
Copyright

by

Clara Cecilia Cannon

2021

Masters Thesis, Department of Computer Science, The University of Texas at 

Austin. 



The Thesis Committee for Clara Cecilia Cannon
certifies that this is the approved version of the following dissertation:

Supervised Attention from Natural Language Feedback

for Reinforcement Learning

Approved by Supervising Committee:

Raymond Mooney, Supervisor

Scott Niekum



Supervised Attention from Natural Language Feedback

for Reinforcement Learning

by

Clara Cecilia Cannon

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Masters of Science in Computer Science

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2021



Supervised Attention from Natural Language Feedback

for Reinforcement Learning

Clara Cecilia Cannon, M.S.Comp.Sci.

The University of Texas at Austin, 2021

Supervisor: Raymond Mooney

In this paper, we introduce a new approach to Reinforcement Learn-

ing (RL) called “supervised attention” from human feedback which focuses on

novel task learning from human interaction on relevant features of the envi-

ronment, which we hypothesize will allow for effective learning from limited

training data. We wanted to answer the following question: does the addition

of language to existing RL frameworks improve agent learning? We wanted to

show that language helps the agent pick out the most important features in

its perception. We tested many methods for implementing this concept and

settled on incorporating language feedback via a template matching scheme.

While more sophisticated techniques, such as attention, would be better at

grounding the language, we discovered this task is non trivial for our choice of

environment. Using deep learning methods, we translate human linguistic nar-

ration to a saliency map over the perceptual field. This saliency map is used

to inform a deep-reinforcement learning system which features in the visual
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observation are most important relative to its position in the environment and

optimize task learning. We establish a baseline model using deep TAMER and

test our framework on Montezuma’s Revenge, the most difficult game in the

Atari Arcade suite. However, our final framework demonstrates the incom-

patibility of language in the Atari suite in a supervised attention setting. The

ultimate result showed that as long as the agent’s position in the observation

was clear, the model ignores surrounding contextual information, regardless of

potential benefit. We conclude that the Atari network of games is unsuitable

for grounding natural language in the high dimensional state spaces. Further

development of sophisticated simulations is required.
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Chapter 1

Introduction

Advances in machine learning have contributed to impressive progress

in the development of reinforcement learning agents’ ability to produce ro-

bust policies that generalize across differing situations seen and unseen during

training (Deisenroth and Rasmussen [2011], Levine et al. [2016]). However,

these methods typically only work under carefully designed testing conditions

or simulated environments where experts hand select features (Bahdanau et al.

[2014]) reward functions, and initial conditions (Skinner [2007]). This scheme

works great under the assumption that an RL expert is on hand to ensure the

optimal training and testing of the intelligent agent occurs without mishap.

However, if we truly wish to develop general purpose agents on a wide scale for

real world tasks under the tutelage of a non-expert, a more sustainable model

is needed to quickly and robustly characterize novel tasks in unknown environ-

ments, utilizing information more intuitive to the average person, rendering

the intervention of expert trainers unnecessary.

In the quest to realize this ideal, various approaches have been employed

to allow a human user to train a RL agent through our natural forms of

instruction and interaction, the most relevant to our project being language.
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One of the first ground breaking approaches and the one we reference the most

throughout the remainder of this paper is TAMER (Knox and Stone [2008])

and its extension into deep neural architectures, deep TAMER (Warnell et al.

[2018]). These are two method for allowing a human to provide continuous

evaluative feedback on an agent’s performance. They demonstrate how scalar

feedback can significantly decrease learning time. While most other areas

of research in the Artificial Intelligence (AI) domain might require training

episodes to the scale of thousands and hundred thousands, very rarely do we

see a RL training scheme less than the order of millions (and that is being

conservative). Deep TAMER also addresses the credit assignment problem.

By assigning each action sequence a window of relevancy for each received

feedback signal, they were able to discern which aspects of the current state

made a particular action a good or bad option. However, one must admit the

scalar reward as feedback is rudimentary and more tailored to the digital world

than our own. We want to show that language feedback is just as valuable if

not more significant to shortening agent learning on a larger scale.

Why do we think language is going to be so valuable in the RL domain?

First, consider how humans learn and teach each other new skills. When a per-

son is providing feedback or demonstrating a task for another person, they can

describe what they are doing in natural language, providing context, clarifica-

tion, and/or explanations for their evaluations or actions. Therefore, this work

focuses on enabling intelligent agents to perform efficient and robust learning

from feedback by leveraging auxiliary natural language narration as context.
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Figure 1.1: Room 1 in Montezuma’s Revenge. The sprite/agent must navigate
the terrain, avoiding the skull, in order to obtain the key. Once the key is
reached the agent can move towards one of the gates and use the key to move
onto another level.

We show that this contextual information allows agents to intelligently disam-

biguate, generalize, and rapidly learn from human instruction a complex task

in a sparse reward environment, the Atari game Montezuma’s Revenge. We

develop, implement, and evaluate our new approach to using language to aid

task learning. We were inspired by ideas from language grounding, explanation

for deep learning, and learning from rationales.

Our approach uses language narration as a supervisory signal that fo-

cuses learning on relevant features of the environment, thereby allowing ef-

fective learning from limited training data. Our system pre-processes image

inputs using language to focus agent’s perception on task or environment rel-

evant features. For instance, given Room 1 (See Figure 1.1) in Atari’s Mon-

tezuma’s Revenge, the human trainer can specify local optimal behaviours

with language given the agent’s progress towards the goal (key). When the
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agent is at the top of the ladder, we do not want the agent to immediately

focus on moving left towards the key, as there is no viable path to reach the

key’s location from the starting position. Instead, a trainer might instruct the

agent to move right, away from its primary objective, but along an optimal tra-

jectory for the given environment. To give a more concrete example, consider

potentially useful feedback for either of the agents in Figure 1.2. First, we must

accurately assess where the agent is in its progress towards task completion.

Despite their positions being almost the same, the best sequence of actions

each should perform is different. For the left hand side observation, we can

now ascertain that the key is stationed above the ladder platform on the left

side of the environment. This means that the agent has not yet captured the

key. A human trainer can then provided the language feedback, “Climb down

the ladder and head towards the key.” However, this same feedback would not

be appropriate for the agent on the right hand side of Figure 1.2. Notice that

the key has moved positions from the above the ladder platform on the left

side to the center top of the image. This means that the agent has already cap-

tured the key and can now proceed through one of the gates. In this instance,

we would want the agent to perform the opposite set of actions compared to

the left side agent. By leveraging prior work in video captioning (Venugopalan

et al. [2014, 2015]) and template matching, we were able to construct a model

and train it to use language embeddings within the environment observation

space. The human linguistic narration is used to generate a saliency map

over the perceptual field using a combination of methods described in Kaplan
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Figure 1.2: Example of two state observations where the agent is almost in
the same position for both. However, we need to observe the environment
features to determine what language feedback is most appropriate. For the
left side of the figure, a human trainer might tell the agent, “Climb down
the ladder and head left towards the key.” This feedback is not suitable for
agent in the right observation, because the agent has already collected the key
and must now navigate back the way it came to one of the gates on the top
left or right of the image. In this case, a human trainer might say, “Jump
left onto the center ladder and climb up to the gates.” This figure illustrates
the benefit of language feedback in identifying dynamic environment variables,
thus informing the agent of how to best adapt its policy.

et al. [2017] and Guan et al. [2020]. Finally, this saliency map is passed to the

deep reinforcement learning system from deep TAMER (Warnell et al. [2018])

augmented to accept natural language feedback. Despite our best intentions,

we actually discovered that the agent learns more effectively with little to no

contextual information in the observation space than with language feedback.

We distinguish ourselves from previous work by Goyal et al. [2019] and Ka-

plan et al. [2017] by focusing on natural language as feedback as opposed to

a scalar-valued reward signal or set of instructions. We also do not map the

language to the reward function or action selection. Language is incorporated
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solely as a supervised attention signal over the features of the high dimensional

state observation.

This work covers the development, implementation, and experimental

evaluation of our novel method for augmenting agent learning with human

feedback by exploiting the information gathered from linguistic narration. We

evaluate our approach on Montezuma’s Revenge, the most challenging game in

the Atari Arcade Suite. We tested our agent on Room 1 using a fixed reward

function across all training and testing sessions. Overall, our project dives into

and investigates an entirely different use of language– evaluative narration of

agent performance. Our new method has the potential to significantly expand

the field of RL and but also draw attention to how far we still need to go

before at-home personalized robot companions can actually be realized.

1.1 Thesis Outline

The remainder of this thesis document is organized as follows. Chapter

2 covers related works and background knowledge. Chapter 3 explains how we

use language to generate saliency maps. Chapter 4 covers our model algorithm

and implementation. We describe our experimental set up and discussion of

the results in Chapter 5. Chapter 6 and 7 discuss directions for future work

and concluding remarks respectively.
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Chapter 2

Background and Related Work

2.1 Background

We make the common assumption that our learning task can be repre-

sented as a Markov Decision Process specified by the tuple (S,A, T, γ,D,R).

S and A are the sets of possible states and actions respectively. T is a transi-

tion function, T : S × A × S → R, which gives the probability, given a state

and an action, of transitioning to another state on the next time step. γ, the

discount factor, exponentially decreases the value of a future reward. D is the

distribution of start states. R is a reward function, R : S×A×S → R, where

the reward is a function of the most recent state, the most recent action, and

the next state st, at, and st+1.

Reinforcement learning algorithms (Sutton and Barto [2011]) seek to

learn policies (π : S → A) for an MDP that maximize return from each state-

action pair, where return =
∑t

t=0[γ
tR(st, at)]. Within reinforcement learning,

there are two general approaches to this problem. Policy-search algorithms

fix the values of some set of parameters, observe the mean return received for

the fixed policy over some number of episodes, and then use a rule to deter-

mine what parameter values to try next. The other reinforcement learning
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approach models the expected return, or value, of a state or state-action pair

when following a certain policy. Usually, the action with the highest expected

return is selected (though sometimes with exploratory actions instead), and

the agent updates the expected returns based on its experience. We use the

latter approach when formulating our problem.

2.2 Sample Efficient Reinforcement Learning

Sampling efficiency is a very important consideration for any RL agent

and requires careful consideration when selecting an appropriate algorithm,

domain, and training scheme. In a nutshell, sample efficiency is concerned with

the amount of experience an intelligent agent needs in an environment (e.g.

actions and number state/rewards transition observations) during training in

order to perform well on whatever task it has be assigned to do. Intuitively,

a sample efficient algorithm squeezes every bit of information it can out of a

single generated experience or uses prior knowledge to maximally optimize its

policy. Ideally, we would like to design an algorithm that can get the most out

of every sample, because more often not, the data we are using to train these

agents is not infinite.

As human beings, we are not very much affected by this paradigm. For

us to learn a new sport whether it be a golf swing or a perfect spiral pass of

a football, it only takes a few examples before we acquire the basic mechanics

and understanding to attempt it ourselves. In this light, humans beings are the

most “sample efficient” agents in existence. In contrast, modern RL algorithms
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need millions times more interaction and data within an environment, making

them rather sample inefficient. Many different approaches have been proposed

to tackle this problem, including use of different sampling algorithms (e.g. im-

portance sampling) (Schulman et al. [2015], Foerster et al. [2017], Wang et al.

[2016], Munos et al. [2016]), designing better reward functions (Laud [2004]),

feature engineering (Chandrashekar and Sahin [2014]), designing good latent

representations for high dimensional states (Vezzani et al. [2019], Allshire et al.

[2021]), transfer learning models (e.g. learning from demonstration and learn-

ing from feedback) (Hester et al. [2018], Warnell et al. [2018]), and combining

model-based and model-free methods (Qu et al. [2020]). In this paper, we

are most interested in the transfer learning methods, specifically learning from

feedback.

2.3 Language in Reinforcement Learning

Humans use a variety of means and multi-modalities to communicate

information with each other. However, arguably one of the most essential is

language. Wouldn’t it be wonderful if we could use our natural inclination

for using language to communicate as a means for teaching an RL agent?

Recent advances in language embedding and representations have led to many

proposed model architectures that learn domain knowledge via text and use

this information to make decisions later in training/learning/model pipeline.

Here, we discuss some methods of interest that are relevant to our research.

Incorporating natural language into the RL algorithm whether as a pri-
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mary input or a means by which the agent interactions with the environment

is hard. Despite it being second nature to most human adults, using natu-

ral language requires common sense, world knowledge, and context to resolve

ambiguity. We also do not want to waste valuable computational resources

on a language encoding, so the cheaper the better. The main question is

whether agents can learn from accessory information encoded using language,

along with rewards or demonstrations, to improve generalization and sample

efficiency. Many sub areas of RL have emerged towards this goal, such as in-

struction following, mapping language to reward, and embedding the language

in the state and action space (Luketina et al. [2019].

For instruction following, agents are asked to preform tasks defined by

sequences of natural language instructions. Effective agents in this domain

are supposed to execute actions corresponding to an optimal policy or reach

a goal specified by the set of instructions. Depending on the system, some

agents can even generalize to brand new instructions during testing. Another

useful application of natural language instructions is to infer a reward function

for an intelligent agent to optimize. This is particularly advantageous when

the environment reward is sparse or unavailable entirely. In general, fully

incorporating the complete set of instructions is often unnecessary for solving

the underlying RL problem. However, the encoded information extracted from

the language can assist in learning a good policy or provide auxiliary rewards

(Goyal et al. [2019]).

Pulling this thread of inquiry further, we need to consider the work by
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Kaplan et al. [2017], which is probably the most similar to ours. Using the

Atari game Montezuma’s Revenge, they come up with an agent that learns

to beat the first level of this game with the aid of natural language instruc-

tions. The agent uses the embedded environment observations and natural

language information to monitor its progress through a list of English instruc-

tions. It receives positive reward for successfully completing an instruction

and increasing the game score. Our approach differs in that our agent is not

using the extracted language embedding to infer reward. We use our language

as supervisory feedback signal to train our model.

Language allows us to abstract, generalize, and communicate informa-

tion ranging from plans to intentions and detailed requirements. Building

intelligent agents with similar capabilities would be hugely beneficial to so-

ciety. However, agents trained using more traditional approaches in RL lack

such means of transferring information as humans do, and struggle to effi-

ciently learn from interactions with rich and diverse environments, which is

quintessential for real world deployment and sustainable operation. Most real-

world tasks would require artificial agents to process and interpret language.

Our novel RL model bring us one step closer towards complete linguistically

capably agents.

2.4 Saliency Maps

Deep learning systems are often treated as black boxes, where the inner

workings of the systems are esoteric and hard to interpret. This led to work
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in generating explanations that help interpret the decisions made by deep net-

works such as CNNs (Goyal et al. [2016]) and RNNs (Ramanishka et al. [2017]).

Systems such as Grad-CAM (Selvaraju et al. [2017]) and Caption-guided visual

saliency (Ramanishka et al. [2017]) are able to analyze a network’s processing of

a particular example and generate a “heat map” showing which features of the

input most influenced the generated output. Caption-guided visual saliency

takes a video captioning neural network and a given input/output pair, and

produces heat maps over the input frames denoting which parts most influ-

enced the computed output. EXPAND (EXPlanation AugmeNted feeDback)

by Guan et al. [2020] uses a human in the loop RL framework to provide visual

explanations from saliency maps and binary feedback. They showed that the

addition of state salient information boosts agent performance. Along this

vein, we used a technique called template matching in conjunction with the

Gaussian perturbation over the pixels to produce heat maps from state ob-

servations. Template matching is a technique that identifies the parts on an

image that match a predefined template. We generate these heat maps from

natural language feedback and use them to supervise the training of our model

weights.

2.5 TAMER and Deep TAMER

In our work, we concentrate on two of the most popular frameworks for

learning from human feedback, TAMER (Knox and Stone [2008]), and Deep

TAMER (Warnell et al. [2018]). We augmented the Deep TAMER frame-
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work to use linguistic information collected from human feedback to produce

saliency maps.

The TAMER Framework is an approach to the Shaping Problem (Bou-

ton [2007]). TAMER assumes human reinforcement to be fully informative

about the quality of an action given the current state. It uses established

supervised learning techniques to model a hypothetical human reinforcement

function, H : S × A → R, treating the scalar human reinforcement value as

a label for a state-action sample. Briefly, the TAMER algorithm operates in

the following manner. First, the agent receives a scalar reward from the hu-

man trainer for the previous time step. If the human reward is nonzero, then

the error is calculated as the difference between the human reward and model

predicted reward, Ĥ(s, a). The loss is then propagated backward, along with

the previous feature vector, to update the model. In the forward pass, when

the agent takes a single step in the environment to reach a new state, it selects

the action with the largest predicted reward according to the model.

Deep TAMER, an extension of the TAMER framework, leverages the

representational power of deep neural networks in order to learn complex tasks

in just a short amount of time with a human trainer. We use this approach to

implement our supervised attention model with human feedback instead of a

binary reward input from the human trainer.
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Chapter 3

Language Guided Template Matching

Our approach uses language narration to supervise the template match-

ing saliency map generation. We hypothesise that instead of allowing the

model to see/have access to all image features for every step in the training

episode, thereby having to figure out on its own which features are the most

important predicting reward and which ones can be ignore through a series

of trials and errors, training time will be reduced if we simply hand over the

features of the image we think are most important. Having a selection of the

features is useful for efficiency but designing them by hand is not scalable –

therefore we use language. We test this by transferring the language informa-

tion obtained from the human trainer to the image observation and outputting

a heat map. The saliency map is supposed to help focus model weights on rel-

evant features of the environment, thereby allowing more effective learning

from limited training data. We follow the language template matching scheme

outlined in Kaplan et al. [2017] with free form natural language feedback to

generate a mask. We then apply a Gaussian filter over the original image to

perturb the pixels and combine this blurred observation to obtain the final

saliency map (Greydanus et al. [2018]). Applying Gaussian perturbations over

irrelevant regions adds spatial uncertainty and motivates the agent to focus

14



Figure 3.1: This figure depicts the templates we extracted from Room 1 of
Montezuma’s Revenge.

more on the clear relevant regions. We experimented with other perturbation

methods, but found the Gaussian filter with blur radius of 3 worked the best

for our purposes.

3.1 Using Language to Produce Saliency Maps

A fundamental challenge in RL is given a reward for a particular se-

quence of states and actions, ascertaining which features of the states and

actions are most important for determining the reward. Using language to de-

scribe why an agent’s actions were good or bad is valuable information. Our

approach allows a neural model to focus on relevant state features communi-

cated via a saliency map (aka heat map) highlighting the importance of image

features through pixel weighting or masking.

We first implemented an algorithm that maps the language to the per-

ception of the environment using templates we created (See Figure 3.1). For-

mally, given a natural language feedback provided from a synthetic language

generator, we parse the utterance into separate word tokens. With these to-

kens, we preform a search across the generated template for the Montezuma’s
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Revenge environment. The templates are tightly bounded images of important

obstacles and features of the environment, including ladders, gates, the agent,

the skull, and the key. We select the templates by matching word tokens in the

feedback language to the template name. Once all of the relevant generated

templates are gathered based off of the language feedback, we compute a mask

over the observation features. The mask leaves the important features in the

observation space and masks out all others. We then apply a Gaussian filter

to the original image which consequently blurs pixel appearance. After apply-

ing the mask to the now blurry observation, the resulting array contains the

features with relevant object information with unimportant features obscured

(see Figure 3.2). In essence we generate heat maps over the input frames de-

noting which objects most influenced the computed output. This heat map

is then passed as an input during training to deep RL model in a supervised

setting, allowing the system to use the language to improve learning from feed-

back. We experimented with using saliency maps without the Gaussian filter

perturbation over the pixel space. These saliency maps faded the irrelevant

features, however the model was still able to pick them out. Visually, we can

see illustrated in the right most image of Figure 3.3. Even though the back-

ground pixels are muted in color, they are still clear and easy to distinguish.

There is not enough spatial uncertainly introduced by this variety of saliency

map to motivate the model to ignore the extraneous features.
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Figure 3.2: Saliency Map Generation. We produce heat maps for the model
based on a pseudo random interval to authentically simulate a human in the
training loop. A Gaussian filter with blur radius of 3 is applied to the obser-
vation image. The resulting vector is added to the template mask. The final
saliency map is depicted in the far right image of the figure.

3.2 Template Matching in Atari

We use the cv2 library in Python to perform the template matching.

Template matching is a method for searching and finding the location of a tem-

plate image in a larger image. The OpenCV library comes with a built in that

slides the template image over the input image and compares the template and

patch of input image under the template image. It returns a grayscale image,

where each pixel denotes how much the neighbours of that pixel match with

the template. Once we have the result, we can find the maximum/minimum

value. However, this will not provide us will all the locations of an object when

multiple occurrences of the same template are found.

For our purposes, we implemented template matching with multiple

objects. Consider Room 1 in Montezuma’s Revenge. If the human trainer

provides feedback such as “Climbing down the ladder was a good action”,

we want to locate all of the ladders across the observation so the model can

17



Figure 3.3: Template matching in Montezuma’s Revenge. Given the example
feedback language “Climb downs the ladder and avoid the skull”, we can see
that the template matching module matching the text tokens to the correct
templates, in this case the ladders and the skull. Once the templates are
matched and identified in the original observation, we compute the mask of
the observation where on the pixels matching the selected templates remain.
We always include the template for the agent in the mask generation. We are
then able to produce the far right image from just the mask and observation,
where the important pixels can be seen as the foreground and all others are
faded into the background.

interpret that ladders should be associated with climbing up and down actions.

In this case, we used a thresholding approach. If a pixel value is greater than

the threshold value, it is assigned 1 else it is assigned 0. In our case, the

threshold is 1, meaning the pixel in the template is a direct match for the pixel

in the observation image. Next we compare a template against overlapped

image regions. As we slides through sections of the image, we compare the

overlapped patches of size w×h against the template and store the comparison

results. We used the template matching normalized correlation coefficient

comparison method:
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Î(x, y) =

∑
x′,y′(T

′(x′, y′) · I ′(x+ x′, y + y′))√∑
x′,y′ T

′(x′, y′)2 ·
∑

x′,y′ I
′(x+ x′, y + y′)2

(3.1)

where I denotes image, T template, Î result. After the function finishes

the comparison, the best matches are found as global maximums.
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Chapter 4

Deep TAMER + Feedback

Deep TAMER (Warnell et al. [2018]) extends TAMER (Knox and Stone

[2008]) a LfD framework. A human observes an autonomous agent trying to

perform a task in a high-dimensional environment and provides scalar-valued

feedback as a means by which to shape agent behavior. Deep TAMER +

Feedback enriches the Deep TAMER observation space with natural language

feedback, potentially enabling better sample efficiency and training time.
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Figure 4.1: The TAMER + Feedback framework. A human trainer observes an
autonomous agent trying to navigate and perform a task in a high-dimensional
environment and provides natural language feedback. The language is used to
generate a saliency map which aids the agent in learning the parameters of a
deep neural network, that is used to predict the reward. This prediction then
drives the agent’s behavior policy. We use the Atari game of Montezuma’s
Revenge as our environment, which uses a pixel-level state space.
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4.1 Algorithm

We use the problem formulation proposed in Warnell et al. [2018] with

a few modifications (See Figure 4.1). Instead of a binary reward signal, we use

language feedback collected from human trainers. We also modify the binary

reward signal in order to standardize non-environment reward during training.

More formally, Let S denote the set of states in the agent’s environment, and

let A denote the set of legal actions the agent can execute. The execution of

actions (a1, a2, · · · , an) result in a state trajectory τ = (s0, s1, s2, · · · , sn) where

n is either the terminal state in an episode of the training horizon ( < the max

number of training steps). The human trainer observes the state trajectory

and provides natural language feedback, (`1, `2, · · · ), that convey their personal

evaluation of the agent’s behavior. We hard code the scalar-valued feedback

signals, (h1, h2, · · · ), as a means to optimize the training process and allow

for uniformity across training sessions. We hypothesize that improved agent

performance would be the result of quality language feedback, not a dense

reward function. We model the reward signal R(s, a) for a given state and

action pair by taking the Euclidean distance d between the agent and nearest

critical point along the optimal trajectory, determined by a human expert (see

Figure 4.2).

d =
√

(x− x′)2 + (y − y′)2 (4.1)

R(s, a) =


1 d < α

0 α < d < β

−1 β < d

(4.2)
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Figure 4.2: Map of the critical positions encoded in Room 1 of Montezuma’s
Revenge. These positions inform the reward function R(s, a) the appropriate
scalar reward signal to feed to the environment.

where the lower threshold β and upper threshold α are set the 8 and 20 re-

spectively. We determined the best threshold values from repeated trial and

error (or hyperparameter search). We also penalize the agent with negative

reward if it is stationary in the same state for more than 10 time steps. We

do this because early on in training, we noticed the agent tends to hide in the

regions of the environment with 0 reward. Thus to encourage exploration and

prevent the agent from getting ”stuck”, we include this extra reward shaping

condition.

When `i is available, we use it to compute the saliency map using the

template matching technique described in Chapter 3. Then, we compute the

predicted reward given the original state observation s,and the predicted re-
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ward with the saliency map s′. When the model is updated and the loss

propagated backward through the weights, we use these two rewards to com-

pute an L2 regularization and add it onto the calculated MSE loss. We include

this additional loss to force the model weights to 0 for unimportant state ob-

servation features.

L2 =
n∑

i=1

|yoriginal − ysaliency|2 (4.3)

where yoriginal is the predicted reward when the original observation is fed

as input into our deep model and ysaliency is the predicted reward given the

saliency map as input. When ` is not available, we ignore the L2 loss entirely

and set it to 0. Now, our completed loss function that we aim to minimize

looks like:

L = MSE + α · L2 (4.4)

where the regularization rate is 0.0001. We adopt a greedy policy for action

selection. Given the vector of predicted rewards from the model, the agent

selects the action associated with the greatest reward.
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Chapter 5

Experiments and Results

We pre-trained an auto encoder for feature extraction on the image data

set from Goyal et al. [2019], which was adapted from the Atari Grand Chal-

lenge data set (Kurin et al. [2017]), which contains hundreds of crowd-sourced

trajectories of human game plays on 5 Atari games, including Montezuma’s

Revenge. We only used image from Room 1 in Montezuma’s Revenge, which

amounted to roughly 2, 000 images with which to train our auto encoder.

We used the vanilla Deep TAMER model as our baseline. While the

Deep TAMER with Credit Assignment was the best performing model in War-

nell et al. [2018], the success was largely based on the hand selected credit

assignment window. We chose a simpler TAMER implementation to narrow

the field of experimental variables in order to better highlight the effects lan-

guage had on agent performance. We focus more on exploring the benefit of

language throughout the training process rather than task completion. We

set the training interval to 10, 000 steps, with 100 warm up steps at the be-

ginning of each trial to introduce variety in the agent starting position. We

compute performance as an average across 10 sessions. This was necessary

due to the extreme variability in training sessions. We could not rely on a sin-
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gle session to demonstrate an authentic data trend. Our experimental design

was constructed to reveal the effects natural language feedback have on agent

learning via the generated heat maps. The ultimate results showed no cor-

relation between added language and improved learning, however they led us

down an intriguing investigation into the suitability of Montezuma’s Revenge

for grounding languange in deep RL frameworks. Not only does a small subset

of language feedback appear to harm agent learning, but the model requires

little to no information about its surrounding environment to memorize the

optimal trajectory and translate that knowledge to an effective policy.

Figure 5.1: Synthetic Feedback Language. Table showing the synthetic lan-
guage assigned to each critical position along the optimal trajectory. The
position −1 is everywhere else in the environment that is not marked with a
position numbered 0− 5. Each utterance contains the template name that we
reason are important for the model to focus in that stage of the task.

Our initial intention was to collect natural language feedback, however

the results of our preliminary experiments revealed data collection would be

wasted in the current environment. However, we still believe it is relevant to

review the synthetic data set we used to created the saliency maps for training
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the vanilla TAMER model. The language feedback was hard coded into a gen-

erator function that returned the most applicable feedback given the agent’s

current position and its previous position (See Figure 5.1). As mentioned pre-

viously, we captured the agent’s progress throughout Room 1 in Montezuma’s

Revenge by marking “critical positions” along the optimal trajectory set by

a human expert. When the agent found itself in one of these defined critical

positions, the language generation function would deliver feedback aimed to-

ward getting the agent to the next critical position. When the agent is not

on the optimal path or in transition from one critical position to the next,

its position is labeled −1. When deciding which feedback is best suited for

transitionary states (when the agent’s current position is −1), we need to con-

sider its position along the optimal path. We find the agent’s distance to the

nearest critical position, all lives intact, and send feedback relevant to reach-

ing that location. Because the saliency map is being generated via template

matching scheme, the actual semantics of the feedback is less important than

the content from which we extract tokens used to search the template space

for matches. The agent often gets “stuck” in the upper left and right corners

of environment near the gates. In this case, we use a position buffer to track

its movement. If the position buffer contains the same coordinates, we set

the appropriate flag and stop feeding the model saliency maps. The intuition

behind this decision is that the agent will become unstuck faster when the

model receives complete information of the environment. Since we do not use

live human trainers for feedback, we also needed to reason about how often
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Figure 5.2: Blind Agent. An example of the generated saliency map for the
“blind agent” trials. Instead of using language feedback and the full template
matching scheme, we created a mask using only the sprite template. We
applied the Gaussian filter to the original observation image and applied the
agent mask. The obscured environment features focused the model’s attention
directly on the agent’s state.

feedback would be available, and consequently saliency maps. It is unrealistic

to expect a human to provided natural language feedback at every time step.

Not only would this precedent be laborious for the participant, but contradic-

tory to our goal of making agent training faster and more efficient. We settled

on a feedback interval of 10 seconds after several trials, determining the pa-

rameter value struck the right balance between often enough and too much.

That being said, none of our experimental set up with the natural language

yielded improved results over vanilla TAMER with no language feedback. As

we puzzled over this dilemma, we began excluding more an more of the infor-

mation from the saliency map, until the natural language essentially became

an accessory, not the cornerstone of the self supervised network. We called
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Figure 5.3: Comparison of the vanilla TAMER baseline (blue) and the TAMER
model with blind agent observations without L2 loss. Shows the average agent
progress to critical positions 1 - 3 with 95% confidence interval over 10 trials.

these the “blind agent” trials, where the saliency map obscures everything in

the state observation except the agent’s position (see Figure 5.2). First, we

replaced the observation with the blind agent observation and set alpha, the

regularization rate for the L2 loss, to 0. Setting alpha to 0 neutralizes the L2

loss and effectively reverts the model to vanilla TAMER, which is trained only

using an MSE loss. This experiment helped us determine if the model required

information about any other environment features besides the agent position

to better its policy. Figure 5.3 compares the baseline vanilla TAMER model

with TAMER given the blind agent as the observation (red). Even though

the network had a hard time extracting any type of environment informa-

tion from the state observation, overall performance was hardly effected. The

blind agent model predicted the reward with better accuracy, which we can

surmise from the tightened confidence interval. We can conclude the language
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is irrelevant when the agent position is clear. A dense reward policy is more

important for task completion in this environment than high dimensional state

features. The model ignores the information communicated via the saliency

map and does not pay attention to any other objects in the scene because

they are stationary. Non stationary environment obstacles, such as the skull,

or rearrangement of the environment layout within the same room would force

the model to seek auxiliary information and adapt to the changing surround-

ings. Given enough training samples, the model has ample time to memorize

sequence of actions correlated with the optimal trajectory. Montezuma’s Re-

venge is too uniform and consistent for language to gain any kind of holding or

leverage over the model feature weights. However, for tasks with more variety

and less uniformity/consistency in the state space, the model would be forced

out of its “comfort zone”. Pure memorization would fail to yield a success-

ful policy and the added information contributed by language feedback would

then be invaluable. Our next experiment reinstated the full image observation,

returned the regularization rate to 0.0001, and replaced the saliecy may with

the blind agent at every time step. In essence, this is equivalent to natural

language feedback saying, “Pay attention to where you are” in our framework.

The results in Figure 5.4 requires an equally enlightened and thought provok-

ing discussion as the previous experiment. Figure 5.4 displays the comparison

amongst the vanilla TAMER baseline, the TAMER model with natural lan-

guage feedback provided every time step (which means the model is constantly

being trained with the additional L2 loss), and the TAMER model with blind

30



Figure 5.4: Comparison of the vanilla TAMER baseline (blue), TAME with
natural language feedback (orange), and TAMER with blind agent saliency
maps (green). The saliency maps were produced every time step. Shows the
average agent progress to critical positions 1 - 3 with 95% confidence interval
over 10 trials.

agent saliency map being generated every time step. The TAMER model with

the blind agent saliency map performed better than the baseline and TAMER

with language feedback for reaching positions 1 and 3. At first glance, this may

seem like a strange result, but upon closer inspection it supports the results of

Figure 5.3. Passing the blind agent saliency map the model is equivalent to a

human trainer supplying “focus on your own position” as language feedback.

We have already established that the model only needs a clear depiction of

the agent position in the state space to learn a decent policy. Reinforcing that

concept with language in our proposed framework allows the model the reach

that ultimate conclusion faster.

We tested the statistical significance of our results using an unpaired

t-test and found the difference between the baseline model and the language

augmented model and the difference between the baseline model and the blind
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agent model were not statistically significant at 5% significance level. Even

though we fail to reject the null hypothesis, the lack of significance between

TAMER with saliency maps and the TAMER baseline still supports our major

finding — language is irrelevant to improving agent’s success for the proposed

task.

To further corroborate the precedent revealed by the data, we trained

a model under the opposite conditions. Instead of the concealing the environ-

ment, we hid the agent’s position. We do not show these results as there was

nothing for us to display. After ten independent trials, the agent was not able

to make any progress along the optimal trajectory. While observed, the agent

appeared to either walk off the platform to its demise or remain stationary in

its starting position.

Our findings shed new light on the feasibility of successfully testing

our original hypothesis on video game environments. We can determine that

Montezuma’s Revenge, the hardest task in the Atari game suit, is incompatible

with augmenting the state space with language feedback. Unfortunately, the

affect of language as self attention or a supervisory signal over the perceptual

field on agent learning and sample efficiency is still an open question. However,

we have uncovered certain desirable and undesirable environmental qualities

that lend themselves to solving this task.
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Chapter 6

Future Work

More investigation into RL environments well matched for language

feedback is needed. Our results demonstrate that the wrong choice in domain

renders the addition of language ineffective. Other tasks with attributes that

indicate better chances of success need to be explored. These qualities include

non static obstacles and changing environment dynamics. Radically changing

the agent’s starting position and the goal location, along with the room layout

all promise good integration with language. Montezuma’s Revenge possesses

some non-static obstacles and changing environment dynamics in different lev-

els, however with the sparse environment reward, the agent struggles to pass

Room 1. Finding environments with an innate dense reward function and

drastic fluctuations in layout would removing the agent’s ability to memorize

a single optimal trajectory. It would have to pay attention to the language

feedback to determine with features are most important and successfully com-

plete the task. Despite Montezuma’s Revenge reputation for being the most

difficult game in Atari for RL models, we think that it might still be too easy

for language to have a remarkable impact. Increasing the task difficulty could

allow for a richer variety of language feedback and potential state features.

An agent would have limited interaction with the complete set of environ-
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ment experiences, requiring additional information from other inputs, such as

language feedback. One of the most time consuming aspects of any research

project is selecting the right environment to test the hypothesis. Video game

environments are portable and easy to integrate with existing software plat-

forms. Creating deeper network architectures for RL is great, but it is not

beneficial if the model only needs the agent’s relative position. Our results

advocate for environments where all of the state information must be utilized

for the model to comprehend a task and generalize to other environments.

The realm of extending RL feedback methods to incorporate language is

full of potential and many unexplored avenues from a model architecture per-

spective. Template matching is a simple, effective technique for saliency map

generation. However it is not scalable because each template is constructed

by hand. For larger and more varied environments, this technique becomes

infeasible. This module could be replaced with a model that generates more

authentic heat maps. Video and image captioning (Selvaraju et al. [2017], Ra-

manishka et al. [2017]), referring expressions (Gundel et al. [1993], Clarke et al.

[2013], Krahmer and Van Deemter [2012]), and learning a shared embedding

using contrastive loss (Oord et al. [2018]) could be viable upgrades. Incor-

porating the saliency maps into the policy training is another area for future

investigation, particularly the embedding an attention mechanism within the

model architecture. We also do not consider the addition of language feedback

to COACH (Arumugam et al. [2019]), another popular learning from feedback

model. This field opens the door to an array of exciting advancements and
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we barely scratched the surface of integrating sophisticated language with an

agent learning scheme.
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Chapter 7

Conclusion

We explore a novel approach to Reinforcement Learning (RL) that uses

natural language feedback to provide supervised attention. We compared a

TAMER model with the additional of natural language generated saliency

maps to the baseline and found language had no significant improvement or

worsened performance on Montezuma’s Revenge, a popular video game in the

Atari Arcade suite. This led to the construction of a blind agent training

scheme, where the salient information passed to the model only contained the

agent position. These experiments validated our growing suspicions that lan-

guage was ineffective for Montezuma’s Revenge. As long as the model has

access to state features containing the agent’s position, it will ignore other

potentially useful features suggested by the language generated saliency map.

We concluded that not all RL environments are well suited for the additional

on language in the latent observation space and requires further investigation.

Ultimately, we failed to show that our framework improved the effectiveness of

agent learning from limited training data. However, we discovered that our in-

ability to make any deterministic claim about our framework resulted primarily

from our choice in domain and not from error in the incorporation of natural

language feedback. We need to test our framework on more dynamic domains
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where the environment changes from episode to episode and the language can

focus the agent on the important features of the dynamic environment. While

our initial approach did not produce satisfactory results, the exploration into

the this intersection of natural language processing, grounding language, and

RL will continue.
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