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Abstract. Most existing learning methods for Markov Logic Networks
(MLNs) use batch training, which becomes computationally expensive
and eventually infeasible for large datasets with thousands of training
examples which may not even all fit in main memory. To address this
issue, previous work has used online learning to train MLNs. However,
they all assume that the model’s structure (set of logical clauses) is given,
and only learn the model’s parameters. However, the input structure
is usually incomplete, so it should also be updated. In this work, we
present OSL—the first algorithm that performs both online structure
and parameter learning for MLNs. Experimental results on two real-
world datasets for natural-language field segmentation show that OSL
outperforms systems that cannot revise structure.

1 Introduction

Statistical relational learning (SRL) concerns the induction of probabilistic knowl-
edge that supports accurate prediction for multi-relational structured data [9].
Markov Logic Networks (MLNs) [28], sets of weighted clauses in first-order logic,
are a recently developed SRL model that generalizes both full first-order logic
and Markov networks which makes MLNs an expressive and powerful formalism.
MLNs have also been successfully applied to a variety of real-world problems [4].

However, all existing methods for learning the structure (i.e. logical clauses)
of an MLN [13, 21, 1, 14, 15] are batch algorithms that are effectively designed for
training data with relatively few mega-examples [20]. A mega-example is a large
set of connected facts, and mega-examples are disconnected and independent
from each other. For instance, in WebKB [30], there are four mega-examples,
each of which contains data about a particular university’s computer-science
department’s web pages of professors, students, courses, research projects and
the hyperlinks between them. However, there are many real-world problems with
a different character — involving data with thousands of smaller structured
examples. For example, a standard dataset for semantic role labeling consists of
90, 750 training examples where each example is a verb and all of its semantic
arguments in a sentence [2]. In addition, most existing weight learning methods
for MLNs employ batch training where the learner must repeatedly run inference
over all training examples in each iteration, which becomes computationally
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expensive for datasets with thousands of training examples. To address this
issue, previous work has applied online learning to set MLN weights [29, 22,
11]; however, to the best of our knowledge, there is no existing online structure
learning algorithm for MLNs.

In this work, we present the first online structure learner for MLNs, called
OSL, which updates both the structure and parameters. At each step, based
on the model’s incorrect predictions, OSL finds new clauses that fix these er-
rors, then uses an adaptive subgradient method with l1-regularization to update
weights for both old and new clauses. Experimental results on natural language
field segmentation on two real-world datasets show that OSL is able to find useful
new clauses that improve the predictive accuracies of well-developed MLNs.

The remainder of the paper is organized as follows. Section 2 provides some
background on MLNs and the field segmentation task. Section 3 presents our
proposed algorithm. Section 4 reports the experimental evaluation on two real-
world datasets. Section 5 and 6 discuss related and future work, respectively.
Section 7 presents our conclusions.

2 Background

2.1 Terminology and Notation

There are four types of symbols in first-order logic: constants, variables, predi-
cates, and functions [8]. Here, we assume that domains do not contain functions.
Constants represent entities in the domain and can have types. Variables range
over entities in the domain. Predicates represent properties and relations in the
domain and each has a fixed number of arguments. Each argument can have
a type specifying the type of constant that can fill it. We denote constants by
strings starting with upper-case letters, and variables by strings starting with
lower-case letters. A term is a constant or a variable. An atom is a predicate ap-
plied to terms. A ground atom is an atom all of whose arguments are constants.
A positive literal is an atom, and a negative literal is a negated atom. A (pos-
sible) world is an assignment of truth values to all ground atoms in a domain.
A formula consists of literals connected by logical connectives (i.e. ∨ and ∧). A
formula in clausal form, also called a clause, is a disjunction of literals.

For mathematical terms, we use lower case letters (e.g. η, λ) to denote scalars,
bold face letters (e.g. x, y, w) to denote vectors, and upper case letters (e.g.
W, X) to denote sets. The inner product between vectors w and x is denoted
by 〈w,x〉. The [a]+ notation denotes a truncated function at 0, i.e. [a]+ =
max(a, 0).

2.2 MLNs

An MLN consists of a set of weighted first-order clauses. It provides a way
of softening first-order logic by making situations in which not all clauses are
satisfied less likely but not impossible [28]. More formally, let X be the set of all



ground atoms, C be the set of all clauses in the MLN, wi be the weight associated
with clause ci ∈ C, Gci

be the set of all possible groundings of clause ci. Then
the probability of a possible world x is defined as [28]:

P (X = x) =
1
Z

exp

∑
ci∈C

wi
∑
g∈Gci

g(x)

 =
1
Z

exp

(∑
ci∈C

wini(x)

)

where g(x) is 1 if g is satisfied and 0 otherwise, ni(x) =
∑

g∈Gci

g(x) is the number

of true groundings of ci in the possible world x, and Z =
∑
x∈X

exp
(∑

ci∈C wini(x)
)

is the normalization constant.
In many applications, we know a priori which predicates provide evidence

and which are used in queries, and the goal is to correctly predict query atoms
given evidence atoms. If we partition the ground atoms in the domain into a set
of evidence atoms X and a set of query atoms Y, then the conditional probability
of y given x is:

P (Y = y|X = x) =
1

Zx
exp

(∑
ci∈C

wini(x,y)

)

where ni(x,y) is the number of true groundings of ci in the possible world (x,y)
and Zx =

∑
y∈Y

exp
(∑

ci∈C wini(x,y)
)

is the normalization constant.

2.3 Natural Language Field Segmentation

In this work, we look at an information extraction task, called field segmentation
[10], a sample real-world problem where the data contains many, relatively small,
structured examples in the form of short documents. A document is represented
as a sequence of tokens, and the goal is to segment the text into fields, i.e.
label each token in the document with a particular field. For example, when
segmenting advertisements for apartment rentals [10], the goal is to segment
each ad into fields such as Features, Neighborhood, Rent, Contact, etc.. Below
are descriptions of some key predicates:

– Token(string, position, docID): the token at a particular position in a doc-
ument such as Token(Entirely, P4, Ad001)

– InF ield(field, position, docID): the field label of the token at a particular
position in a document such as InField(Features, P4, Ad001)

– Next(position, position): the first position is next to the second, such as
Next(P01, P02)

InF ield is a target predicate, the rest are evidence predicates.



3 Online Max-Margin Structure and Parameter Learning

In this section, we describe our new online max-margin learning algorithm,
OSL, for updating both the structure and parameters of an MLN. In each step,
whenever the model makes wrong predictions on a given example, based on the
wrongly predicted atoms the algorithm finds new clauses that discriminate the
ground-truth possible world from the predicted one, then uses an adaptive sub-
gradient method with l1-regularization to update weights for both old and new
clauses. Algorithm 1 gives the pseudocode for OSL. Lines 3 to 20 are pseudocode
for structure learning and lines 21 to 35 are pseudocode for parameter learning.

3.1 Online Max-Margin Structure Learning with Mode-Guided
Relational Pathfinding

Most existing structure learning algorithms for MLNs only consider ground-
truth possible worlds and search for clauses that improve the likelihood of those
possible worlds. However, these approaches may spend a lot of time exploring
unhelpful clauses that are true in most possible worlds. Therefore, instead of
only considering ground-truth possible worlds, OSL also takes into account the
predicted possible worlds, i.e. the most probable possible worlds predicted by
the current model. At each step, if the predicted possible world is different from
the ground-truth one, then OSL focuses on where the two possible worlds differ
and searches for clauses that differentiate them. This is related to the idea of
using implicit negative examples in inductive logic programming (ILP) [34]. In
this case, each ground-truth possible world plays the role of a positive example
in traditional ILP. Making a closed world assumption [8], any possible world that
differs from the ground-truth possible world is incorrect and can be considered as
a negative example (the predicted possible world in this case). In addition, this
follows the max-margin training criterion which focuses on discriminating the
true label (the ground-truth possible world) from the most probable incorrect
one (the predicted possible world) [33].

At each time step t, OSL receives an example xt, produces the predicted label
yPt = arg maxy∈Y〈wC,nC(xt,y)〉, then receives the true label yt. Given yt and
yPt , in order to find clauses that separate yt from yPt , OSL first finds atoms that
are in yt but not in yPt , ∆yt = yt \ yPt . Then OSL searches the ground-truth
possible world (xt,yt) for clauses that are specific to the true ground atoms in
∆yt.

A simple way to find useful clauses specific to a set of atoms is to use re-
lational pathfinding [27], which considers a relational example as a hypergraph
with constants as nodes and true ground atoms as hyperedges connecting the
nodes that are its arguments, and searches in the hypergraph for paths that
connect the arguments of an input literal. A path of hyperedges corresponds
to a conjunction of true ground atoms connected by their arguments and can
be generalized into a first-order clause by variabilizing their arguments. Start-
ing from a given atom, relational pathfinding searches for all paths connecting
the arguments of the given atom. Therefore, relational pathfinding may be very



slow or even intractable when there are a large (exponential) number of paths.
To speed up relational pathfinding, we use mode declarations [23] to constrain
the search for paths. As defined in [23], mode declarations are a form of lan-
guage bias to constrain the search for definite clauses. Since our goal is to use
mode declarations for constraining the search space of paths, we introduce a new
mode declaration: modep(r, p) for paths. It has two components: a recall number
r which is a positive integer, and an atom p whose arguments are place-makers.
A place-maker is either ‘+’ (input), ‘-’ (output), or ‘.’ (don’t explore). The recall
number r limits the number of appearances of the predicate p in a path to r. The
place-maker restricts the search of relational pathfinding. Only paths connecting
‘input’ or ‘output’ nodes will be considered. A ground atom can only added to
a path if one of its arguments has previously appeared as ‘input’ or ‘output’
arguments in the path and all of its ‘input’ arguments are ‘output’ arguments
of previous atoms. Here are some examples of mode declarations for paths:

modep(2, T oken(.,+, .)) modep(1, Next(−,−)) modep(2, InF ield(.,−, .)

The above mode declarations require that a legal path contains at most two
ground atoms of each of the predicates Token and InF ield and one ground
atom of the predicate Next. Moreover, the second argument of Token is an ‘in-
put’ argument; the second argument of InField and all arguments of Next are
‘output’ arguments. Note that, in this case, all ‘input’ and ‘output’ arguments
are of type position. These ‘input’ and ‘output’ modes constrain that the position
constants in atoms of Token must appeared in some previous atoms of Next or
InF ield in a path. From the graphical model perspective, these mode declara-
tions restrict the search space to linear chain CRFs [31] since they constrain the
search to paths connecting ground atoms of two consecutive tokens. It is easy
to modify the mode declarations to search for more complicated structure. For
example, if we increase the recall number of Next to 2 and the recall number of
InF ield to 3, then the search space is constrained to second-order CRFs since
they constrain the searches to paths connecting ground atoms of three consec-
utive tokens. If we add a new mode declaration modep(1, LessThan(−,−)) for
the predicate LessThan, then the search space becomes skip-chain CRFs [31].
Algorithm 2 presents the pseudocode for efficiently constructing a hypergraph
based on mode declarations by only constructing the hypergraph corresponding
to input and output nodes. Algorithm 3 gives the pseudocode for mode-guided
relational pathfinding, ModeGuidedF indPaths, on the constructed hypergraph.
It is an extension of a variant of relational pathfinding presented in [14].1 Start-
ing from each true ground atom r(c1, ..., cr) ∈ ∆yt, it recursively adds to the
path ground atoms or hyperedges that satisfy the mode declarations. Its search
terminates when the path reaches a specified maximum length or when no new
hyperedge can be added. The algorithm stores all the paths encountered during
the search. Below is a sample path found by the algorithm:
1 In this variant, a path does not need to connect arguments of the input atom. The

only requirement is that any two consecutive atoms in a path must share at least
one argument.



{InField(Size, P29, Ad001), Token(And, P29, Ad001), Next(P29, P30),
Token(Spacious, P30, Ad001) InField(Size, P30, Ad001)}

A standard way to generalize paths into first-order clauses is to replace each
constant ci in a conjunction with a variable vi. However, for many tasks such
as field segmentation, it is critical to have clauses that are specific to a par-
ticular constant. In order to create clauses with constants, we introduce mode
declarations for creating clauses: modec(p). This mode declaration has only one
component which is an atom p whose arguments are either ‘c’ (constant) or ‘v’
(variable). Below are some examples of mode declarations for creating clauses:

modec(Token(c, v, v)) modec(Next(v, v)) modec(InF ield(c, v, v)

Based on these mode declarations, OSL variablizes all constants in a conjunc-
tion except those are declared as constants. Then OSL converts the conjunction
of positive literals to clausal form since this is the form used in Alchemy.2 In
MLNs, a conjunction of positive literals with weight w is equivalent to a clause
of negative literals with weight −w. Previous work [14, 15] found that it is also
useful to add other variants of the clause by flipping the signs of some literals in
the clause. Currently, we only add one variant—a Horn version of the clause by
only flipping the first literal, the one for which the model made a wrong predic-
tion. In summary, for each path, OSL creates two type of clauses: one with all
negative literals and one in which only the first literal is positive. For example,
from the sample path above, OSL creates the following two clauses:

¬InF ield(Size, p1, a) ∨ ¬Token(And, p1, a) ∨ ¬Next(p1, p2) ∨
¬Token(Spacious, p2, a) ∨ ¬InField(Size, p2, a)

InF ield(Size, p1, a) ∨ ¬Token(And, p1, a) ∨ ¬Next(p1, p2) ∨
¬Token(Spacious, p2, a) ∨ ¬InField(Size, p2, a)

Finally, for each new clause c, OSL computes the difference in the number of
true groundings of c in the ground-truth possible world (xt,yt) and the predicted
possible world (xt,yPt ), ∆nc = nc(xt,yt)−nc(xt,yPt ). Then, only clauses whose
difference in number of true groundings is greater than or equal to a predefined
threshold minCountDiff will be added to the existing MLN. The smaller the
value of minCountDiff, the more clauses will be added to the existing MLN at
each step.

3.2 Online Max-Margin l1-regularized Weight Learning

The above online structure learner may introduce a lot of new clauses in each
step, and some of them may not be useful in the long run. To address this is-
sue, we use l1-regularization which has a tendency to force parameters to zero

2 The standard software for MLNs: alchemy.cs.washington.edu



Algorithm 1 OSL
Input: C: initial clause set (can be empty)

mode: mode declaration for each predicate
maxLen: maximum number of hyperedges in a path
minCountDiff : minimum number of difference in true groundings for selecting

new clauses
λ, η, δ: parameters for the l1-regularization adaptive subgradient method
ρ(y,y′): label loss function

Note: Index H maps from each node γi to set of hyperedges r(γ1, ..., γi, ..., γn)
containing γi
Paths is a set of paths, each path is a set of hyperedges

1: Initialize: wC = 0,gC = 0, nc = |C|
2: for i = 1 to T do
3: Receive an instance xt
4: Predict yPt = arg maxy∈Y〈wC,nC(xt,y)〉
5: Receive the correct target yt
6: Compute ∆yt = yt \ yPt
7: if ∆yt 6= ∅ then
8: H = CreateHG((xt,yt),mode)
9: Paths = ∅

10: for each true atom r(c1, ..., cr) ∈ ∆yt do
11: V = ∅
12: for each ci ∈ {c1, ..., cr} do
13: if isInputOrOutputVar(ci,mode) then
14: V = V ∪ {ci}
15: end if
16: end for
17: ModeGuidedF indPaths({r(c1, ..., cr)}, V,H,mode,maxLen, Paths)
18: end for
19: end if
20: Cnew = CreateClauses(C, Paths,mode)
21: Compute ∆nC,∆nCnew :
22: ∆nC = nC(xt,yt)− nC(xt,y

P
t )

23: ∆nCnew = nCnew (xt,yt)− nCnew (xt,y
P
t )

24: for i = 1 to |C| do
25: gC,i = gC,i +∆nC,i ∗∆nC,i

26: wC,i = sign
“
wC,i + η

δ+
√

gC,i
∆nC,i

” h˛̨̨
wC,i + η

δ+
√

gC,i
∆nC,i

˛̨̨
− λη

δ+
√

gC,i

i
+

27: end for
28: for i = 1 to |Cnew| do
29: if ∆nCnew,i ≥ minCountDiffer then
30: C = C ∪ Cnew,i
31: nc = nc+ 1
32: gC,nc = ∆nCnew,i ∗∆nCnew,i

33: wC,nc =
h

η
δ+
√

gC,nc
(∆nCnew,i − λ)

i
+

34: end if
35: end for
36: end for



Algorithm 2 CreateHG(D,mode)
Input: D: a relational example

mode: mode declaration file
1: for each constant c in D do
2: H[c] = ∅
3: end for
4: for each true ground atom r(c1, ..., cr) ∈ D do
5: for each constant ci ∈ {c1, ..., cr} do
6: if isInputOrOutputVar(ci,mode) then
7: H[ci] = H[ci] ∪ {r(c1, ..., cr)}
8: end if
9: end for

10: end for
11: return H

Algorithm 3ModeGuidedF indPaths(CurrPath, V,H,mode,maxLen, Paths)
1: if |CurrPath| < maxLen then
2: for each constant c ∈ V do
3: for each r(c1, ..., cr) ∈ H[c] do
4: if canBeAdded(r(c1, ..., cr), CurrPath,mode) == success then
5: if CurrPath /∈ Paths then
6: CurrPath = CurrPath ∪ {r(c1, ..., cr)}
7: Paths = Paths ∪ {CurrPath}
8: V ′ = ∅
9: for each ci ∈ {c1, ..., cr} do

10: if ci /∈ V and isInputOrOutputVar(ci,mode) then
11: V = V ∪ {ci}
12: V ′ = V ′ ∪ {ci}
13: end if
14: end for
15: ModeGuidedF indPaths(CurrPath, V,H,mode,maxLen, Paths)
16: CurrPath = CurrPath \ {r(c1, ..., cr)}
17: V = V \ V ′
18: end if
19: end if
20: end for
21: end for
22: end if



by strongly penalizing small terms [18]. We employ a state-of-the-art online l1-
regularization method—ADAGRAD FB which is a l1-regularized adaptive sub-
gradient method using composite mirror-descent update [6]. At each time step
t, it updates the weight vector as follows:

wt+1,i = sign

(
wt,i −

η

Ht,ii
gt,i

)[∣∣∣∣wt,i −
η

Ht,ii
gt,i

∣∣∣∣− λη

Ht,ii

]
+

(1)

where λ is the regularization parameter, η is the learning rate, gt is the subgra-

dient of the loss function at step t, and Ht,ii = δ+ ||g1:t,i||2 = δ+
√∑t

j=1(gj,i)2

(δ ≥ 0). Note that, ADAGRAD FB assigns a different step size, η
Ht,ii

, for each
component of the weight vectors. Thus, besides the weights, ADAGRAD FB
also needs to retain the sum of the squared subgradients of each component.

From the equation 1, we can see that if a clause is not relevant to the current
example (i.e. gt,i = 0) then ADAGRAD FB discounts its weight by λη

Ht,ii
. Thus,

irrelevant clauses will be zeroed out in the long run.
Regarding the loss function, we use the prediction-based loss function lPL

[11], a simpler variant of the max-margin loss:

lPL(wC, (xt,yt)) =
[
ρ(yt,yPt )−

〈
wC,

(
nC(xt,yt)− nC(xt,yPt )

)〉]
+

The subgradient of lPL is:

gPL = nC(xt,yPLt )− nC(xt,yt) = −
[
nC(xt,yt)− nC(xt,yPLt )

]
= −∆nC

Substituting the gradient into equation 1, we obtain the following formulae
for updating the weights of old clauses:

gC,i = gC,i + (∆nC,i)2

wC,i ← sign

(
wC,i +

η

δ +√gC,i
∆nC,i

)[∣∣∣∣wC,i +
η

δ +√gC,i
∆nC,i

∣∣∣∣− λη

δ +√gC,i

]
+

For new clauses, the update formulae are simpler since all the previous weights
and gradients are zero:

gC,nc = (∆nCnew,i
)2

wC,nc =
[

η

δ +√gC,nc
(∆nCnew,i

− λ)
]
+

Lines 24 − 27 in Algorithm 1 are the pseudocode for updating the weights of
existing clauses, and lines 28 − 35 are the pseudocode for selecting and setting
weights for new clauses.

4 Experimental Evaluation

In this section, we conduct experiments to answer the following questions:



1. Starting from a given MLN, does OSL find new useful clauses that improve
the predictive accuracy?

2. How well does OSL perform when starting from an empty knowledge base?
3. How does OSL compare to LSM, the state-of-the-art batch structure learner

for MLNs [15] ?

4.1 Data

We ran experiments on two real world datasets for field segmentation: Cite-
Seer[17], a bibliographic citation dataset, and Craigslist [10], an advertisements
dataset.

The CiteSeer dataset3 contains 1, 563 bibliographic citations. The dataset
has four disjoint subsets consisting of citations in four different research areas.
The task is to segment each citation into three fields: Author, Title and Venue.

The Craigslist dataset4 consists of advertisements for apartment rentals posted
on Craigslist. There are 8, 767 ads in the dataset, but only 302 of them were la-
beled with 11 fields: Available, Address, Contact, Features, Neighborhood, Photos,
Rent, Restrictions, Roommates, Size, and Utilities. The labeled ads are divided
into 3 disjoint sets: training, development and test set. The number of ads in
each set are 102, 100, and 100 respectively. We preprocessed the data using reg-
ular expressions to recognize numbers, dates, times, phone numbers, URLs, and
email addresses.

4.2 Input MLNs

A standard model for sequence labeling tasks such as field segmentation is a
linear-chain CRF [16]. Thus, we employ an initial MLN, named LC 0, which
encodes a simple linear-chain CRF that uses only the current word as features:

Token(+t, p, c) ⇒ InField(+f, p, c)
Next(p1, p2) ∧ InField(+f1, p1, c) ⇒ InF ield(+f2, p2, c)
InField(f1, p, c) ∧ (f1! = f2) ⇒ ¬InField(f2, p, c).

The plus notation indicates that the MLN contains an instance of the first clause
for each (token, field) pair, and an instance of the second clause for each pair
of fields. Thus, the first set of rules captures the correlation between tokens and
fields, and the second set of rules represents the transitions between fields. The
third rule constrains that the token at a position p can be part of at most one
field.

For CiteSeer, we also use an existing MLN developed by Poon and Domingos
[26], called the isolated segmentation model (ISM).5 ISM is also a linear chain

3 We used the versions created by Poon and Domingos [26], which can be found at
http://alchemy.cs.washington.edu/papers/poon07

4 http://nlp.stanford.edu/~grenager/data/unsupie.tgz
5 http://alchemy.cs.washington.edu/mlns/ie/ie_base.mln



CRF but includes more features than the simple model above. Like LC 0, ISM
also has rules that correlate the current words with field labels. For transition
rules, ISM only captures transitions within fields and also takes into account
punctuation as field boundaries:

Next(p1,p2) ∧ ¬HasPunc(p1,c) ∧ InField(+f,p1,c) ⇒ InField(+f,p2,c)

In addition, ISM also contains rules specific to the citation domain such as “the
first two positions of a citation are usually in the author field”, “initials tend to
appear in either the author or the venue field”. Most of those rules are features
describing words that appear before or after the current word.

For Craigslist, previous work [10] found that it is only useful to capture the
transitions within fields and take into account the field boundaries, so we create a
version of ISM for Craigslist by removing clauses that are specific to the citation
domain. Thus, the ISM MLN for Craiglist is a revised version of the LC 0 MLN.
Therefore, we only ran experiments with ISM on Craigslist.

4.3 Methodology

To answer the questions above, we ran experiments with the following systems:

ADAGRAD FB-LC 0: Use ADAGRAD FB to learn weights for the LC 0
MLN.

OSL-M1-LC 0: Starting from the LC 0 MLN, this system runs a slow version
of OSL where the parameter minCountDiff is set to 1, i.e. all clauses whose
number of true groundings in true possible worlds is greater than those in
predicted possible worlds will be selected.

OSL-M2-LC 0: Starting from the LC 0 MLN, this system runs a faster version
of OSL where the parameter minCountDiff is set to 2.

ADAGRAD FB-ISM: Use ADAGRAD FB to learn weights for the ISM
MLN.

OSL-M1-ISM: Like OSL-M1-LC 0, but starting from the ISM MLN.
OSL-M2-ISM: Like OSL-M2-LC 0, but starting from the ISM MLN.
OSL-M1-Empty: Like OSL-M1-LC 0, but starting from an empty MLN.
OSL-M2-Empty: Like OSL-M2-LC 0, but starting from an empty MLN.

Regarding label loss functions, we use Hamming (HM) loss which is the standard
loss function for structured prediction [32, 33].

For inference in training and testing, we used the exact MPE inference
method based on Integer Linear Programming described by Huynh and Mooney
[12]. For all systems, we ran one pass over the training set and used the average
weight vector to predict on the test set. For Craigslist, we used the original split
for training and test. For CiteSeer, we ran four-fold cross-validation (i.e. leave
one topic out). The parameters λ, η, δ of ADAGRAD FB were set to 0.001,1,
and 1 respectively. For OSL, the mode declarations were set to constrain the
search space of relational pathfinding to linear chain CRFs in order to make
exact inference in training feasible; the maximum path length maxLen was set



Table 1. Experimental results for CiteSeer.

Systems Avg. F1 Avg. train. time (min.) Avg. num. of non-zero clauses

ADAGRAD FB-LC 0 82.62± 2.12 10.40 2, 896
OSL-M2-LC 0 92.05± 2.63 14.16 2, 150
OSL-M1-LC 0 94.47± 2.04 163.17 9, 395
ADAGRAD FB-ISM 91.18± 3.82 11.20 1, 250
OSL-M2-ISM 95.51± 2.07 12.93 1, 548
OSL-M1-ISM 96.48± 1.72 148.98 8, 476
OSL-M2-Empty 88.94± 3.96 23.18 650
OSL-M1-Empty 94.03± 2.62 257.26 15, 212

Table 2. Experimental results for Craigslist.

Systems F1 Train. time (min.) Num. of non-zero clauses

ADAGRAD FB-ISM 79.57 2.57 2, 447
OSL-M2-ISM 77.26 3.88 2, 817
OSL-M1-ISM 81.58 33.63 9, 575
OSL-M2-Empty 55.28 17.64 1, 311
OSL-M1-Empty 71.23 75.84 17, 430

to 4; the parameters λ, η, δ were set to the same values in ADAGRAD FB. All
the parameters are set based on the performance on the Craigslist development
set. We used the same parameter values for CiteSeer.

Like previous work [26], to measure the performance of each system, we used
F1, the harmonic mean of the precision and recall, at the token level.

4.4 Results and Discussion

Table 1 shows the average F1 with their standard deviations, average training
times in minutes, and average number of non-zero clauses for CiteSeer. All results
are averaged over the four folds. First, either starting from LC 0 or ISM, OSL is
able to find new useful clauses that improve the F1 scores. For LC 0, comparing
to the system that only does weight learning, the fast version of OSL, OSL-M2,
increases the average F1 score by 9.4 points, from 82.62 to 92.05. The slow version
of OSL, OSL-M1, further improves the average F1 score to 94.47. For ISM, even
though it is a well-developed MLN, OSL is still able to enhance it. The OSL-
M1-ISM achieves the best average F1 score, 96.48, which is 2 points higher than
the current best F1 score achieved by using a complex joint segmentation model
that also uses information from matching multiple citations of the same paper
[26]. Overall, this answers question 1 affirmatively. Additionally, the results for
OSL-M2-Empty and OSL-M1-Empty shows that OSL also performs well when
learning from scratch. OSL-M1 even finds a structure that is more accurate than
ISM’s. All differences in F1 between OSL and ADAGRAD FB are statistically



significant according to a paired t-test (p < 0.05). Overall, this also answers
question 2 affirmatively.

Regarding training time, OSL-M2 takes on average a few more minutes than
systems that only do weight learning. However, OSL-M1 takes longer to train
since including more new clauses results in longer time for constructing the
ground network, running inference, and computing the number of true ground-
ings. The last column of Table 1 shows the average number of non-zero clauses
in the final MLNs learned by different systems. These numbers reflect the size
of MLNs generated by different systems during training.

Table 2 shows the experimental results for Craigslist. The Craigslist seg-
mentation task is much harder than CiteSeer’s due to the huge variance in the
context of different ads. As a result, most words only appear once or twice in
the training set. Thus the most important rules are those that correlate words
with fields and those capturing the regularity that consecutive words are usually
in the same field, which are already in ISM. In addition, most rules only appear
once in a document. That is why OSL-M2 is not able to find useful clauses, but
OSL-M1 is able to find some useful clauses that improve the F1 score of ISM
from 79.57 to 81.58. OSL also gives some promising results when starting from
an empty MLN.

To answer question 3, we ran LSM on CiteSeer and Craigslist but the MLNs
returned by LSM result in huge ground networks that made weight learning
infeasible even using online weight learning. The problem is that these natural
language problems have a huge vocabulary of words. Thus, failing to restrict
clauses to specific words results in a blow-up in the size of the ground network.
However, LSM is currently not able to learn clauses with constants. It is unclear
whether it is feasible to alter LSM to efficiently learn clauses with constants
since such constants may need to be considered individually which dramati-
cally increases the search space. This problem also holds for other existing MLN
structure learners [13, 21, 1, 14].

Below are some sample useful clauses found by OSL-M2-ISM on CiteSeer:

– If the current token is in the Title field and it is followed by a period then it
is likely that the next token is in the Venue field.

InField(Ftitle, p1, c) ∧ FollowBy(p1, TPERIOD, c) ∧ Next(p1, p2) ⇒
InField(Fvenue, p2, c)

– If the next token is ‘in’ and it is in the Venue field, then the current token
is likely in the Title field

Next(p1, p2) ∧ Token(Tin, p2, c) ∧ InF ield(Fvenue, p2, c) ⇒
InF ield(Ftitle, p1, c)

When starting from an empty knowledge base, OSL-M2 is able to discover the
regularity that consecutive words are usually in the same field:

Next(p1, p2) ∧ InF ield(Fauthor, p1, c) ⇒ InF ield(Fauthor, p2, c)
Next(p1, p2) ∧ InField(Ftitle, p1, c) ⇒ InF ield(Ftitle, p2, c)

Next(p1, p2) ∧ InF ield(Fvenue, p1, c) ⇒ InF ield(Fvenue, p2, c)



5 Related Work

Our work is related to previous work on online feature selection for Markov Ran-
dom Fields (MRFs) [25, 35]. However, our work differs in two aspects. First, this
previous work assumes all the training examples are available at the beginning
and only the features are arriving online, while in our work both the exam-
ples and features (clauses) are arriving online. Second, in this previous work, all
potential features are given upfront, while our approach induces new features
from each example. Thus, our work is also related to previous work on feature
induction for MRFs [3, 19], but these are batch methods.

The idea of combining relational pathfinding with mode declarations has been
used in previous work [24, 5]. However, how they are used is different. In [24],
mode declarations were used to transform a bottom clause into a directed hy-
pergraph where relational pathfinding was used to find paths. Similarly, in [5],
mode declarations were used to validate paths obtained from bottom clauses.
Here, mode declarations are first used to reduce the search space to paths that
contain ‘input’ and ‘output’ nodes. Then they are used to test whether an hyper-
edge can be added to an existing path. Finally, they are used to create clauses
with constants.

6 Future Work

OSL, especially OSL-M1, currently adds many new clauses at each step, which
significantly increases the computational cost. However, since OSL creates clauses
from all the paths encountered in the search, some of the short clauses are sub-
clauses of the long ones. So it may be better to only keep the long ones since
they have more information. Second, OSL currently does not use clauses in the
existing MLN to restrict the search space. So it would be useful to exploit this
information. Finally, it would be interesting to apply OSL to other learning
problems that involve data with many structured examples. For instance, other
natural-language problems such as semantic role labeling or computer-vision
problems such as scene understanding [7].

7 Conclusions

In this work, we present OSL, the first online structure learner for MLNs. At
each step, OSL uses mode-guided relational pathfinding to find new clauses that
fix the model’s wrong predictions. Experimental results on field segmentation
on two real-world datasets show that OSL is able to find useful new clauses
that improve the predictive accuracies of well-developed MLNs and also learned
effective MLNs from scratch.
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