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1. Introduction
Personalizing a user’s web search experience has become a vi-

brant area of research in recent years. One of the most actively
researched topics in this area is web query disambiguation, or auto-
matically determining the intentions and goals of a user who enters
an ambiguous query. This is not surprising, given the frequency
of ambiguous searches and the unwillingness of users to enter long
and descriptive queries. For example, Sanderson [9] reports that
anywhere between roughly 7% and 23% of the queries frequently
occurring in the logs of two search engines are ambiguous, with the
average length of ambiguous queries being close to one.

Ambiguity exists not only in cases such as the all-too-familiar
“jaguar” example, but also in searches that do not appear ambigu-
ous on the surface. Frequently queries that are commonly consid-
ered unambiguous become ambiguous as a result of the wealth of
Web sources, which examine different aspects of a given topic. For
example, a search for “Ireland” may be prompted by at least two
different kinds of intentions—either by a desire to visit the coun-
try as a tourist, in which case one is interested in hotels and tourist
sites, or by the need to complete a geography essay, in which situ-
ation objective facts about the country are more appropriate.

Most approaches to web query disambiguation leverage a user’s
previous interactions with the search engine to predict her inten-
tions when entering an ambiguous query. Typically, user actions
over long periods of time are logged, e.g.,[10, 11, 3]. Approaches
that require long search histories may raise privacy concerns and
may be difficult to implement for pragmatic reasons. After the re-
lease of AOL query log data allowed journalists to identify one user
based on her searches [1], many people have become especially
wary of having their entire search histories recorded by search en-
gines. This has led to increased interest in the ethical issues sur-
rounding user data collection, e.g., [2], and the appearance of search
engines that expressly do not store any user activity information,
such as Cuil (http://http://www.cuil.com/).

However, in order to determine user intent when typing an am-
biguous query, at least some information must be available about
the user. We present an approach that bases its predictions only on
a short glimpse of user search activity, captured in a brief search
session. Our approach relates the search session of the current user
to previous short sessions of other users based on the search activity
in these sessions. Because sessions do not record user identifiers,
it is impossible to find previous searches by the same user and thus
impossible to reconstruct whole search histories.

Our proposed approach is appealing also from a pragmatic stand-
point because it does not require search engines to store, manage,
and protect long user histories, thus decreasing the amount of pro-
cessing that needs to be performed on the server side and avoids the
difficulty of identifying users across search sessions.

When so little is known about a searcher, the problem of query
disambiguation becomes very challenging. In fact, in previous re-
search it has been argued that session-only information is too sparse
to allow for any meaningful prediction [3]. In this work, we present
evidence to the contrary by developing an approach that success-
fully leverages this small amount of information about a user to
improve the ranking of the returned search results. Our approach
is based on statistical relational learning (SRL) [4] and exploits the

relations between the current session in which the ambiguous query
is issued and previous sessions.

SRL, which addresses the problem of learning models that sup-
port probabilistic reasoning about data that involves multiple en-
tities connected by a variety of relationships, is an appealing ap-
proach for our problem for two main reasons. First, the data is
inherently relational—there are several types of objects: queries,
clicked URLs, and sessions, which relate to each other in a variety
of ways, e.g., two sessions may be related by virtue of containing
clicks to the same URLs or searches for similar queries, queries
may be related by sharing words or by being followed by clicks
to the same URLs, and so on. SRL techniques allow us to learn
general models of the ways in which the various types of entities
interact, thus overcoming the problem that not much may be known
about any particular entity, i.e. a particular URL. Second, data of
human interactions with a search engine is likely to be noisy. Be-
cause SRL models allow for probabilistic inference, they can be
successfully used to reason from noisy data.

We used one particular SRL representation, Markov logic net-
works (MLNs) [8]. A Markov logic network consists of a set of
weighted first-order clauses and defines a Markov network when
provided with a set of constants. The probability of a world de-
creases exponentially in the weight of clauses that are not satisfied
by it. We chose MLNs because of their generality, their successful
application to other language-related tasks, e.g., [7], and the avail-
ability of a well-maintained code base [5].
2. Data

We used data provided by Microsoft Research containing anonymized
query log records collected from MSN Search in May 2006. The
data consists of timestamped records for individual short sessions,
the queries issued in them, the URLs clicked for each query, the
number of results available for each query and the position of each
result. Although some of the sessions may belong to the same
users, the data excludes this information. This dataset therefore
perfectly mirrors the scenario of disambiguating user intent from
short interactions that we address in this research. Because there is
a one-to-one correspondence between users and sessions, we will
use these two terms interchangeably.

The data has two main limitations. First, it does not state which
search queries are ambiguous. We employed a simple heuristic to
obtain a (possibly noisy) set of ambiguous queries, using DMOZ
(www.dmoz.org): a query string is considered ambiguous if,
over all URLs clicked after searching for this exact string, at least
two fall in different top-level categories, according to the DMOZ
hierarchy. We limited ourselves to strings containing up to two
words, thus obtaining 6360 distinct ambiguous query strings. Sec-
ond, the data does not list all the URLs presented to the user after
a search but just the clicked ones. This presents a difficulty dur-
ing testing. To overcome this, we assumed that the set of all URLs
clicked after searching for a particular ambiguous query string, over
the entire dataset, was the set of results presented to the user.

We used the first 25 days of data for training and validation and
the last 6 for testing. Sessions stretching across these time periods
were discarded. As training/testing examples, we used sessions that
contained an ambiguous query, temporally preceded by clicks to at
least 5 distinct hostnames. As a result, in the training sessions, the
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average number of distinct previous clicks was 8.02 and the av-
erage number of previous searches was 5.76. Distinct ambiguous
searches in the same session are treated as separate examples. Dur-
ing testing, only the information regarding user activity preceding
the ambiguous query is provided as evidence. The set of hostnames
of the possible results for this ambiguous query string is given, and
the goal is to rank them based on how likely it is that they represent
the intent of the user. In cases when the user clicks on more than
one result after searching for a string, we accept all as relevant.

3. Query Disambiguation with MLNs
Our general approach follows that of previous applications of

MLNs to specific problems, e.g., [7]: we hand-coded the structure
of the model as a set of first-order clauses and learned weights on
this structure from the data. For weight learning we used the dis-
criminative perceptron-like contrastive divergence weight learner
[6]. Because of the large amount of data, which would not fit
in memory, we adapted this algorithm to proceed in an on-line
fashion—at each step, only a single training session and its rel-
evant background information are presented to the learner and a
single weight update is carried out for each clause.

We defined the following predicates (in the descriptions, as refers
to the current active session and aq to the current ambiguous query):
possR(r): r is a possible result for aq
srchAndCl(s, r):session s clicked on r after search for aq
willCl(r): as will click on result r
connViaCl(s, d):sessions s and as are related via shared click to d
connViaCC(s, k):sessions s and as are related via a keyword k

shared between a click in as and a click in s
connViaCS(s, k):sessions s and as are related via a keyword k

shared between a click in as and a search in s
connViaSC(s, k):sessions s and as are related via a keyword k

shared between a search in as and a click in s
connViaSS(s, k):sessions s and as are related via a keyword k

shared between a search in as and a search in s

The goal is to predict the willCl(r) predicate, given as evidence
the values of the remaining ones. We used the following clauses:
∃r willCl(r).
possR(r) ∧ connViaCl(s, d) ∧ srchAndCl(s, r)⇒ willCl(r)
possR(r) ∧ connViaCC(s, k) ∧ srchAndCl(s, r)⇒ willCl(r)
possR(r) ∧ connViaCS(s, k) ∧ srchAndCl(s, r)⇒ willCl(r)
possR(r) ∧ connViaSC(s, k) ∧ srchAndCl(s, r)⇒ willCl(r)
possR(r) ∧ connViaSS(s, k) ∧ srchAndCl(s, r)⇒ willCl(r)

The first clause states that at least one of the results will be
clicked and is hard, i.e. it is always required to hold. The remaining
clauses, for which we learn weights, state that the user will choose
the result chosen by background sessions that are related to it via
one of the connVia predicates. The more clicks or keywords the
current session shares with background sessions in which a partic-
ular possible result was clicked, the more likely it is, according to
the model, that this result will be clicked in the current session.
Thus, this is an entirely collaborative-based model. We also con-
sidered a mixed collaborative-content-based approach, in which we
additionally used the keywords appearing in previous searches and
hostnames in the current session to provide evidence about which
possible result may be chosen. However, we found that this extra
information did not lead to an improvement.

4. Preliminary Results and Ongoing Work
We compared two MLNs to three baselines. MLN1 contains the

first two clauses described above. MLN2 contains all clauses. The
first baseline, Random, randomly ranks the possible results. The
second baseline, Click-Sim uses the same information as MLN1
as follows. Given an ambiguous query Q, issued in a session S,
and a set of possible resultsRQ, it assigns to each R ∈ RQ a rank

that equals the average similarity of S to all background sessions
that clicked on R after searching for Q. The similarity between
two sessions equals the number of hostnames (of the clicks) that
the two sessions have in common. The third baseline, Click-KW-
Sim uses the same information as MLN2 in an analogous way,
except that the similarity between two sessions equals the number
of hostnames and keywords they share.

We used two metrics, the Mean Average Precision (MAP), which
is identical to the area under the precision-recall curve, and the area
under the ROC curve (AUC-ROC). If the user starts scanning the
page of returned results from the top, the AUC-ROC intuitively
represents what percentage of the irrelevant results were not seen
by the user. Thus, a random ranker would obtain an AUC-ROC of
0.5. Unlike MAP, AUC-ROC is sensitive to the number of possi-
ble results that are to be ranked and thus, more informative in our
case where we have differing numbers of possible results for each
ambiguous query. The results are listed in the following table.

Random Cl-Sim MLN1 Cl-KW-Sim MLN2
MAP 0.304 0.329 0.348 0.332 0.364
AUC-ROC 0.504 0.526 0.544 0.534 0.567
Although the differences may appear small, most of them are

statistically significant. All significance claims are at the 99.5 level
or better (i.e. p-value ≤ 0.005). All approaches give significant
advantages over Random. The other statistically significant results
are as follows: MLN2 is better than all others; MLN1 is better than
Cl-Sim on both measures, and better than Cl-KW-Sim on MAP;
Cl-KW-Sim is better than Cl-Sim. However, Cl-KW-Sim is not
as successful as MLN2 at taking advantage of the additional infor-
mation that is provided to it. One reason for this is that Cl-KW-
Sim considers all ways in which two clauses may be related to be
equally important, whereas the learned weights on the MLN deter-
mine the relative importance of different types of relations. These
initial results demonstrate that the use of MLNs allows for better
rankings than hand-coded baselines that use roughly the same in-
formation. A second advantage of the MLN approach is that us-
ing already existing general technology for learning and inference
with MLNs we were able to obtain competitive performance after
hand-coding only a few simple rules. In on-going work, we are
experimenting with more complex models.
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