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Abstract

Most of the existing weight-learning algorithms for
Markov Logic Networks (MLNs) use batch training
which becomes computationally expensive and even in-
feasible for very large datasets since the training exam-
ples may not fit in main memory. To overcome this
problem, previous work has used online learning algo-
rithms to learn weights for MLNs. However, this prior
work has only applied existing online algorithms, and
there is no comprehensive study of online weight learn-
ing for MLNs. In this paper, we derive new online
algorithms for structured prediction using the primal-
dual framework, apply them to learn weights for MLNs,
and compare against existing online algorithms on two
large, real-world datasets. The experimental results
show that the new algorithms achieve better accuracy
than existing methods.

Introduction
Statistical relational learning(SRL) concerns the induction
of probabilistic knowledge that supports accurate predic-
tion for multi-relational structured data (Getoor and Taskar
2007). These powerful SRL models have been successfully
applied to a variety of real-world problems. However, the
power of these models come with a cost, since they can be
computationally expensive to train, in particular since most
existing SRL learning methods employ batch training where
the learner must repeatedly run inference over all training
examples in each iteration. Training becomes even more
expensive in larger datasets containing thousands of exam-
ples, and even infeasible in some cases where there is not
enough main memory to fit the training data (Mihalkova
and Mooney 2009). A well-known solution to this problem
is online learning where the learner sequentially processes
one example at a time. In this work, we look at the prob-
lem of online weight learning for Markov Logic Networks
(MLNs), a recently developed SRL model that generalizes
both full first-order logic and Markov networks (Richardson
and Domingos 2006). Riedel and Meza-Ruiz (2008) and Mi-
halkova and Mooney (2009) have used online learning algo-
rithms to learn weights for MLNs. However, previous work
only applied one existing online algorithm to MLNs and did

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

not provide a comparative study of online weight learning
for MLNs.

In this work, we derive new online algorithms for struc-
tured prediction from the primal-dual framework (Shalev-
Shwartz and Singer ; Shalev-Shwartz 2007; Kakade and
Shalev-Shwartz 2009), which is the latest framework for de-
riving online algorithms that have low regret, and apply them
to learn weights for MLNs and compare against existing on-
line algorithms that have been used in previous work. The
experimental results show that our new algorithms achieve
better accuracy than existing algorithms on two large, real-
world datasets.

Background
MLNs
An MLN consists of a set of weighted first-order clauses.
It provides a way of softening first-order logic by making
situations in which not all clauses are satisfied less likely
but not impossible (Richardson and Domingos 2006). More
formally, let X be the set of all propositions describing a
world (i.e. the set of all ground atoms),F be the set of all
clauses in the MLN,wi be the weight associated with clause
fi ∈ F, Gfi

be the set of all possible groundings of clausefi,
andZ be the normalization constant. Then the probability
of a particular truth assignmentx to the variables inX is
defined as (Richardson and Domingos 2006):
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where g(x) is 1 if g is satisfied and 0 otherwise, and
ni(x) =

∑
g∈Gfi

g(x) is the number of groundings offi

that are satisfied given the current truth assignment to the
variables inX.

There are two inference tasks in MLNs. The first one is
to infer the Most Probable Explanation (MPE) or the most
probable truth values for a set of unknown literalsy given
a set of known literalsx, provided as evidence. Both ap-
proximate and exact MPE methods for MLNs have been
proposed (Kautz, Selman, and Jiang 1997; Riedel 2008;
Huynh and Mooney 2009). The second inference task is
computing the conditional probabilities of some unknown
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literals,y, given some evidencex. Computing these proba-
bilities is also intractable, but there are good approximation
algorithms such as MC-SAT (Poon and Domingos 2006) and
lifted belief propagation (Singla and Domingos 2008).

There are two approaches to weight learning in MLNs:
generative and discriminative. In discriminative learning,
we know a priori which predicates will be used to supply
evidence and which ones will be queried, and the goal is to
correctly predict the latter given the former. Several discrim-
inative weight learning methods have been proposed, most
of which try to find weights that maximize the conditional
log-likelihood of the data (Singla and Domingos 2005;
Lowd and Domingos 2007; Huynh and Mooney 2008). Re-
cently, Huynh and Mooney (2009) proposed a max-margin
approach to learn weights for MLNs.

The Primal-Dual Algorithmic Framework for
Online Convex Optimization
In this section, we briefly review the primal-dual frame-
work (Shalev-Shwartz and Singer ; Shalev-Shwartz 2007;
Kakade and Shalev-Shwartz 2009) which is the latest frame-
work for deriving online algorithms that have low regret, the
difference between the cumulative loss of the online algo-
rithm and the cumulative loss of the optimal offline solu-
tion. First, we look at the case of convex loss where in each
step the online algorithm receives a convex loss functiongt.
Considering the following optimization problem:

inf
w∈W

 

σf(w) +

T
X

t=1

gt(w)

!

(1)

where f : W → R+ is a function that measures the
complexity of the vectors inW , and σ is non-negative
scalar. For example, ifW = Rd , f(w) = 1

2
||w||22 , and

gt(w) = maxy∈Y [ρ(yt,y) − 〈w, (φ(xt,yt) − φ(xt,y)〉]
+

,
then the above optimization problem becomes the same as
for max-margin structured classification (Taskar, Guestrin,
and Koller 2004; Tsochantaridis et al. 2004; Taskar et al.
2005). We can rewrite the optimization problem in Eq. 1 as
follows:

inf
w0,w1,...,wT

 

σf(w0) +

T
X

t=1

gt(wt)

!

s.t. w0 ∈ W, ∀t ∈ 1...T , wt = w0

where we introduceT new vectorsw1, ...,wT and constrain
them to all be equal tow0. This problem is called the primal
problem. The dual of this problem is:

sup
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where each λt is a vector of Lagrange multipliers for
the equality constraintwt = w0 , and f∗, g∗

1 , ..., g∗
T are

the Fenchel conjugate functions off, g1, ..., gT . A Fenchel
conjugate function of a functionf : W → R is defined
as f∗(θ) = supw∈W [〈w, θ〉 − f(w)] . See (Shalev-Shwartz
2007) for details on the steps to derive the dual problem.

The dual objective functionD(λ1, ..., λT ) has a nice
property that makes online learning possible. Assume that
for all t we have infwgt(w) = 0, therefore by definition of
the Fenchel conjugate function we haveg∗

t (0) = 0 . Then
we have:

D(λ1, ...,λt, 0, ..., 0) = D(λ1, ..., λt) =

− σf
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This means that if we set theλ’s of all unseen examples
to 0, then the dual objective function does not depend on
the unseen cost functionsgt+1, ..., gT , while we must know
all the cost functionsg1, ..., gT to compute the primal objec-
tive value. From the weak duality theorem (Boyd and Van-
denberghe 2004), we know that the dual objective is upper
bounded by the optimal value of the primal problem. Thus,
if an online algorithm can incrementally ascend the dual ob-
jective function in each step, then its performance is close
to the performance of the best fixed weight vector that mini-
mizes the primal objective function (the best offline learner),
since by increasing the dual objective, the algorithm moves
closer to the optimal primal value.

Based on this observation, Shalev-Shwartz (2007) pro-
posed the following general online incremental dual ascent
algorithm (Algorithm 1):

Algorithm 1 A general incremental dual ascent algorithm for
general convex loss function

Input: A strongly convex functionf , a positive scalarσ
for t = 1 to T do

Set:wt = ∇f∗
`

− 1

σ

Pt−1

i=1
λt

i

´

Receive:gt(wt)
Choose(λt+1

1 , ..., λt+1
t ) that satisfy the condition:

∃λ′ ∈ ∂gt(wt) s.t. D(λt+1
1 , ..., λt+1

t ) ≥
D(λt

1, ..., λ
t
t−1, λ

′)
end for

where ∂gt(wt) = {λ : ∀w ∈ W, gt(w) − gt(wt) ≥
〈λ, (w − wt)〉} is the set of subgradients ofgt at wt.
The condition ∃λ′ ∈ ∂gt s.t. D(λt+1

1 , ..., λt+1
t ) ≥

D(λt
1, ..., λ

t
t−1, λ

′) ensures the dual objective is increased
in each step. It can be shown that the regret of Algorithm 1
is O(

√
T ).

Later, Kakade and Shalev-Shwartz (2009) extended the
framework to the case of strongly convex loss functions such
as the square loss or a convex loss regularized by a strongly
convex function. Any strongly convex loss function can be
decomposed asl(wt) = σf(wt) + g(wt) wheref is 1-
strongly convex function with respect to some norm,g is a
convex function, andσ is a non-negative scalar. For the case
of strongly convex loss function, the dual objective function
becomes:

D(λ1, ..., λt) = −(σtf)
∗

0
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∗
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Algorithm 2 is the modified version of Algorithm 1 for the
case ofσ-strongly convex loss function. Due to the property

Algorithm 2 A general incremental dual ascent algorithm forσ-
strongly convex loss function

Input: A strongly convex functionf , a positive scalarσ
for t = 1 to T do

Set:wt = ∇f∗
`

− 1

σt

Pt−1

i=1
λt

i

´

Receive:lt(wt) = σf(wt) + gt(wt)
Choose(λt+1

1 , ..., λt+1
t ) that satisfy the condition:

∃λ′ ∈ ∂gt(wt) s.t. D(λt+1
1 , ..., λt+1

t ) ≥
D(λt

1, ..., λ
t
t−1, λ

′)
end for

of the strongly convex loss function, the regret of Algorithm
2 isO(log T ) which is much lower than that of Algorithm 1.

A simple update rule that satisfies the condition in Algo-
rithm 1 and 2 is to find a subgradientλ′ ∈ ∂gt(wt) and



set λt+1
t = λ′ and keep all otherλi ’s unchanged (i.e.

λt+1
i = λt

i, ∀i < t ). However, the gain in the dual ob-
jective for this simple update rule is minimal. To achieve the
largest gain in the dual objective, one can optimize all the
λi’s at each step. But this approach is usually computation-
ally prohibitive to use since at each step, we need to solve a
large optimization problem:

(λ
t+1
1 , ..., λ

t+1
t ) ∈ arg max

λ1,...,λt

D(λ1, ..., λt)

A compromise approach is to fully optimize the dual objec-
tive function at each time stept but only with respect to the
last variableλt:

λ
t+1
i =

8

<

:

λt
i if i < t

arg max
λt

D(λt
1, ..., λt

t−1, λt) if i = t

This is called the Coordinate-Dual-Ascent (CDA) update
rule. If we can find a closed-form solution of the optimiza-
tion problem with respect to the last variableλt, then the
computational complexity of the CDA update is similar to
the simple update but the gain in the dual objective function
is larger. Previous work (Shalev-Shwartz and Singer 2007)
showed that algorithms which more aggressively ascend the
dual function have better performance. In the next section,
we will show that it is possible to obtain a closed-form so-
lution of the CDA update rule for the case of structured pre-
diction.

Online Coordinate-Dual-Ascent Algorithms
for Structured Prediction

In this section, we derive new online algorithms for struc-
tured prediction based on the algorithmic framework de-
scribed in the previous section using the CDA update rule. In
structured prediction, the labelyt of each examplext ∈ X
belongs to some structure output spaceY. We assume that
there is a joint feature functionφ(x,y) : X×Y → Rd and the
prediction function takes the following form:

hw(x) = arg max
y∈Y 〈w, φ(x, y)〉

So in this case the weight vectorw lies in Rd. A stan-
dard complexity function used in structured prediction is
f(w) = 1

2
||w||22. Regarding the loss functiongt, a general-

ized version of the Hinge loss is widely used in max-margin
structured prediction (Taskar, Guestrin, and Koller 2004;
Tsochantaridis et al. 2004)

lMM (w, (xt, yt)) = max
y∈Y

[ρ(yt, y) − 〈w, (φ(xt, yt) − φ(xt, y)〉]+

whereρ(y,y′) is a non-negative label loss function that
measures the difference between the two labelsy,y′ such
as the Hamming loss. However, minimizing the above loss
results in an optimization problems with a lot of constraints
in the primal (one constraint for each possible labely ∈ Y)
which is usually expensive to solve. To overcome this prob-
lem, we consider two simpler variants of the max-margin
loss which only involves a particular label: themaximalloss
function and theprediction-basedloss function.

Maximal loss (ML) function This loss function is
based on the maximal loss label at stept, yML

t =
arg maxy∈Y{ρ(yt,y) + 〈wt, φ(xt,y)〉}:
lML(w, (xt, yt)) =

h

ρ(yt, y
ML
t ) −

D

w,
“

φ(xt, yt) − φ(xt, y
ML
t )

”Ei

+

The losslML(wt, (xt,yt)) is the greatest loss the algo-
rithm would suffer at stept if it used the maximal loss la-
bel yML

t as the prediction. On the other hand, it checks

whether the max-margin constraints are satisfied since if
lML(wt, (xt,yt)) = 0 then yML

t = yt, and it means that
the current weight vectorwt scores the correct labelyt

higher than any other labely
′
t where the difference is at least

ρ(yt,y
′
t). Note that the maximal loss labely

ML
t is the input

to the maximal loss (it is possible in online learning since the
loss is computed after the weight vectorwt is chosen), there-
fore it does not depend on the weight vectorw for which we
want to compute the loss. So the maximal loss function only
concerns the particular constraint for whether the true label
yt is scored higher than the maximal loss label with a margin
of ρ(yt,y

ML
t ). This is the key difference between the max-

imal loss and the max-margin loss since the latter looks at
the constraints of all possible labels. The main drawback of
the maximal loss is that finding the maximal loss labelyML

t ,
which is also called the loss-augmented inference problem
(Taskar et al. 2005), is only feasible for some decomposable
label loss functions such as Hamming loss since the maxi-
mal loss label depends on the label loss functionρ(yt,y

′).
This is the reason why we want to consider the second loss
function, prediction-based loss, which can be used with any
label loss function.

Prediction-based loss (PL) function This loss func-
tion is based on the predicted labelyP

t = hwt(xt) =
arg maxy∈Y〈wt, φ(xt,y)〉:

lP L(w, (xt, yt)) =
h

ρ(yt, y
P
t ) −

D

w,
“

φ(xt, yt) − φ(xt, y
P
t )

”Ei

+

Like the maximal loss, the prediction-based loss only con-
cerns the constraint for the prediction labelyP

t . We have
lPL(wt, (xt,yt)) ≤ lML(wt, (xt,yt)) sinceyML

t is the max-
imal loss label forwt. As a result, the update based on
the prediction-based loss function is less aggressive than
the one based on the maximal loss function. However, the
prediction-based loss function can be used with any label
loss function since the predicted labelyP

t does not depend
on the label loss function.

To apply the primal-dual algorithmic framework de-
scribed in the previous section, we need to find the Fenchel
conjugate function of the complexity functionf(w) and
the loss functiong(w). The Fenchel conjugate function
of the complexity functionf(w) = 1

2
||w||22 is itself, i.e.

f∗(θ) = 1

2
||θ||22 (Boyd and Vandenberghe 2004). For the

loss function, recall that the Fenchel conjugate function of
the Hinge-lossg(w) = [γ − 〈w,x〉]+ is:

g
∗
(θ) =

8

<

:

−γα if θ ∈ {−αx : α ∈ [0, 1]}

∞ otherwise

(Appendix A in (Shalev-Shwartz and Singer )). Since
both the prediction based loss and the maximal loss are
generalizations of the Hinge-loss to the structure output,
they have the same form as the Hinge-loss whereγ is re-
placed by the label loss functionl(yt,y

P
t ) and l(yt,y

ML
t ),

and x is replaced by∆φPL
t = φ(xt,yt) − φ(xt,y

P
t ) and

∆φML
t = φ(xt,yt) − φ(xt,y

ML
t ) for the prediction based

loss and the maximal loss respectively. Using the result of
the Hinge-loss, we have the Fenchel conjugate function of
the prediction based loss and the maximal loss as follows:

g
∗
t (θ) =

8

<

:

−ρ(yt, y
P |ML
t )α if θ ∈ {−α∆φ

P L|ML
t : α ∈ [0, 1]}

∞ otherwise

The next step is to derive the closed-form solution of the
CDA update rule. For the case of regularized convex loss



function, we need to solve the following optimization:

argmax
λt

− (σt)f
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− g
∗
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Substituting the conjugate functionf∗ andg∗t as above in
the equation 4, we obtain the following optimization:
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λ1:(t−1), ∆φ
P L|ML
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whereλ1:(t−1) =
∑t−1

i=1 λi. This is a function ofα only and
in fact it is a concave parabola whose maximum achieves at
the point:

α
∗

=
(σt)ρ(yt, y

P |ML

t ) +
D

λ1:(t−1), ∆φ
P L|ML

t

E

||∆φ
P L|ML
t ||22

If α∗ ∈ [0, 1], thenα∗ is the maximizer of the optimization.
If α∗ < 0, then0 is the maximizer and ifα∗ > 1 then
1 is the maximizer. In summary, the solution of the above
optimization is:

α
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;

To obtain the update in terms of the weight vectorsw, we
have:
wt+1 = ∇f
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−
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Using the same procedure, we obtain the following update
for the case of the unregularized loss function:

wt+1 = wt+min

8

>

<

>

:

1

σ
,

h

ρ(yt, y
P |ML

t ) −
D

wt, ∆φ
P L|ML

t

Ei

+

||∆φ
P L|ML

t ||22

9

>

=

>

;

∆φ
P L|ML
t

(5)

The new algorithms are presented in Algorithm 3 where
CDA1, derived from Algorithm 1, uses an unregularized
convex loss function, and CDA2, derived from Algorithm
2, employs a regularized convex loss function. Note that
CDA1 is similar to the Passive-Aggressive (PA) algorithm 1
of Crammer et al.(2006), but PA1 was derived using a differ-
ent formulation where at each stept the weight vectorwt+1
is set to the solution of the following optimization problem:

min
w,ξ≥0

1

2
||w − wt||22 + Cξ

s.t. w · [φ(xt,yt) − φ(xt,y
P |ML
t )] ≥

q

ρ(yt,y
P |ML
t ) − ξ

If we setC = 1/σ, then the solution to this optimization
has the same form as the update rule of CDA1 (Eq. 5).
In addition, a variant of the algorithm PA1 which is iden-
tical to CDA1 with maximal loss was derived by Keshet et
al.(2007). This connection shows that the algorithm PA1 is
a special case of the online Coordinate-Dual-Ascend algo-
rithm whenf(w) = 1

2 ||w||22 is used as the complexity func-
tion. It also gives a new interpretation for the update rule

Algorithm 3 Online Coordinate-Dual-Ascent Algorithms for
Structured Prediction
1: Parameters: A constantσ > 0; Label loss functionρ(y,y′)
2: Initialize: w1 = 0
3: for i = 1 to T do
4: Receive an instancext

5: PredictyP
t = arg maxy∈Y〈wt, φ(xt,y)〉

6: Receive the correct targetyt

7: (For maximal loss) Compute yML
t =

arg maxy∈Y{ρ(yt,y) + 〈wt, φ(xt,y)〉}
8: Compute∆φt:
8: PL:∆φt = φ(xt,yt) − φ(xt,y

P
t )

8: ML: ∆φt = φ(xt,yt) − φ(xt,y
ML
t )

9: Compute loss:
9: PL (CDA1): lt =

ˆ

ρ(yt,y
P
t ) − 〈wt, ∆φt〉

˜

+

9: ML (CDA1): lt =
ˆ

ρ(yt,y
ML
t ) − 〈wt, ∆φt〉

˜

+

9: PL (CDA2): lt =
ˆ

ρ(yt,y
P
t ) − t−1

t
〈wt, ∆φt〉

˜

+

9: ML (CDA2): lt =
ˆ

ρ(yt,y
ML
t ) − t−1

t
〈wt, ∆φt〉

˜

+

10: Computeλt:
10: CDA1:λt = min{1/σ, lt

||∆φ||22
}

10: CDA2:λt = min{1/(σt), lt
||∆φ||22

}
11: Update:
11: CDA1:wt+1 = wt + λt∆φt

11: CDA2:wt+1 = t−1

t
wt + λt∆φt

12: end for

of CDA1, which is the solution of an optimization problem
that tries to find a weight vector that not only scores the true
label higher than the other label (the maximal loss or pre-
diction loss label) with a high margin, but is also close (in
squared distance) to the current weight vectorwt.

We can use algorithms CDA1 and CDA2 to perform on-
line weight learning for MLNs since the weight learning
problem in MLNs can be cast as a max-margin structured
prediction problem (Huynh and Mooney 2009). For MLNs,
the number of true groundings of the clauses,n(x,y), plays
the role of the joint feature function~φ(x,y).

Experimental Evaluation
In this section, we conduct experiments to answer the fol-
lowing questions in the context of MLNs:

1. How do our new online learning algorithms compare to
existing online max-margin learning methods?

2. How do our new online learning algorithms compare to
existing batch max-margin weight learning methods?

3. Is CDA2 better than CDA1 in practice?

4. How well does the the prediction based loss compare to
the maximal loss in practice?

Datasets
We ran experiments on two large, real-world datasets: the
CiteSeer dataset (Lawrence, Giles, and Bollacker 1999) for
bibliographic citation segmentation, and a web search query
dataset obtained from Microsoft Research for query disam-
biguation.

For CiteSeer, we used the dataset and the MLN of Poon
and Domingos(2007). The dataset has 1,563 citations and



each of them is segmented into three fields:Author, Title
andVenue. The dataset has four disjoint subsets correspond-
ing to four different research topics. We used the simplest
MLN, the isolated segmentation model, of Poon and Domin-
gos(2007) for learning.

For the search query disambiguation, we used the data
created by Mihalkova and Mooney(2009). The dataset
consists of thousands of search sessions where ambiguous
queries are asked. The data are split into 3 disjoint sets:
training, validation, and test. There are 4,618 search ses-
sions in the training set, 4,803 sessions in the validation set,
and 11,234 sessions in the test set. In each session, the set
of possible search results for a given ambiguous query is
given, and the goal is to rank these results based on how
likely it will be clicked by the user. A user may click on
more than one result for a given query. To solve this prob-
lem, Mihalkova and Mooney(2009) proposed three different
MLNs which correspond to different levels of information
used in disambiguating the query. We used all three MLNs
in our experiments. In comparison to the Citeseer dataset,
the search query dataset is larger but is much noisier since
a user can click on a result because it is relevant or because
the user is just doing an exploratory search.

Methodology
To answer the above questions, we ran experiments with the
following systems:

MM: The offline max-margin weight learner for MLNs
proposed by Huynh and Mooney(2009).

1-best MIRA: MIRA is one of the first online learning
algorithm for structured prediction proposed by Cram-
mer, McDonald, and Pereira (2005). A simple version
of MIRA, called 1-best MIRA, is widely used in practice
since its update rule has a closed-form solution. Riedel
and Meza-Ruiz(2008) used 1-best MIRA to learn weights
for MLNs. The update rule of 1-best MIRA is similar
to that of the CDA1 with prediction based loss. In each
round, it updates the weight vectorsw as follows:

wt+1 = wt +

h

ρ(yt, y
P
t ) −

D

wt, ∆φP L
t

Ei

+

||∆φP L
t ||22

∆φ
P L
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Subgradient: This algorithm proposed by Ratliff, Bagnell,
and Zinkevich (2007) is an extension of the Greedy Pro-
jection algorithm (Zinkevich 2003) to the case of struc-
tured prediction. The update rule of this algorithm is
similar to that of the CDA2 with maximal loss. Using
the learning rateαt = 1/(σt), the algorithm updates the
weight vectorsw at each step as follows:

wt+1 = wt −
1

σt
(σwt − ∆φ

ML
t ) =

t − 1

t
wt +
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CDA1 and CDA2: The two derived online learning algo-
rithms presented in Algorithm 3.

In training, we used the exact MPE inference based on Inte-
ger Linear Programming described by Huynh and Mooney
(2009) for online learning algorithms since exact inference
on each example is feasible on these datasets. For the offline
weight learner MM, we used the approximate inference al-
gorithm developed by Huynh and Mooney (2009) since it
is computationally intractable to run exact inference for all

Table 1: AverageF1 and training time on CiteSeer dataset

Algorithms AverageF1 Average training time
MM-HM 93.433± 1.41 90.282 min.
1-best-MIRA-HM 93.056± 3.18 11.772 min.
Subgradient-HM 91.910± 2.37 12.655 min.
CDA1-PL-HM 92.945± 2.94 11.824 min.
CDA1-ML-HM 94.131± 2.25 12.738 min.
CDA2-PL-HM 92.836± 2.55 11.869 min.
CDA2-ML-HM 94.375± 2.13 12.887 min.

Table 2: MAP scores on Microsoft search query dataset
Algorithms MLN1 MLN2 MLN3
CD 0.375 0.386 0.366
1-best-MIRA 0.366 0.375 0.379
Subgradient 0.374 0.397 0.396
CDA1-PL 0.380 0.395 0.396
CDA1-ML 0.379 0.389 0.385
CDA2-PL 0.382 0.397 0.398
CDA2-ML 0.380 0.397 0.397

training examples at once. In testing, we used exact MPE in-
ference for Citeseer and used MCSAT to compute marginal
probabilities for the web search query dataset since we want
to rank the query results. The parameterσ of the Subgra-
dient, CDA1 and CDA2 is set based on the performance on
the validation set. All experiments used Hamming loss as
the label loss function. For all online learning algorithms,
we ran one pass over the training set and used the average
weight vector to predict on the test set. For CiteSeer, we ran
four-fold cross-validation (i.e. leave one topic out).

Metrics
Like previous work, we usedF1, the harmonic mean of re-
call and precision, to measure the performance of each algo-
rithm on Citeseer, and for the web query we used the MAP
(Mean Average Precision) which measures how close the
relevant results are to the top of the ranking.

Results and Discussion
Table 1 presents the averageF1 scores of different algo-
rithms on Citeseer. On this dataset, CDA algorithms with
maximal loss, CDA1-ML and CDA2-ML, have the best av-
erageF1 scores, and these results are better than those of 1-
best MIRA and the subgradient method (the differences with
respect to the subgradient method are statistically signifi-
cant). TheF1 scores of CDA1-ML and CDA2-ML are also
better than that of the batch max-margin algorithm (MM)
since the batch learner can only uses approximate inference
in training. Other advantages of online algorithms are in
terms of training time and memory. On this dataset, the on-
line learning algorithms took on average about 12-13 min-
utes for training while the batch one took an hour and a half
on the same machine. Since online algorithms process one
example at a time, they use much less memory than batch
methods. Between CDA1 and CDA2, CDA2-ML is a lit-
tle bit better but the difference is not significant. Regard-
ing the comparison between maximal loss and prediction-
based loss, the former is significantly better than latter on
this dataset.



Table 2 shows the MAP scores of different algorithms on
the Microsoft web search query dataset. The first row in the
table is from Mihalkova and Mooney(2009) who used a vari-
ant of the structured perceptron (Collins 2002) called Con-
trastive Divergence (CD) (Hinton 2002) to do online weight
learning for MLNs. It is clear that the CDA algorithms have
better MAP scores than CD. For this dataset, we were un-
able to run offline weight learning since the large amount of
training data exhausted memory during training. The 1-best
MIRA has the worst MAP scores on this dataset. This be-
havior can be explained as follows. From the update rule of
the 1-best MIRA algorithm, we can see that it aggressively
updates the weight vector according to the loss incurred in
each round. Since this dataset is noisy, this update rule leads
to overfitting. This also explains why the subgradient al-
gorithm has good performance on this data since its update
rule does not depend on the loss incurred in each round. The
MAP scores of CDA1 and CDA2 are not significantly better
than that of the subgradient method, but their performance is
more consistent across the three MLNs. CDA2 is better than
CDA1 on this dataset since CDA2-ML is significantly bet-
ter than CDA1-ML and CDA2-PL is comparable to CDA1-
PL. Regarding the loss function, in contrast to the results
on Citeseer, the CDA algorithms with prediction-based loss
are a little better than the ones with maximal loss especially
for the case of CDA1, since aggressive update can lead to
overfitting on noisy datasets.

In summary, our new online learning algorithms CDA1
and CDA2 have generally better performance than exist-
ing max-margin online methods for structured prediction
such as 1-best MIRA and the subgradient method which
have been shown to achieve good performance in previous
work. CDA2 is a little better than CDA1 especially on noisy
datasets. Between the maximal loss and the prediction-
based loss, the maximal loss is better than the prediction-
based loss on clean datasets, but the latter is a bit better than
the former on noisy datasets.

Conclusions and Future Work
We have presented a comprehensive study of online weight
learning for MLNs. Based on the primal-dual framework,
we derived new online algorithms for structured prediction
and applied them to learn weights for MLNs and compared
them to existing online methods. Our new algorithms gen-
erally achieved better accuracy than existing online methods
on two large, real-world datasets. Since the new algorithms
are not specific to MLNs, it would be interesting to apply
them to other structured prediction models.
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