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Abstract

Natural language understanding and dia-
log management are two integral compo-
nents of interactive dialog systems. Pre-
vious research has used machine learning
techniques to individually optimize these
components, with different forms of direct
and indirect supervision. We present an
approach to integrate the learning of both a
dialog strategy using reinforcement learn-
ing, and a semantic parser for robust nat-
ural language understanding, using only
natural dialog interaction for supervision.
Experimental results on a simulated task
of robot instruction demonstrate that joint
learning of both components improves di-
alog performance over learning either of
these components alone.

1 Introduction

Natural language understanding and dialog man-
agement are two integral components of a dialog
system. Current research typically deals with opti-
mizing only one of these components. We present
an approach to integrate the learning of both a di-
alog strategy using reinforcement learning, and a
semantic parser for robust natural language under-
standing, using only natural dialog interaction for
supervision.

Research in dialog systems has primarily been
focused on the problems of accurate dialog state
tracking and learning a policy for the dialog sys-
tem to respond appropriately in various scenarios.
Dialogs are typically modeled using Partially Ob-
servable Markov Decision Processes (POMDPs),
and various reinforcement learning algorithms
have been proposed and evaluated for the task of
learning optimal policies over these representa-
tions to accomplish user goals using as short and

natural a dialog as possible (Gašić and Young,
2014; Pietquin et al., 2011; Young et al., 2013).
However, such systems typically assume a fixed
language understanding component that is avail-
able a priori.

Semantic parsing is the task of mapping natural
language to a formal meaning representation. It
has the potential to allow for more robust mapping
of free-form natural language to a representation
that can be used to interpret user intentions and
track dialog state. This is done by leveraging the
compositionality of meaning inherent in language.
Prior work has shown that a semantic parser, incre-
mentally updated from conversations, is helpful in
dialogs for communicating commands to a mobile
robot (Thomason et al., 2015). We show that in-
cremental learning of a POMDP-based dialog pol-
icy allows for further improvement in dialog suc-
cess.

A major challenge with combining the above
parser and dialog policy learning techniques is
that reinforcement learning (RL) algorithms as-
sume that the dialog agent is operating in a sta-
tionary environment. This assumption is violated
when the parser is updated between conversations.
For example, the improved semantic parser may
be able to extract more information from a re-
sponse to a question, which the old parser could
not parse. So the RL algorithm may have earlier
assumed that asking such a question is not use-
ful, but this is not the case with the updated parser.
Our results show that this effect can be mitigated
if we break the allowed budget of training dialogs
into batches, updating both parser and policy after
each batch. As the next training batch gets col-
lected using the updated parser, the policy can be
updated using this experience to adapt better to it.
We demonstrate, using crowd-sourced results with
a simulated robot, that by integrating learning of
both a dialog manager and a semantic parser in

547

In Proceedings of the 15th Conference of the European Chapter of the 

Association for Computational Linguistics (EACL 2017), pp. 547--557, Valencia, 

Spain, April 2017. 



this manner, task success is improved over cases
where the components are trained individually.

2 Related Work

Prior work has used dialog to facilitate robot task
learning, e.g. She et al. (2014), but does not ac-
count for uncertainty or dynamic changes to the
language understanding module when developing
a system policy. Some works use a POMDP model
and common-sense knowledge (Zhang and Stone,
2015) or generate clarification questions in a prob-
abilistic manner (Tellex et al., 2014), but these
too assume that a fixed and well-trained natural
language understanding component is available a-
priori. Kollar et al. (2013) use a probabilistic pars-
ing and grounding model to understand natural
language instructions and extend their knowledge
base by asking questions. However, unlike this
work, they do not use semantic parsing to lever-
age the compositionality of language, and also use
a fixed hand-coded policy for dialog.

There has been considerable work in seman-
tic parsing using both direct supervision in the
form of annotated meaning representations (Wong
and Mooney, 2007; Kwiatkowski et al., 2013; Be-
rant et al., 2013) and indirect signals from down-
stream tasks (Artzi and Zettlemoyer, 2011; Artzi
and Zettlemoyer, 2013; Thomason et al., 2015).
Artzi and Zettlemoyer (2011) use clarification di-
alogs to train semantic parsers for an airline reser-
vation system without explicit annotation of mean-
ing representations. More related to our work is
that of Thomason et al. (2015), who incorporated
this general approach into a system for instructing
a mobile robot; however, they use a simple model
of dialog state and a fixed, hand-coded dialog pol-
icy. We show that learning a dialog policy in ad-
dition to this, is more beneficial than only parser
learning. We also use a richer state representation
that incorporates multiple hypotheses from the se-
mantic parser.

There has also been considerable work in goal-
directed dialog systems in domains such as infor-
mation provision (Young et al., 2013). These sys-
tems model dialog as a POMDP and focus on ei-
ther the problem of tracking belief state accurately
over large state spaces (Young et al., 2010; Thom-
son and Young, 2010; Mrkšić et al., 2015; El Asri
et al., 2016) or efficiently learning a dialog pol-
icy over this state space (Gašić and Young, 2014;
Pietquin et al., 2011; Png et al., 2012). However,

these systems typically assume a fixed natural lan-
guage understanding component. In this work, we
combine language learning with principled dialog
strategy learning.

More recently, there has been work on model-
ing various components of a dialog system using
neural networks (Mrkšić et al., 2015; Wen et al.,
2015). There have also been some end-to-end neu-
ral network systems that simultaneously learn di-
alog policy and language comprehension for goal
directed dialog (Wen et al., 2016; Williams and
Zweig, 2016; Bordes and Weston, 2016), but they
do not use a fully compositional semantic parser.
Williams and Zweig (2016) use a very simple
keyword-spotting based technique for processing
input user utterances, which is unlikely to be able
to handle out-of-vocabulary expressions for enti-
ties. Bordes and Weston (2016) explicitly attempt
to handle out-of-vocabulary utterances in a neu-
ral dialog system but do not demonstrate much
success. We expect that in a domain such as
ours where out-of-vocabulary utterances are fairly
likely, for example, in different forms of address
for a person, a semantic parser that can be incre-
mentally updated from a small number of interac-
tions is likely to perform better. However, an em-
pirical comparison of the two in domains where
compositional language understanding is expected
to be beneficial, is an interesting direction of future
work.

3 Background - Partially Observable
Markov Decision Process (POMDP)

A Partially Observable Markov Decision Pro-
cess (POMDP) is a tuple (S,A,T,R,O,Z, γ, b0),
where S is a set of states, A is a set of actions, T
is a transition function, R is a reward function, O
is a set of observations, Z is an observation func-
tion, γ is a discount factor and b0 is an initial belief
state (Kaelbling et al., 1998). These are defined as
follows.

At any instant of time t, the agent is in a state
st ∈ S. This state is hidden from the agent and
only a noisy observation ot ∈ O of st is provided
to it. The agent maintains a belief state bt which is
a distribution over all possible states it could be in
at time t, where bt(si) gives the probability of be-
ing in state si at time t. Based on bt, the agent
chooses to take an action at ∈ A according to
a policy π, commonly represented as a probabil-
ity distribution over actions where π(at|bt) is the
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probability of taking action at when the agent is
in belief state bt. On taking action at, the agent
is given a real-valued reward rt, transitions to a
state st+1, and receives a noisy observation ot+1

of st+1.
State transitions occur according to the

probability distribution P (st+1|st, at) =
T(st, at, st+1), observations are related
to the states by the probability distribu-
tion P (ot|st, at−1) = Z(ot, st, at−1) and
rewards obtained follow the distribution
P (rt|st, at) = R(st, at, st+1).

The objective is to identify a policy π that is
optimal in the sense that it maximizes the expected
long term discounted reward, called return, given
by

g = Eπ

[ ∞∑
t=1

γtrt

]
While there exist both exact and approximate

methods for solving POMDPs, these do not usu-
ally scale well to the state spaces commonly used
in dialog domains. This has led to the develop-
ment of approximate representations that exploit
domain-specific properties of dialog tasks to allow
tractable estimation of the belief state and policy
optimization (Young et al., 2013).

4 Background - Q-Learning using
Kalman Temporal Differences

The quality of a policy π can be estimated using
the action value function

Qπ(s, a) = Eπ

[ ∞∑
t=1

γtrt | s0 = s, a0 = a

]
The optimal policy satisfies the Bellman equation,

Q∗(s, a) = Es′
[
R(s, a, s′) + γmaxa′∈AQ

∗(s′, a′)
]

When the state space is very large or con-
tinuous, Qπ cannot be computed for each state
(or belief state) individually and is hence as-
sumed to be a function with parameters θ over
some features that represent the state. When the
transition or reward dynamics are not constant
(non-stationary problem), a suitable approxima-
tion is the Kalman Temporal Differences frame-
work (Geist and Pietquin, 2010). This casts the
function approximation as a filtering problem and
solves it using Kalman filtering. The specializa-
tion for learning the optimal action value function
is called the KTD-Q algorithm.

Filtering problems estimate hidden quantities
X from related observations Y, modeling X and
Y as random variables. When estimating action
values, X corresponds to the function parameters,
θ and the observations, Y, are the estimated re-
turns, rt + γmaxa Q̂θt(st+1, a). Random noise
is added to both of these to allow for parameters
to change over time. The update rules are derived
from Kalman Filtering Theory and not included
here for the sake of brevity.

5 Dialog System

Our system initiates the dialog by requesting the
user for a command. The user can command the
system to perform two actions: navigation and de-
livery. Navigation has a single parameter for the
destination. For example “go to Alice’s office”
would be a possible way to command the robot
to perform a navigation command, whose location
is a room that is the office of a person alice.
Delivery has two parameters: the item to be de-
livered and the person to receive it. For example,
“bring Alice a hamburger” would be a possible
way to specify a delivery command whose patient
is an item hamburger and recipient is a person
alice.

The robot makes an initial guess of the desired
action from the user’s response, and then may ask
clarification questions in case of insufficient un-
derstanding. At each step, it can respond with one
of four dialog acts: asking the user to repeat their
command, confirming a command or an argument
value, requesting a specific argument of a com-
mand, and executing an action (thereby ending the
dialog). A sample dialog is shown in Table 1.

Table 1: An sample clarification dialog

ROBOT How can I help?
USER bring the coffee to dr morgan
ROBOT Sorry I couldn’t understand that. Could you re-

word your original request?
USER take the coffee to dr morgan
ROBOT Sorry I couldn’t understand that. Could you re-

word your original request?
USER give the coffee cup to dr morgan
ROBOT You want me to bring coffee for George?
USER no mallory morgan
ROBOT Whom would you like me to bring something

to?
USER mallory morgan
ROBOT What would you like me to bring?
USER coffee
ROBOT I brought coffee to Mallory. Was this the correct

action?
USER yes
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Given a user response, a semantic parser is used
to convert utterances to logical forms which are
then grounded using world knowledge (e.g. re-
solving the representation of “Alice’s office” to a
particular room). These grounded logical forms
are then used to update the belief state maintained
by the system. The next step to be taken by the
system, given the belief state, is then chosen based
on the current dialog policy. Once the conversa-
tion is complete, the parser and policy can be up-
dated appropriately. These steps are outlined in
greater detail in sections 5.1 and 5.2.

The dialog is considered a success if the final
action taken is correct and a failure otherwise. The
user also has the ability to prematurely end the di-
alog, and any conversation terminated in this man-
ner is also considered a failure.

5.1 Semantic Parser Learning
Semantic parsing maps a natural language sen-
tence such as “Go to Alice’s office” to a logical
form expressed in λ-calculus such as:

walk(the(λx.office(x) ∧
possess(alice, x) ∧
person(alice))) (1)

Grounding against real-world knowledge, this will
identify a room, say room 3512, which is an office
that is owned by alice.

This formalism reduces the number of lexical
entries the system needs to learn by exploiting
compositional reasoning over language. For ex-
ample, if the system learns that “Alice Ashcraft”
and “Alice” both refer to the entity alice, no fur-
ther lexical entries are required to resolve “Go to
Alice Ashcraft’s office” to the same semantic form
(1).

In our system, semantic parsing is performed
using probabilistic CKY-parsing with a Combi-
natory Categorial Grammar (CCG) and meanings
associated with lexical entries. Perceptron-style
updates to parameter values, that minimize the
log-likelihood of the training data, are used dur-
ing training to weight parses to speed search and
give confidence scores in parse hypotheses (Zettle-
moyer and Collins, 2005).

The parser is trained using paired sentences and
logical forms. A small supervised training set is
used to initialize the parser. Training continues us-
ing pairs obtained through weak supervision col-
lected from user dialogs (Thomason et al., 2015).

We use two such types of training pairs. The first
consist of responses that are likely to correspond
to the complete action, and the logical form in-
duced by the action executed by the robot at the
end of the dialog. Such responses are expected
from the initial prompt to the user and questions
that ask the user to repeat the command. We obtain
multiple semantic parses for these responses, and
parses that correspond to a complete command,
and ground to the action finally taken by the robot,
are paired with the response to form one set of
training pairs. For example, from the conversa-
tion in Table 1, such training examples would be
generated by pairing the responses “bring the cof-
fee to dr morgan”, “take the coffee to dr morgan”
and “give the coffee cup to dr morgan” with the
semantic form bring(mallory,coffee).

The second set of training pairs is obtained from
the arguments of the action, such as the patient or
location involved. This consists of responses to re-
quests for specific arguments. Again, we consider
multiple semantic parses for these responses, and
select those that are of the correct syntactic form
for a single argument value, and which ground to
the corresponding argument value in the final ac-
tion, to be paired with the response. For exam-
ple, from the conversation in Table 1, such training
examples would be generated by pairing the re-
sponse “mallory morgan” with the semantic form
mallory, and the response “coffee” with the se-
mantic form coffee. These paired responses
and semantic forms can then be used to retrain the
parser between conversations.

This weak supervision may be somewhat noisy
because it assumes that the form of the user’s re-
sponse matches the expected response type for
the question. However, this is unlikely to gener-
ate spurious training examples, because we addi-
tionally place constraints on the syntax of the re-
sponse. For example, if we receive “Go to Bob’s
office” as a response when we expect an argument
value, since the response is an imperative sen-
tence, not a noun phrase such as “Bob’s office”,
no training example would be generated from it.
Prior experimental results (Artzi and Zettlemoyer,
2011; Thomason et al., 2015) suggest that learn-
ing using such weak (potentially noisy) supervi-
sion from clarification dialogs is effective at im-
proving semantic parsers.
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5.2 Dialog Strategy Learning

We use a POMDP to model dialog and learn a pol-
icy (Young et al., 2013), adapting the Hidden In-
formation State model (HIS) (Young et al., 2010)
to track the belief state as the dialog progresses.
The key idea behind this approach is to group
states into equivalence classes called partitions,
and maintain a probability for each partition in-
stead of each state. States within a partition are
those that are indistinguishable to the system given
the current dialog.

More concretely, our belief state can be fac-
tored into two main components. The first is the
action (such as navigation and delivery) and ar-
gument values of the goal (such as the patient
or location) which the user is trying to convey,
g = {ga, gPAT , gRCP , gLOC}. Goal parameters
are represented in terms of semantic roles - patient
(gPAT ), recipient (gRCP ) and location (gLOC),
to allow them to generalize across different ac-
tions. The second component contains informa-
tion from the most recent user utterance, u =
{ut, ua, uPAT , uRCP , uLOC}. Here, ut is the type
of the utterance – affirmation, denial, providing in-
formation about a complete action, or providing
information about a specific argument. The com-
ponents ua, uPAT , uRCP and uLOC respectively
refer to the action, patient, recipient and location
mentioned in the most recent user utterance, any
of which can be null. This representation allows
the method to be applicable to any action that can
be expressed using up to 3 arguments.

After every user response, a beam of possi-
ble choices for u can be obtained by grounding
the beam of top-ranked parses from the semantic
parser. Semantic type-checking is used to disal-
low violations such as alice serving as the lo-
cation argument of a navigation. However, there
are a large number of possible values for g and
we use the idea of partitions (Young et al., 2010)
to track their probabilities in a tractable manner.
A partition is a set of possible goals g(i) which
are equally probable given the conversation so far.
The probability of a partition is the sum of prob-
abilities of all goals in the partition. Initially, all
goals are in a single partition of probability 1.

When an utterance hypothesis u is obtained, ev-
ery partition currently maintained is split if needed
into partitions that are either completely consistent
or inconsistent with u. For example, if a partition
p has goals containing both navigation and deliv-

ery actions, and u specifies a delivery action, p
will have to be split into one partition p1 with all
the navigation goals and another partition p2 with
all the delivery goals. The probability mass of p
is divided between p1 and p2 in proportion to their
sizes, to maintain the invariant that the probabil-
ity of a partition is the sum of the probabilities of
the goals contained in it. Then, given the previous
system action m, The belief b(p,u) is calculated
as in the HIS model as follows

b(p,u) = k ∗P (u)∗T (m,u)∗M(u,m, p)∗ b(p)
Here, P (u) is the probability of the utterance hy-
pothesis u given the user response, which is ob-
tained from the semantic parser. T (m,u) is the
probability that the type of the utterance hypothe-
sis ut is compatible with the previous system ac-
tion m, for example, if the system asks for the con-
firmation of a goal, the expected type of response
is either affirmation or denial. This is determined
by system parameters. M(u,m, p) is a 0-1 value
indicating whether the action and argument values
mentioned in the utterance, system action, and par-
tition agree with each other (an example of where
they do not is an utterance mentioning an action
not present in any goal in the partition) and b(p)
is the belief of partition p before the update, ob-
tained by marginalizing out u from b(p,u). k is a
normalization constant that allows the expression
to become a valid probability distribution. We also
track the number of dialog turns so far.

The belief state is a distribution over all possi-
ble hypotheses given the conversation so far. The
HIS model allows tracking probabilities of the po-
tentially large number of hypotheses. However, it
is difficult to learn a policy over this large a state
space in a reasonable number of dialogs. Thus,
we learn a dialog policy over a summary state as
in previous work (Young et al., 2010; Gašić and
Young, 2014). Table 2 contains the features used
to learn the policy. Also, the policy is learned over
abstract dialog acts (ask user to rephrase the en-
tire goal, ask for a specific parameter, confirm a
full/partial goal, execute a goal), which are con-
verted to a system response by using parameters
from the most likely hypothesis.

It is important to note that while only the top
two hypotheses are used by the policy to choose
the next action, it is useful to maintain the belief of
all hypotheses because a hypothesis that is initially
of low probability may become the most probable
after additional turns of dialog.
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Probability of top hypothesis
Probability of second hypothesis
Number of goals allowed by the partition in the top hy-
pothesis
Number of parameters of the partition in the top hypoth-
esis, required by its action, that are uncertain (set to the
maximum value if there is more than one possible ac-
tion)
Number of dialog turns used so far
Do the top and second hypothesis use the same partition
(0-1)
Type of last user utterance
Action of the partition in the top hypothesis, or null if
this is not unique

Table 2: Features used in summary space

The choice of policy learning algorithm is im-
portant because learning POMDP policies is chal-
lenging and dialog applications exhibit proper-
ties not often encountered in other reinforcement
learning applications (Daubigney et al., 2012).
We use KTD-Q (Kalman Temporal Difference Q-
learning (Geist and Pietquin, 2010)) to learn the
dialog policy as it was designed to satisfy some of
these properties and tested in a dialog system with
simulated users (Pietquin et al., 2011). The prop-
erties we wished to be satisfied by the algorithm
were the following:

• Low sample complexity in order to learn
from limited user interaction.

• An off-policy algorithm to enable the use
of existing dialog corpora to bootstrap the
system, and crowdsourcing platforms such
as Amazon Mechanical Turk during training
and evaluation.

• A model-free rather than a model-based al-
gorithm because it is difficult to design a
good transition and observation model for
this problem (Daubigney et al., 2012).

• Robustness to non-stationarity because the
underlying language understanding compo-
nent changes with time (Section 5.1), which
is likely to change state transitions.

To learn the policy, we provided a high positive re-
ward for correct completion of the task and a high
negative reward when the robot chose to execute
an incorrect action, or if the user terminated the
dialog before the robot was confident about taking
an action. The system was also given a per-turn
reward of −1 to encourage shorter dialogs.

6 Experimental Evaluation

The learning methods described above were ap-
plied to improve an initial dialog system using
weak supervision from dialog interaction with real
users. The dialog system was initialized using
data from the conversation logs of Thomason et
al. (2015), which also consist of interactions be-
tween a human user and a robot to which a high-
level command must be communicated, and which
asks clarifying questions when attempting to un-
derstand the dialog.

6.1 Initialization

The semantic parser was initialized using a small
seed lexicon and trained on a small set of super-
vised examples constructed using templates for
commands gathered from the conversation logs.
While the parser can be used even if initialized us-
ing only a handful of hand-coded training exam-
ples, the increased robustness obtained by training
on templated sentences results in less frustrating
interaction during initial dialogs.

The RL component was first initialized with a
Q-function approximation of the hand-coded pol-
icy of Thomason et al. (2015). The hand-coded
policy was encoded in the form of if-then rules
and had to be mapped to a Q-function appropriate
for the KTD-Q algorithm, which assumes the Q-
function is a probability distribution with a mean
that is a linear function of the feature space. We
obtain a set of “training points” for these linear
weights by densely sampling the feature space.
The hand coded policy is then used to identify
the correct action for each of these feature vectors.
The target for a training point is a high positive Q
value when combined with the correct action and
a 0 value when combined with any incorrect ac-
tion. The weights were then initialized using lin-
ear regression over these examples. Finally, we
trained the system on the above mentioned con-
versation logs, improving both the initial POMDP
dialog policy and the semantic parser.

The simplest alternative to such an initialization
would be to initialize the policy at random, but this
would lead to a large number of frustrating dialogs
before the system learns a reasonable policy. This
can be avoided by training with a simulated user
agent. However, such agents are not always real-
istic and their design requires parameters to be set
ideally from existing conversation logs. However,
since we use an off-policy algorithm, it is easier to
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train it directly from conversation logs, rather than
develop a sufficiently realistic simulated agent.

Since the KTD-Q algorithm is off-policy, it can
be trained using tuples containing the belief state,
action taken, next belief state, and reward obtained
from these logs. We update the policy using such
tuples both in the initial training phase from exist-
ing conversation logs, and when updating the pol-
icy after collecting batches of conversations in our
experiments.

6.2 Platform and setup
Our experiments were done through Mechanical
Turk as in previous work (Thomason et al., 2015;
Wen et al., 2016). During the training phase, each
user interacted with one of four dialog agents (de-
scribed in section 6.3), selected uniformly at ran-
dom. Users were not told of the presence of mul-
tiple agents and were not aware of which agent
they were interacting with. They were given a
prompt for either a navigation or delivery task and
were asked to have a conversation with the agent
to accomplish the given task. No restrictions were
placed on the language they could employ. We
use visual prompts for the tasks to avoid linguistic
priming (e.g. a picture of a hamburger instead of
the word “hamburger”). Before users could begin
the task, we used a validation step to ensure they
were sufficiently fluent in English and understood
the objectives of the task. Training dialogs were
acquired in 4 batches of 50 dialogs each across all
agents. After each batch, agents were updated as
described in section 6.3.

A final set of 100 test conversations were then
conducted between Mechanical Turk users and the
trained agents. These test tasks were novel in
comparison to the training data in that although
they used the same set of possible actions and ar-
gument values, the same combination of action
and argument values had not been seen at train-
ing time. For example, if one of the test tasks in-
volved delivery of a hamburger to alice, then
there may have been tasks in the training set to de-
liver a hamburger to other people and there may
have been tasks to deliver other items to alice,
but there was no task that involved delivery of a
hamburger to alice specifically.

6.3 Dialog agents
We compared four dialog agents. The first agent
performed only parser learning (described in Sec-
tion 5.1). Its dialog policy was always kept to be a

hand coded dialog policy similar to that of Thoma-
son et al. (2015). This was the same hand-coded
policy used to initialize the weights of the KTD-
Q algorithm. Its parser was incrementally updated
after each training batch. This agent is similar to
the system used by Thomason et al. (2015) ex-
cept that it uses the same state space as our other
agents, to ensure that any differences in perfor-
mance are not due to access to less information.
Further, while Thomason et al. (2015) use only the
top hypothesis from the parser to update the belief
state, our agent uses a beam of parses, again to be
more comparable to our other agents. In supple-
mentary material, we also include an experiment
which demonstrates that using multiple hypothe-
ses from the semantic parser is more beneficial
than using only a single one.

The second agent performed only dialog strat-
egy learning. Its parser was always kept to be the
initial parser that all agents started out with. Its
policy was incrementally updated after each train-
ing batch using the KTD-Q algorithm. The third
agent performed both parser and dialog learning;
but instead of incrementally updating the parser
and policy after each batch, they were trained at
the end of the training phase using dialogs across
all batches. This would not allow the dialog
manager to see updated versions of the parser in
batches after the first and adapt the policy towards
the improving parser. We refer to this as full learn-
ing of parser and dialog policy. The fourth agent
also performed both parser and dialog learning. Its
parser and policy were updated incrementally af-
ter each training batch. Thus for the next training
batch, the changes due to the improvement in the
parser from the previous batch could, in theory, be
demonstrated in the dialogs and hence contribute
towards updating the policy in a manner consistent
with it. We refer to this as batchwise learning of
parser and dialog policy.

We did not include a system that performs no
learning on either the parser or policy because it
was shown by Thomason et al. (2015) that parser
learning combined with a simple hand-coded pol-
icy outperforms this. We also did not attempt to
update both parser and policy after each dialog
because this forces all dialogs to be conducted in
sequence, which does not allow us to fully lever-
age crowdsourcing platforms such as Mechanical
Turk.
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6.4 Experiment hypothesis

We hypothesized that the agent performing batch-
wise parser and policy learning would outperform
the agents performing only parser or only dialog
learning as we expect that improving both com-
ponents is more beneficial. However, we did not
necessarily expect the same result from full parser
and dialog learning because it did not provide any
chance to allow updates to propagate even indi-
rectly from one component to another, exposing
the RL algorithm to a more non-stationary en-
vironment. Hence, we also expected batchwise
learning to outperform full learning.

6.5 Results and Discussion

The agents were evaluated on the test set using the
following objective performance metrics: the frac-
tion of successful dialogs (see 5) and the length of
successful dialogs. We also included a survey at
the end of the task asking users to rate on a 1–
5 scale whether the robot understood them, and
whether they felt the robot asked sensible ques-
tions.

Learning
involved

% suc-
cessful
dialogs

Avg
dialog
length

Robot
under-
stood

Sensible
ques-
tions

Parser 75 12.43 2.93 2.79
Dialog 59 11.73 2.55 2.91
Parser & Dia-
log - full

72 12.76 2.79 3.28

Parser & Di-
alog - batch-
wise

78 10.61 3.30 3.17

Table 3: Performance metrics for dialog agents
tested. Differences in dialog success and subjec-
tive metrics are statistically significant according
to an unpaired t-test with p < 0.05.

Table 3 gives the agents’ performance on these
metrics. All differences in dialog success and the
subjective metrics are statistically significant ac-
cording to an unpaired t-test with p < 0.05. In
dialog length, the improvement of the batchwise
learning agent over the agents performing only
parser or only dialog learning are statistically sig-
nificant.

As expected, the agent performing batchwise
parser and dialog learning outperforms the agents
performing only parser or only dialog learning, in
the latter case by a large margin. We believe the
agent performing only parser learning performs
much better than the agent performing only dialog

learning due to the relatively high sample com-
plexity of reinforcement learning algorithms in
general, especially in the partially observable set-
ting. In contrast, the parser changes considerably
even from a small number of examples. Also, we
observe that full learning of both components does
not in fact outperform only parser learning. We
believe this is because the distribution of hypothe-
ses obtained using the initial parser at training time
is substantially different from that obtained using
the updated parser at test time. We believe that
batchwise training mitigates this problem because
the distribution of hypotheses changes after each
batch of training and the policy when updated at
these points can adapt to some of these changes.
The optimal size of the batch is a question for fur-
ther experimentation. Using a larger batch is less
likely to overfit updates to a single example but
breaking the total budget of training dialogs into
more batches allows the RL algorithm to see less
drastic changes in the distribution of hypotheses
from the parser.

We include an experiment in the supplementary
material that quantifies the accuracy improvement
of the parsers after training from dialogs. It is
more difficult to quantitatively compare the poli-
cies before and after learning. Qualitatively, one of
the noticeable differences is that the system tends
to confirm or act upon lower probability hypothe-
ses than is recommended by the initial hand-coded
policy. This is possibly because as the parser im-
proves, its top hypotheses are more likely to be
correct, even if they are associated with a lower
confidence score from the parser. A demonstration
of this can be seen in tables 4 and 5. The learned
policy results in a shorter dialog in the same sit-
uation because it allows the agent to act upon a
hypothesis of lower probability. Also, the learned
policy is stochastic, which is very helpful when
the agent is not able to understand the user at all.
For example, if the agent is unable to parse any of
the initial instructions from the user, under a hand-
coded policy, as its state has not changed, it would
continue to repeat the question it had asked ear-
lier, which prevents it from making any progress.
However, in a stochastic policy, other more spe-
cific questions are likely to be substituted in be-
tween, and responses to these may allow the agent
to make progress, which increases dialog success
(table 6).
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7 Conclusions

In this work, we have demonstrated that continu-
ous dialog strategy learning and semantic parser
learning can be successfully combined in a dia-
log system to enable an agent to better understand
commands provided in natural language. Both the
semantic parser and the dialog strategy can be au-
tomatically improved simultaneously using weak
feedback provided during interaction with users
rather than manually-labeled or artificially con-
structed training data. Ongoing parser learning
could have confused the RL dialog learner by al-
tering the underlying language understanding sys-
tem while it was searching for an effective dialog
policy. However, our results show that by using an
appropriate RL algorithm and batchwise training
regimen, this potential difficulty can be avoided,
and both language understanding and dialog man-
agement can be improved simultaneously.

Acknowledgements

We would like to thank the members of the UT
Austin BWI group for several insightful discus-
sions, and Subhashini Venugopalan for her help
with revising the paper draft. This research was
supported by NSF EAGER (IIS-1548567) and
NRI (IIS-1637736) grants.

Table 4: The robot following the learned policy
takes the action despite the lower confidence, lead-
ing to a shorter dialog.

ROBOT How can I help?
USER bring the hamburger to peggy
ROBOT What would you like me to bring?
USER the hamburger

The robot brought a hamburger to Peggy.
ROBOT Was this the correct action?
USER yes

Table 5: The robot following the hand-coded pol-
icy confirms the action before taking it, leading to
a longer dialog.

ROBOT How can I help?
USER bring the hamburger to peggy
ROBOT What would you like me to bring?
USER the hamburger
ROBOT You want me to bring hamburger for Peggy?
USER yes

The robot brought a hamburger to Peggy.
ROBOT Was this the correct action?
USER yes

Table 6: An example where a stochastic policy
helps when the robot is unable to understand a full
command.

ROBOT How can I help?
USER bring evelyn a coffee
ROBOT Sorry I couldn’t understand that. Could you re-

word your original request?
USER bring evelyn a cup of coffee
ROBOT You want me to bring coffee for someone?
USER yes
ROBOT Whom would you like me to bring coffee to?
USER evelyn
ROBOT Whom would you like me to bring coffee to?
USER eve
ROBOT I brought coffee to Eve. Was this the correct

action?
USER yes
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Pei-Hao Su, David Vandyke, and Steve Young.
2015. Semantically Conditioned LSTM-based Nat-
ural Language Generation for Spoken Dialogue Sys-
tems. In Proceedings of the 2015 Conference on
Empirical Methods for Natural Language Process-
ing (EMNLP).

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić,
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Supplementary Material

A Improvement in parser accuracy

The following experiment is an attempt to quan-
tify the accuracy of the parsers after training from
dialog. This was done by hand-annotating the se-
mantic forms for commands from the test set used
for the first experiment. The results can be seen
in table 7. The parsers are evaluated in terms of
Recall@1, which is the fraction of times the cor-
rect parse is the top parse predicted by the parser,
and Recall@10, which is the fraction of times the
correct parse occurs in the top 10 parses predicted
by the parser.

Learning involved Recall@1 Recall@10

None 0.564 0.611
Only parser 0.588 0.671*
Only dialog 0.564 0.623
Parser & dialog - full 0.588 0.647 ˆ
Parser & dialog -
batchwise

0.576 0.670*

Table 7: Comparison of performance of initial
parser and parsers after updating various compo-
nents, on paired commands and semantic forms.
∗ indicates that the difference in performance be-
tween this and the Initial parser on the same met-
ric is statistically significant according to a paired
t-test with p < 0.05 and ˆ indicates that the differ-
ence is trending significance (p < 0.1)

.

As expected, we observe that the initial parser
(no learning) and the parser from the system per-
forming only dialog learning, perform worse than
the others, as the other systems update the parser
used by these. The parser of the system perform-
ing only dialog learning is in fact a copy of the
initial parser and was included only for complete-
ness. Any difference in their performance is due
to randomness. The parsers updated from dialogs
improve in accuracy but the differences are found
to be statistically significant only on Recall@10.
The modest improvement is unsurprising given
that the supervision provided is both noisy and
weak. However, as seen in the main paper, even
this modest improvement is sufficient to improve
overall dialog success.

B Importance of multiple parse
hypotheses

Many NLP systems typically return a list of top-
n hypotheses, including semantic parsers. We use

the entire beam of top-n parses when updating the
state. This is expected to be beneficial in cases
where that the correct hypothesis is not the top
ranked but present in this beam. The following ex-
periment demonstrates that using multiple parses
when updating the state improves overall dialog
success. We compared an agent that used the same
parser and policy as in the batchwise training but
only the top ranked parse from the parser to update
its state, as opposed to a beam of parses when up-
dating its state. These two systems differed in no
other components.

Number of parses
considered

% successful
dialogs

Dialog
length

1 0.59 9.17
10 0.64 12.18

Table 8: Comparison of an agent using only the
top hypothesis from the semantic parser and an-
other using the top 10 parses. All differences are
statistically significant according to an unpaired t-
test with p < 0.05.

Table 8 shows the usefulness of considering
multiple hypotheses from the semantic parser. As
expected, the agent using multiple parses performs
the correct action a significantly higher fraction
of times. The system using a single hypothesis
has a shorter average length among its successful
dialogs because it rarely succeeds in more com-
plicated dialogs where the system needs repeated
clarification or answers to multiple specific ques-
tions.
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