logic-based sentence representations include Copestake and Flickinger (2000),
Bos (2008), and Lewis and Steedman (2013).

In this work, we build on the approach of Beltagy et al. (2013) and Beltagy and Mooney (2014).
Beltagy et al. (2013) use Bos’ system Boxer to map English sentences to logical form, then use Markov
Logic Networks to reason over those meaning representations, evaluating on two tasks, RTE and sentence
similarity (semantic textual similarity, STS). Weighted clauses are used to encode distributional similarity
of words or phrases as a set KB of weighted inference rules. An RTE problem of whether Text T entails
Hypothesis H given the set of inference rules KB is transformed into the question of the probability
of the hypothesis given the text and the rules, P (H|T, KB). The Alchemy tool (Kok et al., 2005) is
used to estimate this probability. Then a classifier is trained to convert the probabilities into judgments
of Entailment, Contradiction, or Neutral. However, because of lack of adaptation to domain closure and
other problems, the approach of Beltagy et al. (2013) is not able to make use of universal quantifiers in
the Hypothesis H . In this paper, we address this problem.

Beltagy and Mooney (2014) propose an inference algorithm that can solve the inference problem
P (H|T, KB) efficiently for complex queries. They enforce a closed-world assumption that significantly
reduces the problem size. However, this closed-world assumption makes negated hypotheses H come
true regardless of T . In this paper, we also address this issue.

3 Approach

A significant difference between standard logic and probabilistic logic comes from the fact that practical
probabilistic logic frameworks typically make the Domain Closure Assumption (DCA, Genesereth and
Nilsson (1987); Richardson and Domingos (2006)): The only models considered for a set F of formulas
are those for which the following three conditions hold. (a) Different constants refer to different objects
in the domain, (b) the only objects in the domain are those that can be represented using the constant
and function symbols in F , and (c) for each function f appearing in F , the value of f applied to every
possible tuple of arguments is known, and is a constant appearing in F . Together, these three conditions
entail that there is a one-to-one relation between objects in the domain and the named constants of F .

For working with Markov Logic Networks in practice, this means that constants need to be explicitly
introduced in the probabilistic logic program. Constants are used to ground the predicates, and build the



graphical model. Different sets of constants result into different graphical models. If no constants are
explicitly introduced, the graphical model is empty (no random variables). A more serious problem is
that the DCA affects the behavior of universal quantifiers, as illustrated with the Tweety example in the
introduction. We address this problem by adding more constants to the system.

While the DCA is not commonly made outside of probabilistic logic systems, the Closed World
Assumption (CWA) is widely used in inference systems. However, in the context of Textual Entailment,
it, too, leads to problems, as it assumes that all negative information is true a priori – but in RTE we do
not want to assume anything to be true unless stated in the Text, neither positive nor negative information.

This section discusses the changes that we make to the representations of natural language sentence
meaning in order to deal with the DCA and CWA. We focus on the Textual Entailment task as these
changes will be different for the evidence given (the Text T ) and the query (the Hypothesis H).

3.1 Skolemization

Skolemization (Skolem, 1920) transforms a formula ∀x1 . . . xn∃y.F to ∀x1 . . . xn.F ∗, where F ∗ is
formed from F by replacing all free occurrences of y by a term f(x1, . . . , xn) for a new function symbol
f . If n = 0, f is called a Skolem constant, otherwise a Skolem function. Although Skolemization is
a widely used technique when using standard first-order logic, it is typically not used in the context of
probabilistic logic because typical probabilistic logic applications do not require existential quantifiers.
In addition, the standard way of dealing with an existential quantifier in probabilistic logic is by replacing
it with a disjunction over all constants in the domain (Richardson and Domingos, 2006). In our case,
Skolemization plays a role for existential quantifiers in the text T . Take for example T: A man is driving
a car, which in logical form is

T : ∃x, y, z. man(x) ∧ agent(y, x) ∧ drive(y) ∧ patient(y, z) ∧ car(z)

Because of the DCA, we need to explicitly introduce constants into the domain. Skolemization solves
this problem. Non-embedded existentially quantified variables like in the example above are replaced
with Skolem constants

T : man(M) ∧ agent(D,M) ∧ drive(D) ∧ patient(D,C) ∧ car(C)

where M,D, C are constants introduced into the domain. Standard Skolemization would replace an em-
bedded existentially quantified variable y with a Skolem function depending on all universally quantified
variables x under which y is embedded. For example, here is the logical form of T: All birds fly.

T : ∀x. bird(x)⇒ ∃y. agent(y, x) ∧ fly(y)

It is Skolemized as follows:

T : ∀x. bird(x)⇒ agent(f(x), x) ∧ fly(f(x))

By condition (c) of the DCA, if we used a Skolem function, it would need to map its argument to a
constant. In particular, it would need to map each argument to a new constant to state that for every
known bird (i.e., for any constant that is a bird) there is a separate flying event. To achieve this, we
introduce a new predicate skolemf that we use instead of the Skolem function f , and for every constant
that is a bird, we add an extra constant that is a flying event. The example above then becomes

T : ∀x. bird(x)⇒ ∀y. skolemf (x, y)⇒ agent(y, x) ∧ fly(y)

Assume that we have evidence of a single bird B1. Then we introduce a new constant C1 and an atom
skolemf (B1, C1) to simulate that the Skolem function f maps the constant B1 to the constant C1.



3.2 Existence

Suppose we have a sentence T: All birds with wings fly. Its representation will yield an empty graphical
model because there are no constants in the system. However, pragmatically this sentence presupposes
that there are, in fact, birds with wings (Strawson, 1950; Geurts, 2007). By default, probabilistic logic
and standard first-order logic do not capture this existential presupposition. We add it here to avoid the
problem of empty graphical models. In a simplification of the account of Geurts (2007), we assume that
the domain of almost all quantifiers is presupposed to be nonempty.

“Existence” deals with universal quantifiers in the text T . Each universal quantifier all(restrictor,
body) has a body and restrictor. From the CCG parse of a sentence, bodies and restrictors of each
quantifier can be identified. We add an existence rule for the entities in the restrictor of each universal
quantifier. For example, T: All birds with wings fly,

T : ∀x, y. bird(x) ∧ with(x, y) ∧ wing(y)⇒ ∃z. agent(z, x) ∧ fly(z)

is changed to T: All birds with wings fly, and there is a bird with wings.

T : ( ∀x, y. bird(x) ∧ with(x, y) ∧ wing(y)⇒ ∃z. agent(z, x) ∧ fly(z) )
∧ ( ∃u, v. bird(u) ∧ with(u, v) ∧ wing(v) )

Then we leave it to the Skolemization to generate constants and evidence representing the bird with
wings, bird(B) ∧ with(B, W ) ∧ wing(W ).

Here is another example, for a universal quantifier that comes from a negated existential, T: No bird
flies, which in logic is:

T : ¬∃x, y. bird(x) ∧ agent(y, x) ∧ fly(y)

or equivalently (by rewriting it as restrictor and body)

T : ∀x, y. bird(x)⇒ ¬(fly(y) ∧ agent(y, x))

The Existence assumption is applied to the restrictor bird, so it modifies this sentence to T: No bird flies,
and there is a bird.

T : ( ¬∃x, y. bird(x) ∧ agent(y, x) ∧ fly(y) ) ∧ ( ∃v. bird(v) )

Again, Skolemization generates the constants and evidence bird(B).
One special case that we need to take into consideration is sentences like T: There are no birds, which

in logic is
T : ¬∃x. bird(x)

Although bird(x) has a universally quantified variable, we do not generate an existence rule for it. In
this case the nonemptiness of the domain is not assumed because the sentence explicitly negates it.

3.3 Universal quantifiers in the hypothesis

Under the DCA, it is possible to conclude from T: Tweety is a bird that flies that H: all birds fly, as
discussed above, because H is true for all constants in the domain. While we used Skolemization and
Existence to handle issues in the representation of T , this problem affects universally quantified variables
in H . Similar to what we do for universal quantifiers in T , we introduce new constants to handle universal
quantifiers in H , but for a different rationale.



Consider T1: There is a black bird, T2: All birds are black, and H: All birds are black. These
sentences are represented as

T1 : ∃x. bird(x) ∧ black(x)
Skolemized T1 : bird(B) ∧ black(B)

T2 : ∀x. bird(x)⇒ black(x)
Skolemized T2 : ∀x. bird(x)⇒ black(x)

H : ∀x. bird(x)⇒ black(x)

We want H to be judged true only if there is evidence that all birds will be black, no matter how many
birds there are in the domain, as is the case in T2 but not T1. So we introduce a new constant D and
assert bird(D) to test if it follows that black(D). The new evidence bird(D) prevents the hypothesis
from being judged true given T1. Given T2, the new bird D will be inferred to be black, in which case
we take the hypothesis to be true.1

As with Existence, the same special case need to be taken into consideration. For sentences like H:
There are no birds, which in logic is

H : ¬∃x. bird(x)

we do not generate any hard evidence for bird(x).

3.4 Negative hypotheses and the closed-world assumption

As discussed above, practical probabilistic logic systems typically operate on ground formulas, and the
grounding step can require significant amounts of memory. Making the closed-world assumption (CWA)
mitigates this effect (Beltagy and Mooney, 2014). In a probabilistic logic system, the CWA takes the
form of a statement that everything has a very low prior probability. The problem here is that a negated
hypothesis H could come true just because of the CWA, not because the negation is explicitly stated in
T . Here is an example that demonstrates the problem, H: There is no young girl dancing:

H : ∀x, y. young(x) ∧ girl(x)⇒ ¬(agent(y, x) ∧ dance(y))

As in section 3.3, we generate from H evidence of a young girl young(G)∧ girl(G) because it is in the
restrictor of the universal quantifier (stating that an additional young girl exists in the world in general,
not in this particular situation). For H to be true, inference needs to find out that G is not dancing. We
need H to be true only if T is explicitly negating the existence of a young girl that dances, but because
of the CWA, H could become true even if T is uninformative.

To make sure that H becomes true only if it is entailed by T , we construct a new rule R which,
together with the evidence generated from H , states the opposite of the negated parts of H . R is formed
of a conjunction of all the predicates that were not used to generate evidence before, that are negated in
H . This rule R gets a positive weight indicating that its ground atoms have high prior probability. This
way, the prior probability of H is low, and H cannot become true unless T explicitly negates R. Here is
a Neutral RTE example adapted from the SICK dataset, T: A young girl is standing on one leg, and H:
There is no young girl dancing. Their representations are

T : ∃x, y, z. young(x) ∧ girl(x) ∧ agent(y, x) ∧ stand(y) ∧ on(y, z) ∧ one(z) ∧ leg(z)
H: ∀x, y. young(x) ∧ girl(x)⇒ ¬(agent(y, x) ∧ dance(y))
E: young(G) ∧ girl(G)
R: agent(D,G) ∧ dance(D)|w = 1.5

1Note that this strategy can fail, for example given T: There is a black bird, and if there are exactly two birds, then all birds
are black. If we were to handle quantifiers like exactly two, which we are not doing yet, we would mistakenly conclude that all
birds are black. However, we expect that sentences like this will be extremely rare in naturally occurring text.



E is the evidence generated for the restrictor of the universal quantifier in H , and R is the weighted rule
for the remaining negated predicates. The relation between T and H is Neutral, as T does not entail H .
This means, we want P (H|T, E) = 0, but because of the CWA, P (H|T, E) ≈ 1. Adding R solves this
problem and P (H|T, E,R) ≈ 0 because H is not explicitly entailed by T .

In case H contains existentially quantified variables that occur in negated predicates, they need to be
universally quantified in R for H to be false by default. For example, H: There is some bird that is not
black:

H : ∃x. bird(x) ∧ ¬black(x)
R : ∀x. black(x)|w = 1.5

Without R, the prior probability of H is P (H) ≈ 1 because by default any bird is not black. However,
with R, P (H|R) ≈ 0. If one variable is universally quantified and the other is existentially quantified,
we need to do something more complex. Here is an example, H: The young girl is not dancing:

H : ∃x. young(x) ∧ girl(x) ∧ ¬( ∃y. agent(y, x) ∧ dance(y) )
R : ∀v. agent(D, v) ∧ dance(D)|w = 1.5

If H is a negated formula that is entailed by T , then T (which has infinite weight) will contradict R,
allowing H to be true. Any weighted inference rules in KB will need weights high enough to overcome
R. So the weight of R is taken into account when computing inference rule weights.

4 Evaluation

We evaluate on three RTE datasets. The first is a synthetic dataset that exhaustively tests inference
performance on sentences with two quantifiers. The second is the RTE part of the SICK dataset (Marelli
et al., 2014). The third is FraCas (Cooper et al., 1996).

4.1 Synthetic dataset

We automatically generate an RTE dataset that exhaustively test inferences on sentences with two quan-
tifiers. Each RTE pair (T , H) is generated following this format:

T : Qt1(Lt1, Qt2(Lt2, Rt2))
H : Qh1(Lh1, Qh2(Lh2, Rh2))

where

• Qx ∈ {some, all, no, not all}

• Lt1, Lh1 ∈ {man, hungry man} and Lt1 6= Lh1

• Lt2, Lh2 ∈ {food, delicious food} and Lt2 6= Lh2

• Rt2, Rh2 = eat

Informally, the dataset has all possible combinations of sentences with two quantifiers. Also it has all
possible combinations of monotonicity directions – upward and downward – between Lt1 and Lh1 and
between Lt2 and Lh2. The dataset size is 1,024 RTE pairs. Here is an example of a generated RTE pair:

T: No man eats all food

H: Some hungry men eat not all delicious food

The dataset is automatically annotated for entailment decisions by normalizing the logical forms of the
sentences and then using standard monotonicy rules on the bodies and restrictors of the quantifiers. 72
pairs out of the 1,024 are entailing pairs, and the rest are non-entailing.

Our system computes P (H|T ). The resulting probability between 0 and 1 needs to be mapped to
an Entail/Non-entail decision. In this dataset, and because we do not have weighted inference rules, all
output probabilities close to 1 denote Entail and probabilities close to 0 denote Non-entail.



Synthetic dataset SICK dataset FraCas dataset
System Accuracy FP FN Accuracy Gold parses System parses
Baseline(most common class) 92.96% 0 72 56.36% 47.82% 47.82%
Skolem 50.78% 472 32 68.10% 50.00% 43.48%
Skolem + Existence 57.03% 440 0 68.10% 43.48% 36.96%
Skolem + (∀ in H) 82.42% 140 40 68.14% 63.04% 50.00%
Skolem + (∀ in H) + CWA 96.09% 0 40 76.48% 100.0% 84.78%
Full system 100% 0 0 76.52% 100.0% 84.78%

Table 1: Results of all datasets on different configurations of the system. The most common class
baseline is Non-entail for the synthetic dataset, Neutral for SICK and Entail for FraCas. False positives
(FP) and False negatives (FN) statistic are reported only for the synthetic dataset because it is a binary
classification task. FP/FN results are counts out of 1,024

Results The leftmost part of Table 1 summarizes the results on the synthetic dataset in terms of ac-
curacy. The baseline always judges non-entailment. Ablation tests are as follows. Skolem is a system
that applies Skolemization to existentially quantified variables in the Text T (Sec. 3.1) but none of the
other adaptations of Section 3. Existence is a system that makes the existence assumption for universal
quantifiers in T (Sec. 3.2). (∀ in H) is constant introduction for universal quantifiers in the Hypothe-
sis (Sec. 3.3). Finally, CWA is a system that handles negation in the Hypothesis H in a way that takes
the closed-world assumption into account (Sec. 3.4). The results in Table 1 show the importance of
each part of the proposed system. Skolemization and the Existence assumption eliminate some false
negatives from missing constants. All false positives are eliminated when constants are introduced for
universal quantifiers in the Hypothesis (∀ in H) and when the effects of the closed-world assumption are
counteracted (CWA). The full system achieves 100% accuracy, showing that our formulation is perfectly
handling the DCA and CWA on these complex quantified sentences.

Note that a pure logic system such as Boxer (Bos, 2008) can also achieve 100% on this dataset. But
again, the aim of this paper is not to argue that probabilistic logic is preferable to standard first order
logic. This can only be done by showing that weighted, uncertain knowledge leads to better inferences.
Rather, this paper constitutes a necessary prerequisite, in that it is necessary first to determine how to
achieve the correct (hard) inferences with probabilistic logic before we measure the effect of weighting.

4.2 The SICK dataset

Sentences Involving Compositional Knowledge (SICK, Marelli et al. (2014)) is an RTE dataset collected
for the SemEval 2014 competition. It consists of 5,000 T/H pairs for training and 5,000 for testing. Pairs
are annotated for both RTE and STS (sentence similarity). For the purpose of this paper, we only use the
RTE annotation.

Pairs in SICK (as well as FraCas in the next section) are classified into three classes, Entailment,
Contradiction, and Neutral. This means that computing the probability P (H|T ) alone is not enough
for this threeway classification. We additionally compute P (¬T |H). Entailing pairs have P (H|T ) ≈
1, P (¬T |H) ≈ 0, Contradicting pairs have P (H|T ) ≈ 0, P (¬T |H) ≈ 1, and Neutral pairs have
P (H|T ) ≈ P (¬T |H). The output probability of our system is mapped to an Entail/Neutral/Contradict
decision using an SVM classifier trained on the training set.

Results The middle panel of Table 1 reports results on the SICK dataset, again in terms of accuracy.
Almost all sentences in the SICK dataset are simple existentially quantified sentences except for a few
sentences with an outer negation. Accordingly, the system with Skolemization basically achieves the
same accuracy as when Existence and (∀ in H) are added. Handling negation in H effectively improves
the accuracy of our system by reducing the number of false positives resulting from the CWA.



4.3 The FraCas dataset

FraCas (Cooper et al., 1996)2 is a dataset of hand-built entailments pairs. The dataset consists of 9
sections, each of which is testing a different set of phenomena. For this paper, we use sentences from
the first section, which tests quantification and monotonicity. However, we exclude pairs containing
the determiners “few”, “most”, “many” and “at least” because our system does not currently have a
representation for them. We evaluate on 46 pairs out of 74.34 Because of that, we cannot compare
with previous systems that evaluate on the whole section (MacCartney and Manning, 2008; Lewis and
Steedman, 2013).

To map sentences to logical form, we use Boxer as discussed in section 2.4. By default, Boxer
relies on C&C (Curran et al., 2009) to get the CCG parses of the sentences. Instead, we run Boxer on
CCG parses produced by EasyCCG (Lewis and Steedman, 2014) because it is more accurate on FraCas.
Like Lewis and Steedman (2013) we additionally test on gold-standard parses to be able to evaluate our
technique of handling quantifiers in the absence of parser errors. Also, as we do with the SICK dataset,
we add the inference P (¬T |H) for the detection of contradictions.

For multi-sentence examples, we add a simple co-reference resolution step that connects definite NPs
across sentences. For example, the right to live in Europe in T1 and T3 should corefer in the following
example:

T1: Every European has the right to live in Europe
T2: Every European is a person
T3: Every person who has the right to live in Europe can travel freely within Europe

We also added two rules encoding lexical knowledge, paraphrased as “a lot of x ⇒ x” and “one of
x⇒ x” to handle one of the examples, as lexical coverage is not the focus of our analysis.

Results The rightmost panel in Table 1 summarizes the results of our system for gold parses and system
parses. We see that the Existence assumption is not needed in this dataset because it is constructed to
test semantics and not presupposition. Results with Existence are lower because without Existence, three
cases (the previous example is one of them) are correctly classified as Entail, but with Existence they are
classified as Neutral. Without Existence the domain is empty, and P (¬T |H) = 0 because ¬T , which is
existentially quantified, is trivially false. With Existence added, P (¬T |H) = 1 because the domain is
not empty, and the CWA is not handled. Also we see that, as in the two previous experiments, adding the
approach that handles the CWA has the biggest impact. With all components of the system added, and
with gold parses, we get 100% accuracy. With system parses, all results are lower, but the relative scores
for the different subsystems are comparable to the gold parse case.

5 Future Work

One important extension to this work is to support generalized quantifiers in probabilistic logic. Some
determiners, such as “few” and “most”, cannot be represented in standard first-order logic. But it could
be possible to represent them using the probabilistic aspect of probabilistic logic. With support for gener-
alized quantifiers, we would be able to evaluate on the pairs we skipped from the FraCas dataset (Cooper
et al., 1996). Another important next step is to refine the closed world assumption such that it assumes
fewer things to be false. In particular we want to use (hard or soft) typing to distinguish between impos-
sible propositions on the one hand and possible but unsupported ones on the other hand.

2We use the version by MacCartney and Manning (2007)
3The first section consists of 80 pairs, but like MacCartney and Manning (2007) we ignore the pairs with an undefined result.
4The gold standard annotation for pair number 69 should be Neutral not Entail. We changed it accordingly.



6 Conclusion

In this paper we showed how to do textual entailment in probabilistic logic while taking into account the
problems resulting from the domain closure assumption (DCA) and the closed-world assumption (CWA).
This paper is not concerned with why one should use probabilistic logic for natural language semantics,
it only addresses the how. Our formulation involves Skolemization of the text T , generating evidence
for universally quantified variables in T to simulate the existential presupposition, generating evidence
to test universal quantifiers in H , and preventing negated H from being judged true independently of
T because of the CWA. We evaluate our formulation on a synthetic dataset that has complex forms of
quantifications and on the relevant part of the FraCas dataset and get a 100% accuracy on both. We also
evaluate on the SICK dataset and show improved performance.
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