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Abstract

Software projects are continually evolving, as developers incorporate changes to refac-
tor code, support new functionality, and fix bugs. To uphold software quality amidst con-
stant changes and also facilitate prompt implementation of critical changes, it is desirable
to have automated tools for guiding developers in making methodical software changes.
We explore tasks and data and design machine learning approaches which leverage natural
language to serve this purpose.

When developers make code changes, they sometimes fail to update the accompanying
natural language comments documenting various aspects of the code, which can lead to
confusion and vulnerability to bugs. We present our completed work on alerting devel-
opers of inconsistent comments upon code changes and suggesting updates by learning
to correlate comments and code.

When a bug is reported, developers engage in a dialogue to collaboratively understand
it and ultimately resolve it. While the solution is likely formulated within the discussion,
it is often buried in a large amount of text, making it difficult to comprehend, which
delays its implementation through the necessary repository changes. To guide developers
in more easily absorbing information relevant towards making these changes and con-
sequently expedite bug resolution, we investigate generating a concise natural language
description of the solution by synthesizing relevant content as it emerges in the discus-
sion. In completed work, we benchmark models for generating solution descriptions and
design a classifier for determining when sufficient context for generating an informative
description becomes available. We also investigate a pipelined approach for real-time
generation, entailing separate classification and generation models.

For future work, we propose an improved classifier and also a more intricate system
that is jointly trained on generation and classification. Next, we intend to study a sys-
tem which can interactively generate natural language descriptions which can drive code
changes. Finally, we plan to investigate how we can leverage the discussion context to
also suggest concrete code changes for bug resolution.

 Ph.D. Proposal. 
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Chapter 1

Introduction

Natural language serves as an important medium for search, documentation, and com-
munication throughout the software development process. Developers search online code
bases using natural language queries when they are trying to find a code implementation
of a particular functionality. They write natural language comments alongside source
code in order to document key aspects of the code. When a software bug is found, a user
opens an issue report, in which developers engage in a natural language dialogue to col-
lectively resolve the bug. To foster the role of natural language in software development,
there is growing interest in building AI-driven tools for various tasks, such as code search
and comment generation.

We present novel tasks, datasets, and machine learning approaches which leverage
natural language to facilitate software evolution. Software projects are highly dynamic in
nature, with developers continually incorporating changes for refactoring code, support-
ing new functionality, and fixing bugs. When projects are collectively developed across
large teams and through agile development practices emphasizing software flexibility, the
number of developers making changes and frequency of these changes increase drastically.
Due to the sheer volume, there is a high risk for overall software quality to deteriorate
as developers may unintentionally introduce potential vulnerabilities when they make
changes. Moreover, from the large mass of changes that need to be made, those that are
the most pressing (e.g., critical bug fixes) can easily get delayed, especially when devel-
opers are preoccupied by their present assignments or are less familiar with the relevant
components of the project. We present ways in which natural language can be used to
guide developers in making more methodical software changes.

For our first goal of upholding software quality upon code changes, we focus on natural
language comments. Many code changes require reciprocal updates to the accompanying
comments to keep them in sync; however, this is not always done in practice. Outdated
comments which inaccurately portray the code they accompany adversely affect the soft-
ware development cycle by causing confusion and misguiding developers, hence making
code vulnerable to bugs. We present our work on just-in-time inconsistency detection
(Chapter 4), for alerting developers of inconsistency immediately upon code changes.
To help them revise comments to reflect these code changes, we investigate generating
recommended comment revisions. For this, we design a framework which learns to cor-
relate changes across two distinct language representations, to generate a sequence of
edits that are applied to the existing comment to reflect the source code modifications
(Chapter 5). We combine the detection and generation models to build a more compre-
hensive automatic comment maintenance system that detects and resolves inconsistencies
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(Chapter 6). To relate code and comments for such cross-modal tasks, we employ a rich
feature set derived from our work in learning explicit associations between entities in a
comment and elements in the corresponding code (Chapter 3).

Next, to address the second goal of driving critical code changes, specifically changes
for resolving bugs threatening software quality, we consider natural language dialogue in
bug report discussions. Bug resolution is often strenuous and time-consuming, involv-
ing extended deliberations among multiple participants, spanning long periods of time.
Although a solution often emerges within the bug report discussion, this can easily get
lost in a large amount of text. Wading through a long discussion to determine whether
a solution has been recommended, comprehending it, and then implementing it through
the necessary code or documentation changes in the code base can be daunting, especially
for developers who are not closely following the discussion. This delays implementation,
and consequently, the bug persists in the code base, threatening the reliability of the soft-
ware. As developers scan through the long discussion, it is desirable to have an automated
system which can guide them to more easily absorb information relevant towards imple-
menting the changes. To address this, we study generating a concise natural language
description of the solution by synthesizing relevant content in the discussion (Chapter 7).
To help quickly mobilize developers for implementation and expedite bug resolution in a
real-time setting, the description should be generated as soon as the necessary context
for generating an informative description emerges in the discussion. For this, we study
a classification task for determining when this context becomes available and conduct
develop a pipelined approach as an initial investigation for a real-time generation system
(Chapter 8).

As our first short-term goal, we propose studying pretrained language models to de-
velop a higher-performing classifier for determining when sufficient context emerges (Sec-
tion 9.1). Next, since generating solution descriptions and classifying whether sufficient
context for generating an informative description are interdependent tasks, our second
short-term goal revolves around building a jointly trained system which allows the two
tasks to complement one another (Section 9.2). This system is designed to generate a
natural language description to guide a developer in implementing a single set of code
changes; however, making code changes is often an iterative process. To support this
process, our first long-term goal is building a system for interactively generating descrip-
tions to guide code changes (Section 10.1). Finally, while a description can provide a
high-level overview of the changes to be implemented, developers must still reason about
how it should manifest as concrete code changes. To help developers with this, we pro-
pose building a system which leverages the discussion context to generate suggested code
changes for bug resolution (Section 10.2).
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Chapter 2

Background and Related Work

2.1. Natural Language + Source Code

There is growing interest in cross-modal tasks, combining various forms of natural lan-
guage (NL) with source code. Code generation for a given NL input is a popular
task (Dong and Lapata, 2016; Lin et al., 2018; Rabinovich et al., 2017; Yin and Neu-
big, 2017; Agashe et al., 2019; Shin et al., 2019; Ye et al., 2020; Sun et al., 2020; Xu
et al., 2020; Wang et al., 2020a; Dahal et al., 2021). Husain et al. (2019), Cambronero
et al. (2019), Zhao and Sun (2020), and Haldar et al. (2020) explore code search based
on NL queries. Prior work examines tasks for generating natural language commit mes-
sages (Loyola et al., 2017; Xu et al., 2019a) and pull request (PR) descriptions (Liu et al.,
2019) to characterize code changes.

There is also extensive work in generating NL descriptions of code. For this, Iyer et al.
(2016), Yao et al. (2018), and Yin et al. (2018) consider StackOverflow question titles
paired with corresponding code snippets in the answers. Allamanis et al. (2016), Xu et al.
(2019b), Alon et al. (2019), and Fernandes et al. (2019) consider method names paired
with method bodies. Sridhara et al. (2011), Sridhara et al. (2010), Movshovitz-Attias and
Cohen (2013), Hu et al. (2018), Liang and Zhu (2018), LeClair et al. (2019), Fernandes
et al. (2019), Ahmad et al. (2020), and Yu et al. (2020) consider comments paired with
methods or classes.

2.2. Source Code Comments

Natural language comments appear alongside source code in the form of single-line com-
ments, block comments, and documentation comments for classes and methods (Oracle,
2021). Comments document various aspects of code, including functionality, usage, im-
plementation, and error cases (Pascarella and Bacchelli, 2017). Comments are critical
for program readability (Tenny, 1988) and comprehension (Woodfield et al., 1981), and
consequently, software maintenance (Oman and Hagemeister, 1992).

There have been some efforts to model granular associations between natural language
and source code. Li and Boyer (2015, 2016) ground noun phrases within an educational
dialogue system to a programming environment and Liu et al. (2018a) link different
change intents contained in a single commit message to source code files in a software
project which have changed within the commit. However, there is very limited work
which studies such associations between comments and source code. While there is work
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that maps a single source code component (e.g., class, method, statement) to a comment
based on distance metrics and other simple heuristics (Fluri et al., 2007), this does not
capture the more fine-grained associations, which we study in Chapter 3.

2.3. Software Evolution

To quickly deliver software to users, software teams generally prioritize implementing the
simplest solution to meet current needs rather than designing a more involved solution
which anticipates future needs (Turk et al., 2005). Such a strategy requires a high degree
of flexibility, as developers must be able to adapt the software when new requirements
emerge in the future, for improving or extending existing functionality, enhancing perfor-
mance, or making it compatible with new environments (Lehman and Fernáandez-Ramil,
2006). In addition to adding code for addressing these requirements, developers must also
refactor existing code to be able to efficiently integrate the new code (Nyamawe et al.,
2019). Efforts to resolve defects causing unintended behavior, or bugs (Murphy-Hill et al.,
2015), also contribute to software evolution. Bugs form as a result of faulty code, invalid
assumptions, or incompatibility to external dependencies (Rodŕıguez-Pérez et al., 2020).

Recently, there is growing work in modeling code changes for facilitating software
evolution. Yin et al. (2019) and Hoang et al. (2020) aim to learn vector representations for
common code change patterns, and Chakraborty et al. (2020) and Yao et al. (2021) focus
on learning to apply common code edits. There have also been efforts to address more
specialized forms of code editing, including bug fixing (Kim et al., 2013; Ke et al., 2015;
Le et al., 2017, 2016; Le Goues et al., 2012; Tufano et al., 2019b), resolving compilation
errors (Campbell et al., 2014; Gupta et al., 2017; Mesbah et al., 2019; Tarlow et al., 2020),
refactoring (Tansey and Tilevich, 2008; Raychev et al., 2013; Ge et al., 2012; Meng et al.,
2015), and suggesting API-related edits (Nguyen et al., 2010, 2016). Brody et al. (2020)
and Foster et al. (2012) study the task of predicting edit completions for partially edited
code snippets and Miltner et al. (2019) put forth edit suggestions by observing repetitive
edits made by the user.

2.4. Comment/Code Inconsistency

As source code evolves, the accompanying comments must be updated accordingly; how-
ever, developers often fail to do this (Wen et al., 2019; Fluri et al., 2009; Ratol and
Robillard, 2017; Jiang and Hassan, 2006; Zhou et al., 2017; Tan et al., 2007). Outdated
comments lead to confusion (Wen et al., 2019; Jiang and Hassan, 2006; Tan et al., 2007;
Zhou et al., 2017) and vulnerability to bugs (Jiang and Hassan, 2006; Tan et al., 2007;
Ibrahim et al., 2012). Prior work analyze how inconsistencies emerge (Fluri et al., 2009;
Jiang and Hassan, 2006; Ibrahim et al., 2012; Fluri et al., 2007) and the various types of
inconsistencies (Wen et al., 2019).

To address this, prior work propose rule-based approaches for detecting pre-existing
inconsistencies in specific domains, including locks (Tan et al., 2007), interrupts (Tan
et al., 2011), null exceptions for method parameters (Zhou et al., 2017; Tan et al.,
2012), and renamed identifiers (Ratol and Robillard, 2017). The comments they consider
are consequently constrained to certain templates relevant to their respective domains.
Corazza et al. (2018) and Cimasa et al. (2019) address a broader notion of coherence
between comments and code through text-similarity techniques, and Khamis et al. (2010)

6



determine whether comments, specifically @return and @param comments, conform to
particular format. Rabbi and Siddik (2020) propose a siamese network for correlating
comment and code representations for this task.

There have also been some efforts for performing inconsistency detection upon code
changes. Liu et al. (2018b) detect inconsistencies in a block/line comment upon changes to
the corresponding code snippet using a random forest classifier with hand-engineered fea-
tures. Stulova et al. (2020) concurrently present a preliminary study of an approach which
maps a comment to the AST nodes of the method signature (before the code change) us-
ing BOW-based similarity metrics. This mapping is used to determine whether the code
changes have triggered a comment inconsistency. Malik et al. (2008) predict whether a
comment will be updated using a random forest classifier utilizing surface features that
capture aspects of the method that is changed, the change itself, and ownership. They
do not consider the existing comment since their focus is not inconsistency detection;
instead, they aim to understand the rationale behind comment updating practices by
analyzing useful features. Sadu (2019) develops at approach which locates inconsistent
identifiers upon code changes through lexical matching rules. Svensson (2015) builds a
system to mitigate the damage of inconsistent comments by prompting developers to
validate a comment upon code changes. Comments that are not validated are identi-
fied, indicating that they may be out of date and unreliable. Nie et al. (2019) present a
framework for maintaining consistency between code and todo comments by performing
actions described in such comments when code changes trigger the specified conditions
to be satisfied.

2.5. Bug Report Discussions

Software bugs that are observed in open-source projects are reported through bug and
issue tracking systems like Bugzilla, Jira, and GitHub Issues. When a bug report is
opened, developers engage in a discussion by posting comments to collectively under-
stand the problem, diagnose the cause, and ultimately devise a solution (Arya et al.,
2019; Noyori et al., 2019). The discussion can often be very long (Liu et al., 2020), en-
compassing comments from a number of different participants (Kavaler et al., 2017), and
this deliberation can go on for extended periods of time (Kikas et al., 2015). Following
the discussion, the bug is generally resolved by implementing the solution through code
changes in the project’s code base (Zhang et al., 2012). These changes can be imple-
mented by core project members and other active contributors (Ye and Kishida, 2003),
or less active developers, including peripheral developers (Krishnamurthy et al., 2016)
and first-time contributors (Tan et al., 2020).

There have been a number of tasks that were proposed in order to streamline this pro-
cess and consequently expedite bug resolution. This includes predicting severity (Lamkanfi
et al., 2010; Chaturvedi and Singh, 2012; Tian et al., 2012a; Yang et al., 2014; Gomes
et al., 2019; Arokiam and Bradbury, 2020), determining validity (Fan et al., 2020; He
et al., 2020), detecting duplication (Tian et al., 2012b; Lazar et al., 2014; Aggarwal et al.,
2015; Hindle and Onuczko, 2019), assigning relevant developers (Anvik, 2006; Baysal
et al., 2009; Xi et al., 2018; Baloch et al., 2021), categorizing reports (Huang et al., 2011;
Thung et al., 2012), and localizing the relevant “buggy” code within the code base (Saha
et al., 2013; Rahman and Roy, 2018; Loyola et al., 2018; Zhu et al., 2020). There have
also been efforts to better understand the contents of bug report discussions through
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sentiment analysis (Ding et al., 2018; Destefanis et al., 2018), language complexity analy-
sis (Kavaler et al., 2017), summarization (Rastkar et al., 2014; Jiang et al., 2017; Li et al.,
2018b; Liu et al., 2020), and dialogue act classification (Enayet and Sukthankar, 2020).

2.6. Dialogue + Software

There have been very limited work in building interactive AI tools for software engi-
neering, with the exception of a few for a handful of tasks. This includes code gen-
eration (Chaurasia and Mooney, 2017; Gur et al., 2018; Yao et al., 2019) and query
refinement for code search (Zhang et al., 2020). Wood et al. (2018) recently built a
software-related dialogue corpus through a “Wizard of Oz” experiment to study the po-
tential of a Q&A assistant during bug fixing. Lowe et al. (2015) developed a dialogue
corpus based on Ubuntu chat logs to study Q&A assistants for technical support. Bradley
et al. (2018) designed a voice-controlled conversational developer assistant which auto-
mates a sequence of low-level actions (e.g., Git commands) based on high-level intent,
provided by the user.

2.7. Code Representations

To perform well on code-related tasks, neural models must learn to understand and
generate source code representations. Some have represented code as a simple sequence
of tokens (Iyer et al., 2016; Tufano et al., 2019b; Ahmad et al., 2020) while others have
considered capturing structural properties of code (i.e., abstract syntax tree (AST), data
flow, control flow) through tree-based (Rabinovich et al., 2017; Yin and Neubig, 2017;
Alon et al., 2019, 2020; Sun et al., 2020; Chen et al., 2019; Wang et al., 2020b; Bui et al.,
2021) and graph-based (Nguyen and Nguyen, 2015; Li et al., 2016; Allamanis et al., 2018b;
Hellendoorn et al., 2020; Tarlow et al., 2020; Wang et al., 2020c; Mehrotra et al., 2021;
Wei et al., 2020; LeClair et al., 2020; Abdelaziz et al., 2020; Yasunaga and Liang, 2020;
Nair et al., 2020; Cummins et al., 2021) neural approaches.

With large pretrained language models leading to remarkable progress for numer-
ous downstream tasks in NLP, it is no surprise that there are growing efforts to build
analogous models for code. Following the ELMo framework (Peters et al., 2018), Karam-
patsis and Sutton (2020b) developed SCELMo. C-BERT (Buratti et al., 2020), Cu-
BERT (Kanade et al., 2020), CodeBERT (Feng et al., 2020), GraphCodeBERT (Guo
et al., 2021), and TreeBERT (Jiang et al., 2021b) all apply BERT-like (Devlin et al.,
2019) training objectives to large amounts of code (and documentation in some cases)
extracted from GitHub. PyMT5 (Clement et al., 2020) is pretrained much like T5 (Raf-
fel et al., 2020). Ahmad et al. (2021) proposed PLBART, which was pretrained on a
large amount of code from GitHub and software-related text from StackOverflow using
BART-like (Lewis et al., 2020) training objectives. Inspired by GPT-2 (Radford et al.,
2019), Svyatkovskiy et al. (2020) built GPT-C, and Lu et al. (2021) built CodeGPT.
More recently, Chen et al. (2021) fine-tuned GPT-3 (Brown et al., 2020) on data from
millions of GitHub repos to build Codex, which powers GitHub Copilot1.

1https://copilot.github.com/
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2.8. Handling Noise in Online Code Repositories

Though online code bases like GitHub and StackOverflow offer large volumes of data
for code-related tasks, this data is often noisy (Allamanis, 2019; Yin et al., 2018). For
instance, automatically collected data for the task of commit message generation can
consist of poorly written commit messages (Etemadi and Monperrus, 2020). While deep
learning models are robust to some level of noise, the garbage in, garbage out principle
still holds (Geiger et al., 2020), in which having a large number of noisy examples im-
pairs a model’s ability to learn. So, training a model on too many examples with poor
target commit messages can result in the model learning to generate low-quality commit
messages. For more effective supervision and also for more accurate evaluation, automat-
ically mined data from online code bases often need to be filtered to reduce noise. Iyer
et al. (2016), Yin et al. (2018), and Yao et al. (2018) trained classifiers for this purpose
on a manually annotated subset of data. Others filtered data using various task-specific
heuristics (Allamanis et al., 2016; Hu et al., 2018; Fernandes et al., 2019; Allamanis,
2019). For instance, Allamanis et al. (2016) discard overridden methods for the task of
method naming due to them having repetitive names.

2.9. Subtokenization

Source code often contains user-defined tokens, which causes the open vocabulary prob-
lem in this domain (Cvitkovic et al., 2019). Developers often write a code token as a
combination of multiple subtokens which are conjoined through various techniques such
as camel case (e.g., camelCase) and snake case (e.g., snake case). By splitting a token
into its subtokens (e.g., camelCase → camel, case; snake case → snake, case), we are
able to handle previously unseen tokens by exploiting patterns associated with individual
subtokens, which are more likely to be seen. Moreover, even for tokens that are previously
known, there may be substantial benefit in capitalizing on their composability in order
to aggregate knowledge about their individual components and obtain a more compre-
hensive understanding. Subtokenization is used extensively in this domain for a number
of different tasks (Allamanis et al., 2016; Alon et al., 2019; Fernandes et al., 2019).
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Chapter 3

Associating Natural Language Comment and

Source Code Entities

To keep comments in sync with the corresponding body of code, inconsistent comments
which materialize as a result of code changes should be quickly detected and updated.
Inconsistencies often emerge as a result of discrepancy between certain comment entities
and certain code entities that have changed. In order to determine whether a particular
comment entity becomes inconsistent upon changes to certain code entities and also how
it should be updated to reflect these changes, we formulate a novel task which aims to
learn explicit associations between entities in a comment and entities in the corresponding
code. To perform this task, we design a set of highly salient features, which we later show
to be useful for comment inconsistency detection (Chapter 4) and update (Chapter 5).
Full details of this work are available in Panthaplackel et al. (2020a).

3.1. Task

Given a noun phrase (NP) in a comment, the task is to classify the relationship between
the NP and each candidate code token in the corresponding source code as either asso-
ciated or not associated. The candidate set includes all tokens other than select Java
keywords (e.g., try, public, throw), operators (e.g., =), and symbols (e.g., brackets,
parentheses). These elements are related to the programming language syntax and are
commonly not described in comments. For instance, in Figure 3.1a, the tokens int,
opcode, and currentBC are associated with the NP “the current bytecode” but int (the
return type), setBCI, and nextBCI are not.

This task shares similarities with anaphora resolution in natural language texts, in-
cluding ones that explicitly refer to antecedents (coreference) as well as ones linked by
associative relations (bridging anaphora) (Mitkov, 1999). In such a setting, the selected
noun phrase within the comment is the anaphor, and tokens belonging to the source code
serve as candidate antecedents. However our task is distinct from either in that it requires
reasoning with respect to two different modalities (Allamanis et al., 2015; Loyola et al.,
2017; Allamanis et al., 2018a). In Figure 3.1b, “problems” explicitly refers to e, but we
need to know that InterruptedException is its type, which is a kind of Exception, and
that Exception is a programming term for “problems.”

Further, in our setting, an NP in the comment could be associated with multiple,
distinct elements in the source code that do not belong to the same “chain.” For these
reasons, we frame our task broadly as associating a noun phrase in a natural language
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(a) Example from adriaanm-maxine-
mirror.

(b) Example from node-sharing-plugin.

Figure 3.1: Examples of comment-code associations, with the boxed/bolded tokens in the code
being associated with the underlined NP in the comment.

comment with individual code tokens in the corresponding body of code.

3.2. Data

As an initial step towards learning these associations, we focus on Javadoc @return1

comments, which serve to describe the return type and potential return values that are
dependent on various conditions within a given method. Since these comments describe
the output, which is computed by the various statements that make up the method, we
find them to provide a fairly comprehensive overview of functionality. We also observe
that @return comments tend to be more structured than other forms of comments,
making it a cleaner data source and consequently, a reasonable starting point for the
proposed task. We construct a dataset by extracting examples from all commits of
popular open-source projects on GitHub. We rank the projects by the number of stars,
and used the top ∼1,000 projects, as they are considered to be of higher quality (Jarczyk
et al., 2014). Each example we extract consists of a code change to a method body as
well as a change to the corresponding @return comment.

3.2.1. Noisy Supervision

The core idea of our noisy supervision extraction method is to utilize revision histories
from software version control systems (e.g., Git), based on prior research showing that
source code and comments co-evolve (Fluri et al., 2007). Entities in comments have a
higher chance of being associated with entities in source code if they were edited “at the
same time”, which can be approximated by “at the same commit”. Therefore, mining
such co-edits allow us to obtain noisy supervision for this task: we use the version control
system Git to isolate parts of the code and comment that are added and deleted together.

We assign noisy labels to code tokens based on the intuition that parts of the code
that are added are likely associated with the parts of the comment which are also added.
Namely, we label code tokens in added lines in a given commit as associated with the NP
that is introduced in the comment within the same commit, and we label all other code

1https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
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/∗∗
-.. * @return the opcode of the next bytecode
+.. * @return the opcode of the current bytecode

∗/
public int next() {

+....... final int opcode = currentBC();
setBCI( nextBCI);

-....... return currentBC();
+....... return opcode;
}

(a) Diff

-... * @return the opcode of the next
bytecode

public int next() {
setBCI( nextBCI);

-....... return currentBC();
}

(b) Before commit

+.. * @return the opcode of the current bytecode

public int next() {
+....... final int opcode = currentBC();

setBCI( nextBCI);
+....... return opcode;
}

(c) After commit

Figure 3.2: Diff from a commit of the adriaanm-maxine-mirror project. Green lines starting
with ‘+’: added content; red lines starting with ‘-’: removed. Based on the supervision provided
by the diff, in Figure 3.2c, the bolded code tokens are automatically labeled as associated with
the underlined NP in the comment.

tokens as not associated with the NP. These positive labels are noisy since a developer
may also make other code changes that are not necessarily relevant to the NP that is
added. On the other hand, the negative labels (not associated) have minimal noise, since
code tokens in lines that are retained from the previous version of the code are unlikely
to be associated with an NP that does not exist in the previous version of the comment.

3.2.2. Preprocessing and Filtering

We examine the two versions of the code and comment in a commit: before commit and
after commit. We extract NPs from the two versions of the comments and compute their
diff. We also compute the diff between the two versions of the code. We show these diffs
in Figure 3.2, with added lines marked with “+” and deleted lines marked with “-”.

Candidate Code Tokens
Examples Total Unique Average

Train 776 23,188 5,908 29.9
Valid 77 2,488 911 32.3
Test 117 3,592 1,266 30.7

Table 3.1: Dataset statistics

From the diffs, we identify NPs
which are unique to the after version
of the comment and code tokens in the
added lines of the after version of the
code, and we obtain a pair in the form
(NPs, associated code tokens). We to-
kenize the full code sequence in the
method corresponding to the after ver-
sion and label any token that is not present in the associated code tokens as not associated.
Following this procedure, each example consists of an NP and a sequence of labelled code
tokens.
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After manually inspecting 200 examples, we impose constraints to filter out trivial
cases, duplicates, and noisy examples, much like prior work (Section 2.8). Upon filtering,
we partition our dataset into training, validation and test, as shown in Table 3.1.

The 117 examples in the test set were annotated by the first author. During pilot
studies, two annotators jointly examined a sample set of method/comment pairs before
converging on the criteria that were used for annotation. The standards used to identify
a code token as associated include: whether it is directly referred to by the NP; it is an
attribute, type, or method corresponding to the entity referred to by the NP; it is set
equal to the entity referred to by the NP; and if an update to the NP would be required
if the token is changed. To assess the quality of the annotations, we asked a graduate
student, who is not one of the authors and has 5 years of Java experience, to annotate
286 code tokens (from 25 examples in the test set) that are labeled associated under the
noisy supervision. The Cohen’s kappa score between the two sets of annotations is 0.713,
indicating satisfactory agreement.

3.3. Representations and Features

We design a set of features that encompasses surface features, word representations, code
token representations, cosine similarity between terms, code structure, and the Java API.
Our models leverage the 1,852-dimensional feature vector that results from concatenating
these features.

Surface features: We incorporate two binary features, subtoken matching and pres-
ence in return statement, which we also use in two of the baseline models that are dis-
cussed in the next section. The subtoken matching feature indicates that a candidate
code token matches exactly with a component of the given noun phrase, at the token-level
or subtoken-level (ignoring case). The presence in return line feature indicates whether
a candidate code token appears in a return statement or matches exactly with any token
that appears in a return statement.

Word and code token representations: In order to derive representations of terms
in the comment and code, we pre-train character-level and word-level embeddings for
the comment and character-level, subtoken-level, and token-level embeddings for the
code. These 128-dimensional embeddings are trained on a much larger corpus, consisting
of 128,168 @return tag/Java method pairs that are extracted from GitHub. The pre-
training task is to generate @return comments for Java methods using a single-layer,
unidirectional sequence-to-sequence model (Sutskever et al., 2014). We use averaged
embeddings to derive representations for the NP and candidate code token. Additionally,
in order to provide a meaningful context, we average the embeddings corresponding to
the full @return comment as well as the embeddings corresponding to the tokens in the
same line in which the candidate token appears.

Cosine similarity: Recent work has used joint vector spaces for code/natural language
description pairs and has shown that a body of code and its corresponding description
have similar vectors (Gu et al., 2018). Since the content of @return comments often
mention entities in the code, rather than modeling a joint vector space, we project the
NP into the same vector space of the code by computing its vector representations with
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respect to the embeddings trained on Java code. We then compute the cosine similarity
between the NP and the candidate code token at the token-level, subtoken-level, and
character-level. The same procedure is followed to compute the cosine similarity between
the NP and the line in the code on which the candidate code token appears.

Code structure: An abstract syntax tree (AST) captures the syntactic structure of
a given body of code in tree form, as defined by Java’s grammar. In order to represent
properties of the candidate code token with respect to the overall structure of the method,
we extract the node types of its parent and grandparent in the AST and represent them
with one-hot encodings. This provides deeper insight into the role of a candidate code
token within the broader context of the method by conveying details such as whether
it appears within a method invocation, a variable declaration, a loop, an argument, a
try/catch block, and so on.

Java API: We use one-hot encodings to represent features related to common Java
types and the java.util package, which is a collection of utility classes, such as List,
that we found to be used frequently. We hypothesize that these features could shed
light into patterns that are exhibited by these frequently occurring tokens. To capture
local context, we also include Java-related characteristics of code tokens adjacent to the
candidate token such as whether it is a common Java type or one of the Java keywords.

3.4. Models

We develop two models representing different ways to tackle our proposed task: binary
classification and sequence labeling. We also formulate multiple rule-based baselines.

3.4.1. Binary Classification

Given a sequence of code tokens and an NP in the comment, we independently classify
each token as associated or not associated. Our classifier is a feedforward neural network
with 4 fully-connected layers and a final output layer. As input, the network accepts
a feature vector corresponding to the candidate code token (discussed in the previous
section) and the model outputs a binary prediction for that token.

3.4.2. Sequence Labeling

Given a sequence of code tokens and an NP in the comment, we jointly classify the
tokens regarding whether or not they are associated with the NP. The intuition behind
structuring the problem this way is that the classification of a given code token can often
depend on classifications of nearby tokens. For instance, in Figure 3.2, the int token that
denotes the return type of the next() function is not associated with the specified NP,
whereas the int token that is adjacent to opcode is considered to be associated because
opcode is associated, and int is its type.

In order to re-establish the consecutive ordering of the original sequence, we inject
removed Java keywords and symbols back into the sequence and introduce a third class
which serves as the gold label for these inserted tokens. Specifically, we predict the three
labels: associated, not associated, and a pseudo-label Java. Note that we disregard the
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classifications of these tokens during evaluation, i.e., if this pseudo-label is predicted for
any other code token at test time, we automatically assign it to be not associated (on
average, this happens ∼1% of the time). We construct a CRF model (Lample et al., 2016)
by applying a neural CRF layer on top of a feedforward neural network that resembles that
of the binary classifier in structure, except that the network accepts a matrix consisting
of the feature vectors of all the tokens in the method.

3.4.3. Baselines

Random. Random classification of a code token as associated or not based on a uniform
distribution.
Weighted random. Random classification of a code token as associated or not associ-
ated based on the probabilities of the associated and not associated classes as observed
from the training set which are 42.8% and 57.2% respectively.
Subtoken matching. Any token for which the subtoken matching surface feature (intro-
duced in the previous section) is set to be true is classified as associated while all other
tokens are classified as not associated. Note that there will never be a case in which
all associated code tokens will match at the token-level or subtoken-level with the noun
phrase. We removed such trivial examples from the dataset during filtering because they
can be resolved with simple string-matching tools and are not the focus of this work.
Presence in return statement. Any token for which the presence in a return statement
surface feature (discussed in the previous section) is set to be true is classified as associated
and all other tokens are classified as not associated.

3.5. Results and Discussion

The results of the four baselines and two learned models are given in Table 3.2. We
compute precision, recall and F1 scores. Our analysis is primarily based on the results on
the annotated test set; however, for completion, we present results on the unannotated
test set in the full paper (Panthaplackel et al., 2020a).

Model P R F1
Random 32.1 47.2 38.2
Weighted random 33.8 42.8 37.8
Subtoken matching 56.7 33.8 42.8
Presence in return line 51.5 45.8 48.5
Binary classifier 57.4 65.4 61.0
CRF 48.4 66.3 55.9

Table 3.2: Micro precision, recall, and F1
scores, evaluated on the annotated test set.
The differences between F1 scores are sta-
tistically significant based on a signed rank
t-test, with p < 0.01.

We observe that the subtoken matching
and presence in return line heuristics provide
some signal for this task, as the two corre-
sponding baselines can do better than ran-
dom. By incorporating these heuristics as fea-
tures and combining them with other features,
the binary classifier and CRF models can out-
perform all baselines by wide margins. This
demonstrates the utility of our feature set in
learning bimodal associations between com-
ments and code.

Although the recall score of the CRF is
slightly higher than that of the binary clas-
sifier, it is clear that the binary classifier per-
forms better overall with respect to the F1 score. This may be due to the fact that
the CRF requires additional parameters to model dependencies which may not be set
accurately, given the limited amount of example-level data in our experimental setup.
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Furthermore, while we expect the CRF to be more context-sensitive than the binary
classifier, we do incorporate many contextual features (embeddings of surrounding and
neighboring tokens, similarity of context with the NP, and Java API knowledge of neigh-
boring tokens) with the binary classifier. With error analysis we found that the CRF
model tends to make mistakes over tokens following Java keywords, as well as tokens
that appear later in a method. This indicates that the CRF model could be struggling
to reason over longer range dependencies and over longer sequences. Additionally, in
contrast to the binary classification setting, Java keywords are present in the sequence
labeling setting, so the CRF model must reason about many more code tokens than the
binary classifier.
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Chapter 4

Just-In-Time Inconsistency Detection Between

Comments and Source Code

To minimize the adverse effects of having comments which are out-of-sync with the cor-
responding body of code, there has been extensive work in automatically detecting in-
consistent comments (Section 2.4). Prior work has predominantly focused on detecting
inconsistencies that already reside within the code repository for a given software project.
We refer to this as post hoc inconsistency detection since it occurs potentially many com-
mits after the inconsistency has been introduced. Ideally, these inconsistencies should
be detected before they ever enter the repository (e.g., during code review) since they
pose a threat to the development cycle and reliability of the software until they are
found. Because inconsistent comments generally arise as a consequence of developers
failing to update comments immediately following code changes (Wen et al., 2019), we
aim to detect whether a comment becomes inconsistent as a result of changes to the
accompanying code, before these changes are merged into a code repository. We refer to
this as just-in-time inconsistency detection, as it allows alerting developers of potential
inconsistencies right before they can materialize. In Panthaplackel et al. (2021b), we
develop a deep learning approach for just-in-time inconsistency detection that correlates
a comment with changes in the corresponding body of code, which outperforms the post
hoc setting.

4.1. Task

Suppose Mold from the consistent comment/method pair (Cold, Mold) is modified to Mnew.
If Cold is not in sync with Mnew and is not updated, it will become inconsistent once Mnew

is committed. We frame this problem in two distinct settings, with the task being constant
across both: determine whether Cold is inconsistent with Mnew.

• Post hoc: Here, only the existing version of the comment/method pair is available;
the code changes that triggered the inconsistency are unknown.

• Just-in-time: Here, the goal is to catch inconsistencies before they are committed.
Detecting inconsistencies immediately following code changes allows us to utilize
information from Mold. By considering how the changes affect the relationship the
comment holds with the code, we can determine whether the comment remains
consistent after the changes. For instance, in Figure 4.1a, the comment describes
the return type of the nodeIds() as an array. When the method is modified to
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(a) Inconsistent (b) Consistent

Figure 4.1: In the example from the Apache Ignite project shown in Figure 4.1a, the existing
comment becomes inconsistent upon changes to the corresponding method, and in the example
from the Alluxio project shown in Figure 4.1b, the existing comment remains consistent after
code changes.

return a Set instead of an array, the comment no longer describes the correct return
type, making it inconsistent. Such analysis is not possible in post hoc inconsistency
detection since the exact code changes that triggered inconsistency cannot be easily
pinpointed, making it difficult to align the comment with relevant parts of the code.

4.2. Architecture

Prior work in post hoc inconsistency detection and the very few existing approaches
in just-in-time inconsistency detection which exploit code changes rely on task-specific
rules (Sadu, 2019), hand-engineered surface features (Liu et al., 2018b; Malik et al., 2008),
and bag-of-words techniques (Liu et al., 2018b). Instead, we learn salient characteristics
of the various inputs through a deep-learning framework that encodes their syntactic
structures.

Figure 4.2: High-level architecture of our ap-
proach.

We aim to determine whether Cold

is inconsistent by understanding its se-
mantics and how it relates to Mnew (or
changes between Mold and Mnew). We
present an overview of our approach in Fig-
ure 4.2. First, the comment encoder, a Bi-
GRU (Cho et al., 2014), encodes the se-
quence of tokens in Cold (Figure 4.2 (1)).
When learning a representation for a given
token, the forward and backward BiGRU passes provide context of other tokens in Cold, in
principle. However, this information can get diluted, especially when there are long-range
dependencies, and the relevant context can also vary across tokens. So, we update these
representations from the comment encoder with more context about how they relate to
the other tokens through multi-head self-attention (Vaswani et al., 2017) with hidden
states of the comment encoder (Figure 4.2 (2)). Next, we learn code representations
with a code encoder, which can be a sequence encoder or an abstract syntax tree (AST)
encoder (Figure 4.2 (3)).

Since the essence of the task comes down to whether Cold accurately reflects Mnew,
we must capture the relationship between Cold and Mnew (or changes between Mold and
Mnew). Prior work does this by computing comment/code similarity through lexical over-
lap rules (Ratol and Robillard, 2017; Sadu, 2019), which do not work well when different
terms have similar meanings, and cosine similarity between vector representations, which
have been found to perform poorly on their own (Liu et al., 2018b; Cimasa et al., 2019).
Furthermore, this notion of similarity is only appropriate for the summary comment which
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provides an overview of the corresponding method as a whole. More specialized comment
types like @return and @param describe only specific parts of the method, and thus their
representations may not be very similar to the representation of the full method. We in-
stead capture this relationship by computing multi-head attention between each hidden
state of the comment encoder and the hidden states of the code encoder (Figure 4.2 (4)).

We combine the context vectors resulting from both attention modules to form en-
hanced representations of the tokens in Cold, which carry context from other parts of Cold

as well as the code. These are then passed through another BiGRU encoder (Figure 4.2
(5)). We take the final state of this encoder to be the vector representation of the full
comment, and we feed it through fully-connected and softmax layers (Figure 4.2 (6)).
This leads to the final prediction (Figure 4.2 (7)).

4.2.1. Sequence Code Encoder

In the just-in-time setting, we represent the changes between Mold and Mnew with Medit,
a sequence of edit actions, where each edit action is structured as <Action> [span of

tokens] <ActionEnd>.1 We define four types of edit actions: Insert, Delete, Replace,
and Keep. Because the Replace action must simultaneously incorporate distinct content
from two versions (i.e., tokens in the old version that will be replaced, and tokens in the
new version that will take their place), it follows a slightly different structure:

<ReplaceOld> [span of old tokens]
<ReplaceNew> [span of new tokens]
<ReplaceEnd>

Figure 4.3: AST-based code edit representa-
tion (Medit) corresponding to Figure 4.1b, with
removed nodes in red and added nodes in green.

We encode Medit with a BiGRU en-
coder. Because Mold is not available in the
post hoc setting, we cannot construct an
edit action sequence, and instead encode
the sequence of tokens in Mnew in this case.

4.2.2. AST Code Encoder

To better exploit the syntactic structure
of code, we leverage the abstract syntax
tree (AST). Following prior work in other
tasks (Fernandes et al., 2019; Yin et al.,
2019), we encode ASTs and AST edits us-
ing gated graph neural networks (GGNNs) (Li et al., 2016). For the post hoc setting,
we encode T , an AST-based representation corresponding to Mnew. In the just-in-time
setting, we instead encode Tedit, an AST-based edit representation. We compute AST
node edits between Told (corresponding to Mold) and T , identifying inserted, deleted,
kept, replaced, and moved nodes. We merge the two, forming a unified representation,
by consolidating identical nodes, as shown in Figure 4.3.

GGNN encoders for T and Tedit use parent (e.g., public→ MethodDeclaration) and
child (e.g., MethodDeclaration → public) edges. Like prior work (Fernandes et al.,
2019), we add “subtoken nodes” for identifier leaf nodes to better handle previously
unseen identifier names. To integrate these new nodes, we add subnode (e.g., toString
→ to), supernode (e.g., to→ toString), next subnode (e.g., to→ string), and previous

1Preliminary experiments showed that this performed better than structuring edits at the token-level
as in other tasks (Shin et al., 2018; Li et al., 2018a; Dong et al., 2019; Awasthi et al., 2019).
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subnode (e.g., string→ to) edges. When encoding Tedit, we also include an aligned edge
type between nodes in the two trees that correspond to an update (e.g., String and
PropertyKey). Additionally, we learn edit embeddings for each action type. To identify
how a node is edited (or not edited), we concatenate the corresponding edit embedding
to its initial representation that is fed to the GGNN.

4.3. Data

In line with most prior work in inconsistency detection (Corazza et al., 2018; Tan et al.,
2007, 2012; Khamis et al., 2010), we focus on identifying inconsistencies in comments
comprising API documentation for Java methods. API documentation consists of two
components: a main description and a set of tag comments (Oracle, 2020). While some
have considered treating the full documentation as a single comment (Corazza et al.,
2018), we choose to perform inconsistency detection at a more fine-grained level, analyzing
individual comment types. Furthermore, in contrast to previous studies tailored to a
specific type of tag (Zhou et al., 2017; Tan et al., 2012) or specific types of keywords
and templates (Tan et al., 2007, 2011), we simultaneously consider multiple comment
types with diverse characteristics. Namely, we address inconsistencies in the @return

tag comment, which describes a method’s return type, and the @param tag comment,
which describes an argument of the method. Additionally, we examine inconsistencies in
the less-structured summary comment, which comes from the first sentence of the main
description.

By detecting inconsistencies at the time of code change, we can extract automatic
supervision from commit histories of open-source Java projects. Namely, we compare
consecutive commits, collecting instances in which a method is modified. We extract the
comment/method pairs from each version: (C1, M1), (C2, M2). By assuming that the
developer updated the comment because it would have otherwise become inconsistent as
a result of code changes, we take C1 to be inconsistent with M2, consequently leading
to a positive example, with Cold=C1, Mold=M1, and Mnew=M2. For negative examples,
we additionally examine cases in which C1=C2 and assume that if the existing comment
would have become inconsistent, the developer would have updated it. Following this
process, we collect @return, @param, and summary comment examples.

Train Valid Test Total
@return 15,950 1,790 1,840 19,580
@param 8,640 932 1,038 10,610
Summary 8,398 1,034 1,066 10,498
Full 32,988 3,756 3,944 40,688
Projects 829 332 357 1,518

Table 4.1: Data partitions

To minimize noise, we filter the data by ap-
plying heuristics (Section 2.8). In line with
prior work (Ren et al., 2019; Movshovitz-Attias
and Cohen, 2013), we consider a cross-project
setting with no overlap between the projects
from which examples are extracted in training/-
validation/test sets. From our data collection
procedure, we obtain substantially more nega-
tive examples than positive ones, which is not
surprising because many changes do not require comment updates (Wen et al., 2019).
We downsample negative examples, for each partition and comment type, to construct a
balanced dataset. Statistics of our final dataset are shown in Table 4.1. For more reliable
evaluation, we curate a clean a sample of 300 examples (corresponding to 101 projects)
from the test set, consisting of 50 positive and 50 negative examples of each comment
type. Note that we subtokenize Mnew, and Medit (Section 2.9). Since comments often
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include code tokens, we also subtokenize Cold.

4.4. Models

We outline baseline, post hoc, and just-in-time inconsistency detection models.

4.4.1. Baselines

Lexical overlap: A comment often has lexical overlap with the corresponding method.
We include a rule-based just-in-time baseline, Overlap(Cold, deleted), which classifies
Cold as inconsistent if at least one of its tokens matches a code token belonging to a
Delete or ReplaceOld span in Medit.

Corazza et al. (2018): This post hoc bag-of-words approach classifies whether a com-
ment is coherent with the method that it accompanies using an SVM with TF-IDF vectors
corresponding to the comment and method. We simplify the original data pre-processing,
but validate that the performance matches the reported numbers.

CodeBERT BOW: We develop a more sophisticated bag-of-words baseline that lever-
ages pretrained CodeBERT (Feng et al., 2020) embeddings. These embeddings were pre-
trained on a large corpus of natural language/code pairs. In the post hoc setting, we
consider CodeBERT BOW (Cold, Mnew), which computes the average embedding vec-
tors of Cold and Mnew. These vectors are concatenated and fed through a feedforward
network. In the just-in-time setting, we compute the average embedding vector of Medit

rather than Mnew, and we refer to this baseline as CodeBERT BOW (Cold, Medit).

Liu et al. (2018b): This is a just-in-time approach for detecting whether a block/line
comment becomes inconsistent upon changes to the corresponding code snippet. Their
task is slightly different as block/line comments describe low-level implementation details
and generally pertain to only a limited number of lines of code, relative to API comments.
However, we consider it as a baseline since it is closely related. They propose a random
forest classifier which leverages features which capture aspects of the code changes (e.g.,
whether there is a change to a while statement), the comment (e.g., number of tokens),
and the relationship between the comment and code (e.g., cosine similarity between
representations in a shared vector space). We re-implemented this approach based on
specifications in the paper, as their code was not publicly available. We disregard 9 (of
64) features that are not applicable in our setting.

4.4.2. Our Models

Post hoc: We consider three models, with different ways of encoding the method.
Seq(Cold, Mnew) encodes Mnew with a GRU, Graph(Cold, T ) encodes T with a GGNN,
and Hybrid(Cold, Mnew, T ) uses both. Multi-head attention in Hybrid(Cold, Mnew, T )
is computed with the hidden states of the two encoders separately and then combined.2

2More complex hybrid approaches for combining sequence and graph representations did not help for
our task (Fernandes et al., 2019; Hellendoorn et al., 2020).
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Just-In-Time: To allow fair comparison with the post hoc setting, these models are
identical in structure to the models described above except that Medit is used instead of
Mnew.

Just-In-Time + features: Because injecting explicit knowledge can boost the per-
formance of neural models (Chen et al., 2017; Xuan et al., 2018), we investigate adding
linguistic and lexical features to our approach. In Section 3.3, we identified a set of
features which were useful for learning to associate comments and code. By design, com-
ponents of our architecture encompass some of these features. For instance, we derive
token representations for code and comments through embeddings and learned encoder
representations, the GGNN captures code structure, and attention addresses similarity
between comment and code representations to some extent. We specifically incorporate
surface features, some Java-related features, and a handful of additional features which
appear relevant to the task based on our inspection of the data. These features, which are
computed at the subtoken/subnode-level, are concatenated to Medit and Cold embeddings
and then passed through a linear layer, before providing them as inputs to the encoders.

• Features specific to Cold: Motivated by the subtoken matching feature from
Section 3.3, we include whether a subtoken matches a code subtoken that is inserted,
deleted, or replaced in Medit. By aligning parts of Cold with code edits, these features
assist the model in identifying subtokens in Cold which are important for the task.
In order to exploit common patterns for different types of subtokens, we incorporate
features that identify whether the subtoken appears more than once in Cold or is a
stop word, and its part-of-speech.

• Features specific to Medit: We apply the subtoken matching feature to subtokens
in Medit as well to indicate whether the subtoken matches a subtoken in Cold. This
is intended to provide additional signal for highlighting specific locations in Medit

which may be directly relevant to Cold. Next, we aim to take advantage of common
patterns among different types of code subtokens by incorporating features that
identify certain categories: edit keywords, Java keywords, and operators. If a token
is not an edit keyword, we have indicator features for whether it is part of a Insert,
Delete, ReplaceNew, ReplaceOld, or Keep span. We believe this will be particularly
helpful for longer spans since edit keywords only appear at either the beginning or
end of a span.

• Shared features: We incorporate the presence in return statement feature from
Section 3.3, ie., whether a given subtoken matches a subtoken in a return statement.
Since there are two versions of the code, we include 3 separate features correspond-
ing to presence in a return statement unique to Mold, unique to Mnew, and present
in both. Similarly, we indicate whether the subtoken matches a subtoken in the
return type that is unique to Mold, unique to Mnew, or present in both. Finally,
we include whether a subtoken was originally split from a larger token and its in-
dex if so (e.g., split from camelCase, camel and case are subtokens with indices 0
and 1 respectively). These features aim to encode important relationships between
adjacent tokens that are lost once the body of code and comment are transformed
into a single, subtokenized sequences.
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Cleaned Test Sample Full Test Set
Model P R F1 Acc P R F1 Acc
Baselines
Overlap(Cold, deleted) 77.7 72.0 74.7 75.7 74.1 62.8 68.0 70.4
Corazza et al. (2018) 65.1 46.0 53.9 60.7 63.7 47.8 54.6 60.3
CodeBERT BOW (Cold, Mnew) 66.2 70.4 67.9 66.9 68.9 73.2 70.7 69.8
CodeBERT BOW (Cold, Medit) 65.5 80.9 72.3 69.0 67.4 76.8 71.6 69.6
Liu et al. (2018b) 77.6 74.0 75.8 76.3 77.5 63.8 70.0 72.6

Post hoc
Seq(Cold, Mnew) 58.9 68.0 63.0 60.3 60.6 73.4 66.3 62.8
Graph(Cold, T ) 60.6 70.2 65.0 62.2 62.6 72.6 67.2 64.6
Hybrid(Cold, Mnew, T ) 53.7 77.3 63.3 55.2 56.3 80.8 66.3 58.9

Just-In-Time
Seq(Cold, Medit) 83.8 79.3 81.5 82.0 80.7 73.8 77.1 78.0
Graph(Cold, Tedit) 84.7 78.4 81.4 82.0 79.8 74.4 76.9 77.6
Hybrid(Cold, Medit, Tedit) 87.1 79.6 83.1 83.8 80.9 74.7 77.7 78.5

Just-In-Time + features
Seq(Cold, Medit) + features 91.3 82.0 86.4 87.1 88.4 73.2 80.0 81.8
Graph(Cold, Tedit) + features 85.8 87.1 86.4 86.3 83.8 78.3 80.9 81.5
Hybrid(Cold, Medit, Tedit) + features 92.3 82.4 87.1 87.8 88.6 72.4 79.6 81.5

Table 4.2: Results for baselines, post hoc, and just-in-time models. Differences in F1 and Acc
between just-in-time vs. baseline models, just-in-time vs. post hoc models, and just-in-time +
features vs. just-in-time models are statistically significant.

4.5. Results and Discussion

We report common classification metrics: precision, recall, and F1 (w.r.t. the positive
label) and accuracy (averaged across 3 random restarts). We also perform significance
testing (Berg-Kirkpatrick et al., 2012).

In Table 4.2, we report results for baselines, post hoc and just-in-time inconsistency
detection models. In the post hoc setting, we find that our three models can achieve
higher F1 scores than the bag-of-words approach proposed by Corazza et al. (2018);
however, they underperform the CodeBERT BOW (Cold, Mnew) baseline and significantly
underperform all just-in-time models, including the simple rule-based baseline. This
demonstrates the benefit of performing inconsistency detection in the just-in-time setting,
in which the code changes that trigger inconsistency are available. Additionally, by
encoding the syntactic structures of the comment and code changes, our just-in-time
models outperform this rule-based baseline as well as all other baselines and post hoc
approaches. While the Hybrid(Cold, Medit, Tedit) model achieves slightly higher scores
(on the basis of F1 and accuracy) than Seq(Cold, Medit) and Graph(Cold, Tedit), the
differences are not statistically significant.

Our just-in-time models outperform the rule-based and feature-based baselines, with-
out any hand-engineered rules or features. However, by incorporating surface features
into our just-in-time models, we can further boost performance (by statistically significant
margins). This suggests that our approach can be used in conjunction with task-specific
rules (Tan et al., 2007, 2011, 2012; Ratol and Robillard, 2017) and feature sets (Liu et al.,
2018b) to build improved systems for specific domains.

Furthermore, in Table 4.3, we analyze the performance of the three just-in-time +
features models with respect to individual comment types. While these models are trained
on all comment types together without explicitly tailoring it in any way to handle them
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Cleaned Test Sample
Model P R F1 Acc

@return

Seq(Cold, Medit) + features 88.5∗ 72.0∗ 79.4∗ 81.3∗

Graph(Cold, Tedit) + features 81.2 77.3 79.1∗ 79.7
Hybrid(Cold, Medit, Tedit) + features 88.7∗ 72.0∗ 79.4∗ 81.3∗

@param

Seq(Cold, Medit) + features 90.0 95.3 92.5 92.3†

Graph(Cold, Tedit) + features 96.5 92.0 94.2 94.3
Hybrid(Cold, Medit, Tedit) + features 94.6 89.3 91.8 92.0†

Summary
Seq(Cold, Medit) + features 96.0 78.7 86.5§ 87.7
Graph(Cold, Tedit) + features 80.8 92.0 86.0§ 85.0
Hybrid(Cold, Medit, Tedit) + features 93.7 86.0 89.5 90.0

Table 4.3: Evaluating performance with respect to different types of comments. Scores are
averaged across 3 random restarts, and scores for which the difference in performance is not
statistically significant are shown with identical symbols.

differently, they are still able to achieve reasonable performance across types. We provide
further analysis of individual comment types and compare to comment-specific baselines
in the full paper (Panthaplackel et al., 2021b).
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Chapter 5

Updating Natural Language Comments Based on

Code Changes

Once inconsistent comments are detected upon code changes, the next step is to update
them to reflect these changes. To guide developers with this, we aim to generate sugges-
tions for updated comments. In principle, we could do this by generating a completely
new comment that corresponds to the most recent version of the code through the exten-
sive work in comment generation (Section 2.1). However, this discards potentially salient
content from the existing comment and also fails to consider the code changes which could
point to critical aspects of the code that should be highlighted in the updated comment.
Therefore, we formulate the novel task of learning to update an existing comment based
on changes to the corresponding body of code. This task is intended to align with how de-
velopers edit a comment when they introduce changes in the corresponding code. Rather
than deleting it and starting from scratch, they would likely only modify the specific parts
relevant to the code changes. We replicate this process through a novel approach which
is designed to correlate edits across two distinct language representations: source code
and natural language comments. Full details of this work are available in Panthaplackel
et al. (2020b).

5.1. Task

@return double the roll euler angle.
pub l i c double getRotX ( ) {

r e turn mOrientation . getRotationX ( ) ;
}

Previous Version

@return double the roll euler angle in degrees.
pub l i c double getRotX ( ) {

r e turn Math . toDegrees ( mOrientation . getRotationX ( ) ) ;
}

Updated Version

Figure 5.1: Changes in the getRotX method
and its corresponding @return comment be-
tween two subsequent commits of the rajawali
project.

Given a method, its corresponding
comment, and an updated version of the
method, the task is to update the com-
ment so that it is consistent with the code
in the new method. For the example in
Figure 5.1, we want to generate “@return
double the roll euler angle in degrees.”
based on the changes between the two ver-
sions of the method and the existing com-
ment “@return double the roll euler an-
gle.” Concretely, given (Mold, Cold) and Mnew, where Mold and Mnew denote the old and
new versions of the method, and Cold signifies the previous version of the comment, the
task is to produce Cnew, the updated version of the comment.
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5.2. Edit Model

We design a system that examines source code changes and how they relate to the existing
comment in order to produce an updated comment that reflects the code modifications.
Figure 4.2 shows a high-level overview of our system.

5.2.1. Encoders

Using the edit lexicon defined in Section 4.2.1, we unify Mold and Mnew into a single
diff sequence that explicitly identifies code edits, Medit. We encode this sequence with a
BiGRU encoder (top right of Figure 5.2). We encode the existing comment (Cold) with
another BiGRU encoder (top left). To better learn associations between comment and
code entities, we also include the linguistic and lexical features discussed in Section 4.4.2.
We incorporate these features into the network the same way as before.

5.2.2. Decoder

The decoder also takes the form of a GRU. Since Cold and Cnew are closely related,
training the decoder to directly generate Cnew risks having it learn to just copy Cold. To
explicitly inform the decoder of edits, we define the target output as a sequence of edit
actions, Cedit, indicating how the existing comment should be revised.

Figure 5.2: High-level architecture of our
approach.

For representing Cedit, we introduce a
slightly modified set of specifications that dis-
regards the Keep type when constructing the
sequence of edit actions, referred to as a con-
densed edit sequence. The intuition for disre-
garding Keep and the span of tokens to which
it applies is that we can simply copy the con-
tent that is retained between Cold and Cnew,
instead of generating it anew. By doing post
hoc copying, we simplify learning for the model
since it has to only learn what to change rather
than also having to learn what to keep. We
design a method to deterministically place ed-
its in their correct positions in the absence of
Keep spans. For the example in Figure 5.1, the
raw sequence <Insert>in degrees<InsertEnd>

does not encode information as to where “in degrees” should be inserted. To address
this, we bind an insert sequence with the minimum number of words (aka “anchors”)
such that the place of insertion can be uniquely identified. This results in the structure
that is shown for Cedit in Figure 4.2. Here “angle” serves as the anchor point, identify-
ing the insert location. Following the structure of Replace, this sequence indicates that
“angle” should be replaced with “angle in degrees,” effectively inserting “in degrees” and
keeping “angle” from Cold, which appears immediately before the insert location.

The decoder essentially has three subtasks: (1) identify edit locations in Cold; (2)
determine parts of Medit that pertain to making these edits; and (3) apply updates in
the given locations based on the relevant code changes. We rely on an attention mecha-
nism (Luong et al., 2015) over the hidden states of the two encoders to accomplish the
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first two goals. At every decoding step, rather than aligning the current decoder state
with all the encoder hidden states jointly, we align it with the hidden states of the two
encoders separately. We concatenate the two resulting context vectors to form a uni-
fied context vector that is used in the final step of computing attention, ensuring that
we incorporate pertinent content from both input sequences. Consequently, the result-
ing attention vector carries information relating to the current decoder state as well as
knowledge aggregated from relevant portions of Cold and Medit.

Using this information, the decoder performs the third subtask, which requires rea-
soning across language representations. Specifically, it must determine how the source
code changes that are relevant to the current decoding step should manifest as natural
language updates to the relevant portions of Cold. At each step, it decides whether it
should begin a new edit action by generating an edit start keyword, continue the present
action by generating a comment token, or terminate the present action by generating an
end-edit keyword. Because actions relating to deletions will include tokens in Cold, and
actions relating to insertions are likely to include tokens in Medit, we equip the decoder
with a pointer network (Vinyals et al., 2015) to accommodate copying tokens from Cold

and Medit. The decoder generates a sequence of edit actions, which will have to be parsed
into a comment.

5.2.3. Parsing Edit Sequences

Since the decoder is trained to predict a sequence of edit actions, we must align it with Cold

and copy unchanged tokens in order to produce the edited comment during inference. We
denote the predicted edit sequence as C ′edit and the corresponding parsed output as C ′new.
This procedure entails simultaneously following pointers, left-to-right, on Cold and C ′edit,
which we refer to as Pold and Pedit respectively. Pold is advanced, copying the current token
into C ′new at each point, until an edit location is reached. The edit action corresponding
to the current position of Pedit is then applied, and the tokens from its relevant span are
copied into C ′new if applicable. Finally, Pedit is advanced to the next action, and Pold is
also advanced to the appropriate position in cases involving deletions and replacements.
This process repeats until both pointers reach the end of their respective sequences.

5.2.4. Reranking

Reranking allows the incorporation of additional priors that are difficult to back-propagate,
by re-scoring candidate sequences during beam search (Neubig et al., 2015; Ko et al., 2019;
Kriz et al., 2019). We incorporate two heuristics to re-score the candidates: 1) genera-
tion likelihood and 2) similarity to Cold. These heuristics are computed after parsing the
candidate edit sequences (Section 5.2.3).
Generation likelihood: Since the edit modelis trained on edit actions only, it does
not globally score the resulting comment in terms of aspects such as fluency and overall
suitability for the updated method. To this end, we make use of a pre-trained comment
generation model (Section 5.4.2) that is trained on a substantial amount of data for
generating Cnew given only Mnew. We compute the length-normalized probability of this
model generating the parsed candidate comment, C ′new, (i.e., P (C ′new | Mnew)1/N where
N is the number of tokens in C ′new). This model gives preference to comments that are
more likely for Mnew and are more consistent with the general style of comments.
Similarity to Cold: So far, our model is mainly trained to produce accurate edits;
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however, we also follow intuitions that edits should be minimal (as an analogy, the use
of Levenshtein distance in spelling correction). To give preference to predictions that
accurately update the comment with minimal modifications, we use similarity to Cold as
a heuristic for reranking. We measure similarity between the parsed candidate prediction
and Cold using METEOR (Banerjee and Lavie, 2005).

Train Valid Test
Examples 5,791 712 736
Projects 526 274 281
Edit Actions 8,350 1,038 1,046
Sim (Mold, Mnew) 0.773 0.778 0.759
Sim (Cold, Cnew) 0.623 0.645 0.635

Code
Unique 7,271 2,473 2,690
Mean 86.4 87.4 97.4
Median 46 49 50

Comm.
Unique 4,823 1,695 1,737
Mean 10.8 11.2 11.1
Median 8 9 9

Table 5.1: Number of examples, projects, and edit
actions; average similarity between Mold and Mnew as
the ratio of overlap to average sequence length; aver-
age similarity between Cold and Cnew as the ratio of
overlap to average sequence length; number of unique
code tokens and mean and median number of tokens
in a method; and number of unique comment tokens
and mean and median number of tokens in a comment.

Reranking score: The reranking
score for each candidate is a lin-
ear combination of the original beam
score, the generation likelihood, and
the similarity to Cold with coefficients
0.5, 0.3, and 0.2 respectively (tuned
on validation data).

5.3. Data

As a first step, we focus on per-
forming this task on @return com-
ments, which we find to follow a
well-defined structure and describe
characteristics of the output of a
method (Section 3.2). We use the
subset of examples corresponding to
positive @return examples from the
dataset we introduced in Section 4.3,
in which the method and comment are simultaneously changed between two consecutive
commits. We provide dataset statistics in Table 5.1.

5.4. Experimental Method

We evaluate our approach against multiple rule-based baselines and comment generation
models.

5.4.1. Baselines

Copy: Since much of the content of Cold is typically retained in the update, we include
a baseline that merely copies Cold as the prediction for Cnew.
Return type substitution: The return type of a method often appears in its @return
comment. If the return type of Mold appears in Cold and the return type is updated in the
code, we substitute the new return type while copying all other parts of Cold. Otherwise,
Cold is copied as the prediction.
Return type substitution w/ null handling: As an addition to the previous method,
we also check whether the token null is added to either a return statement or if

statement in the code. If so, we copy Cold and append the string or null if null, otherwise,
we simply copy Cold. This baseline addresses a pattern we observed in the data in which
ways to handle null input or cases that could result in null output were added.
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5.4.2. Generation Model

One of our main hypotheses is that modeling edit sequences is better suited for this
task than generating comments from scratch. However, a counter argument could be
that a comment generation model could be trained from substantially more data, since
it is much easier to obtain parallel data in the form (method, comment), without the
constraints of simultaneous code/comment edits. Hence the power of large-scale training
could out-weigh edit modeling. To this end, we compare with a generation model trained
on 103,473 method/@return comment pairs collected from GitHub.

We use the same underlying neural architecture as our edit model to make sure that
the difference in results comes from the amount of training data and from using edit
of representations only: a two-layer, BiGRU that encodes the sequence of tokens in the
method, and an attention-based GRU decoder with a copy mechanism that decodes a
sequence of comment tokens. Evaluation is based on the 736 (Mnew, Cnew) pairs in the test
set described in Section 5.3. We ensure that the projects from which training examples are
extracted are disjoint from those in the test set, adhering to our cross-project partitioning
strategy (Section 4.3).

5.4.3. Reranked Generation Model

In order to allow the generation model to exploit the old comment, this system uses
similarity to Cold (Section 5.2.4) as a heuristic for reranking the top candidates from the
previous model. The reranking score is a linear combination of the original beam score
and the METEOR score between the candidate prediction and Cold, both with coefficient
0.5 (tuned on validation data).

5.5. Evaluation

We evaluate models using automated metrics and human evaluation.

5.5.1. Automatic Evaluation

Metrics: We compute exact match, i.e., the percentage of examples for which the model
prediction is identical to the reference comment Cnew. This is often used to evaluate
tasks involving source code edits (Shin et al., 2018; Yin et al., 2019). We also report
two prevailing language generation metrics: METEOR (Banerjee and Lavie, 2005), and
average sentence-level BLEU-4 (Papineni et al., 2002) that is previously used in code-
language tasks (Iyer et al., 2016; Loyola et al., 2017).

Previous work suggests that BLEU-4 fails to accurately capture performance for tasks
related to edits, such as text simplification (Xu et al., 2016), grammatical error correc-
tion (Napoles et al., 2015), and style transfer (Sudhakar et al., 2019), since a system that
merely copies the input text often achieves a high score. Therefore, we also include two
text-editing metrics to measure how well our system learns to edit : SARI (Xu et al.,
2016), originally proposed to evaluate text simplification, is essentially the average of N-
gram F1 scores corresponding to add, delete, and keep edit operations;1 GLEU (Napoles
et al., 2015), used in grammatical error correction and style transfer, takes into account

1Although the original formulation only used precision for the delete operation, more recent work
computes F1 for this as well (Dong et al., 2019; Alva-Manchego et al., 2019).
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xMatch (%) METEOR BLEU-4 SARI GLEU
Baselines

Copy 0.000 34.611 46.218 19.282 35.400
Return type subt. 13.723§ 43.106¶ 50.796‖ 31.723 42.507∗

Return type subst. + null 13.723§ 43.359 51.160† 32.109 42.627∗

Non-reranked models
Generation 1.132 11.875 10.515 21.164 17.350
Edit 17.663 42.222¶ 48.217 46.376 45.060

Reranked models
Generation 2.083 18.170 18.891 25.641 22.685
Edit 18.433 44.698 50.717‖† 45.486 46.118

Table 5.2: Exact match, METEOR, BLEU-4, SARI, and GLEU scores. Scores for which the
difference in performance is not statistically significant are shown with identical symbols.

the source sentence and deviates from BLEU by giving more importance to n-grams that
have been correctly changed.

Results: We report automatic metrics averaged across three random initializations for
all learned models, and use bootstrap tests (Berg-Kirkpatrick et al., 2012) for statistical
significance (with p < 0.05). Table 5.2 presents the results. While reranking using Cold

appears to help the generation model, it still substantially underperforms all other models,
across all metrics. Although this model is trained on considerably more data, it does not
have access to Cold during training and uses fewer inputs and consequently has less context
than the edit model. Reranking slightly deteriorates the edit model’s performance with
respect to SARI; however, it provides statistically significant improvements on most other
metrics.

Although two of the baselines achieve slightly higher BLEU-4 scores than our best
model, these differences are not statistically significant, and our model is better at editing
comments, as shown by the results on exact match, SARI, and GLEU. In particular, our
edit models beat all other models with wide, statistically significant, margins on SARI,
which explicitly measures performance on edit operations. Furthermore, merely copying
Cold, yields a relatively high BLEU-4 score of 46.218. The return type substitution and
return type substitution w/ null handling baselines produce predictions that are identical
to Cold for 74.73% and 65.76% of the test examples, respectively, while it is only 9.33% for
the reranked edit model. In other words, the baselines attain high scores on automatic
metrics and even beat our model on BLEU-4, without actually performing edits on the
majority of examples. This further underlines the shortcomings of some of these metrics
and the importance of conducting human evaluation for this task.

5.5.2. Human Evaluation

Automatic metrics often fail to incorporate semantic meaning and sentence structure in
evaluation as well as accurately capture performance when there is only one gold-standard
reference; indeed, these metrics do not align with human judgment in other generation
tasks like grammatical error correction (Napoles et al., 2015) and dialogue generation (Liu
et al., 2016). Since automatic metrics have not yet been explored in the context of the
new task we are proposing, we find it necessary to conduct human evaluation and study
whether these metrics are consistent with human judgment.
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Setup: Our study aims to reflect how a comment update system would be used in
practice, such as in an Integrated Development Environment (IDE). When developers
change code, they would be shown suggestions for updating the existing comment. If
they think the comment needs to be updated to reflect the code changes, they could
select the one that is most suitable for the new version of the code or edit the existing
comment themselves if none of the options are appropriate.

We simulated this setting by asking a user to select the most appropriate updated
comment from a list of suggestions, given Cold as well as the diff between Mold and Mnew

displayed using GitHub’s diff interface. The user can select multiple options if they are
equally good or a separate None option if no update is needed or all suggestions are poor.

The list of suggestions consists of up to three comments, predicted by the strongest
benchmarks and our model : (1) return type substitution w/ null handling, (2) reranked
generation model, and (3) reranked edit model, arranged in randomized order. We col-
lapse identical predictions into a single suggestion and reward all associated models if the
user selects that comment. Additionally, we remove any prediction that is identical to
Cold to avoid confusion as the user should never select such a suggestion. We excluded
6 examples from the test set for which all three models predicted Cold for the updated
comment.

Nine students (8 graduate/1 undergraduate) and one full-time developer at a large
software company, all with 2+ years of Java experience, participated in our study. To
measure inter-annotator agreement, we ensured that every example was evaluated by two
users. We conducted a total of 500 evaluations, across 250 distinct test examples.

Results: Table 5.3 presents the percentage of annotations (out of 500) for which users
selected comment suggestions that were produced by each model. Using Krippendorff’s
α (Krippendorff, 2011) with MASI distance (Passonneau, 2006) (which accommodates
our multi-label setting), inter-annotator agreement is 0.64, indicating satisfactory agree-
ment. The reranked edit model beats the strongest baseline and reranked generation by
wide statistically-significant margins. From rationales provided by two annotators, we
observe that some options were not selected because they removed relevant information
from the existing comment, and not surprisingly, these options often corresponded to the
comment generation model.

Baseline Generation Edit None
18.4% 12.4% 30.2% 55.0%

Table 5.3: Percentage of annotations for
which users selected comment suggestions
produced by each model. All differences
are statistically significant.

Users selected none of the suggested com-
ments 55% of the time, indicating there are
many cases for which either the existing com-
ment did not need updating, or comments pro-
duced by all models were poor. Based on our
inspection of a sample these, we observe that
in a large portion of these cases, the comment
did not warrant an update. This is consistent
with prior work in sentence simplification which
shows that, very often, there are sentences that do not need to be simplified (Li and
Nenkova, 2015). Despite our efforts to minimize such cases in our dataset through rule-
based filtering techniques, we found that many remain. This suggests that it would be
beneficial to first determine whether a comment needs to be updated before proposing a
revision. We address this in Chapter 6 by integrating the inconsistency detection classi-
fiers from Chapter 4 with the comment update model, to build a combined system which
updates a comment only if it becomes inconsistent upon code changes.
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Chapter 6

Combined Detection + Update of Inconsistent

Comments

In Chapters 4 and 5, we explored the tasks of detecting inconsistent comments and
updating them in isolation. We now combine models for these two tasks to build a
comprehensive just-in-time comment maintenance system which first determines whether
a comment, Cold, has become inconsistent upon code changes to the corresponding method
(Mold →Mnew), and then automatically suggests a revision if this is the case. Full details
of this work are available in Panthaplackel et al. (2021b).

6.1. Experiments

We use the dataset that we introduced in Section 4.3. Recall that positive examples
correspond to cases in which both the method and comment are changed, and negative
examples correspond to cases in which only the method is changed. We consider three
different configurations for combining our inconsistency detection models (Section 4.4.2)
with our comment update model (Section 5.2).

• Update w/ implicit detection: We augment training of the update model with
negative examples in which Cold does not need to be updated. This baseline implic-
itly performs inconsistency detection by learning to copy Cold when an update is
not needed. We evaluate with respect to inconsistency detection based on whether
or not it predicts Cold as Cnew.

• Pretrained update + detection: The update and detection models are trained
separately. At test time, if the detection model classifies Cold as inconsistent, we take
the prediction of the update model. Otherwise, we copy Cold, making Cnew=Cold.
We consider three of our just-in-time detection models.

• Jointly trained update + detection: We jointly train the inconsistency de-
tection model with the update model on the full dataset (including positive and
negative examples). We consider all three of our just-in-time detection techniques.
The update model and detection model share embeddings and the comment encoder
for all three, and for the sequence-based and hybrid models, the code sequence en-
coder is also shared. During training, loss is computed as the sum of the update
and detection components. For negative examples (i.e., Cold does not need to be
updated), we mask the loss of the update component since it does not have to learn
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Update Metrics
xMatch METEOR BLEU-4 SARI GLEU

Never update 50.0 67.4 72.1 24.9 68.2
Update model (Chapter 5) 25.9 60.0 68.7 42.0∗ 67.4
Update w/ implicit detection 58.0 72.0 74.7 31.5 72.7
Pretrained update + detection
Seq(Cold, Medit) + features 62.3† 75.6∗ 77.0∗ 42.0∗ 76.2
Graph(Cold, Tedit) + features 59.4 74.9§ 76.6† 42.5‖ 75.8∗†

Hybrid(Cold, Medit, Tedit) + features 62.3† 75.8†‖ 77.2 42.3† 76.4
Jointly trained update + detection
Seq(Cold, Medit) + features 61.4∗ 75.9‖ 76.6† 42.4†‖ 75.6†

Graph(Cold, Tedit) + features 60.8 75.1§ 76.6† 41.8∗ 75.8∗

Hybrid(Cold, Medit, Tedit) + features 61.6∗ 75.6∗† 76.9∗ 42.3† 75.9∗

Table 6.1: Comparing performance on update between combined systems on the cleaned
test sample. Scores for which the difference in performance is not statistically significant
are shown with identical symbols.

Detection Metrics
P R F1 Acc

Never update 0.0 0.0 0.0 50.0
Update model (Chapter 5) 54.0 95.6 69.0 57.1
Update w/ implicit detection 100.0 23.3 37.7 61.7
Pretrained update + detection
Seq(Cold, Medit) + features 91.3∗ 82.0§ 86.4∗ 87.1§¶

Graph(Cold, Tedit) + features 85.8 87.1 86.4∗ 86.3†

Hybrid(Cold, Medit, Tedit) + features 92.3 82.4§ 87.1† 87.8∗‖

Jointly trained update + detection
Seq(Cold, Medit) + features 88.3† 86.2 87.2† 87.3§‖

Graph(Cold, Tedit) + features 88.3† 84.7∗ 86.4∗ 86.7†¶

Hybrid(Cold, Medit, Tedit) + features 90.9∗ 84.9∗ 87.8 88.2∗

Table 6.2: Comparing performance on inconsistency detection between combined sys-
tems on the cleaned test sample. Scores for which the difference in performance is not
statistically significant are shown with identical symbols.

to copy Cold. At test time, if the detection component predicts a negative label, we
can directly copy Cold and otherwise take the prediction of the update model.

6.2. Results

In Tables 6.1 and 6.2, we compare performances of combined inconsistency detection and
update systems on the cleaned test sample. As reference points, we also provide scores
for a system which never updates (i.e., always copies Cold as Cnew) and our comment
update model, which is designed to always update (and only copy Cold if an invalid edit
action sequence is generated).

Since our dataset is balanced, we can get 50% exact match by simply copying Cold

(i.e., never updating). In fact, this can even beat our comment update model on xMatch,
METEOR, BLEU-4, and SARI, and GLEU. This underlines the importance of first de-
termining whether a comment needs to be updated, which can be addressed with the
inconsistency detection component. On the majority of the update metrics, both of these
underperform the other three approaches (Update w/ implicit detection, Pretrained up-
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date + detection, and Jointly trained update + detection). SARI is calculated by averag-
ing N-gram F1 scores for edit operations (add, delete, and keep). So, it is not surprising
that the Update w/ implicit detection baseline, which learns to copy, performs fewer
edits, consequently underperforming on this metric. Because our comment update model
is designed to always edit, it can perform well on this metric; however, the majority of
our pretrained and jointly trained systems can beat this.

The Update w/ implicit detection baseline, which does not include an explicit in-
consistency detection component, performs relatively well with respect to the update
metrics, but it performs poorly on detection metrics. Here, we use generating Cold as
the prediction for Cnew as a proxy for detecting inconsistency. It achieves high precision,
but it frequently copies Cold in cases in which it is inconsistent and should be updated,
hence underperforming on recall. The pretrained and jointly trained approaches outper-
form this model by wide statistically significant margins across the majority of metrics,
demonstrating the need for explicitly performing inconsistency detection.

We do not observe a significant difference between the pretrained and jointly trained
systems. The pretrained models achieve slightly higher scores on most update metrics and
the jointly trained models achieve slightly higher scores on the detection metrics; however,
these differences are small and often statistically insignificant. While we had expected the
jointly trained system to perform better, neural networks are often overparameterized,
so it is possible that a network can learn to fit both tasks, without having them affect
one another.
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Chapter 7

Describing Solutions for Bug Reports

In Chapters 4-6, we focus on detecting and updating natural language comments imme-
diately after code changes to uphold software quality once these changes are merged into
the code base. We now shift to using a different form of natural language, namely dia-
logue in bug report discussions, to instead quickly drive critical code changes for resolving
bugs which threaten software quality. Bug report discussions can grow rapidly, through
the many exchanges (Liu et al., 2020) among multiple participants (Kavaler et al., 2017),
spanning several months or even longer (Kikas et al., 2015). The solution is often formu-
lated within the discussion (Arya et al., 2019; Noyori et al., 2019); however, this can be
challenging to locate and interpret amongst a large mass of text.

Figure 7.1: ExoPlayer1 discussion with user-written
and system-generated solution descriptions.

To enable developers to more
easily absorb information relevant
towards implementing the solution
through the necessary code changes,
we propose automatically generating
a concise natural language descrip-
tion of the solution by synthesizing
the relevant content as soon as it
emerges in the discussion (Panthap-
lackel et al., 2021c). In this chap-
ter, we focus on benchmarking mod-
els for the generation task. In the
following chapter, we will introduce
a secondary classification task for in-
tegrating it into a real-time setting
to help quickly mobilize developers
for implementation.

7.1. Task

As shown in Figure 7.1, when a user reports a bug, they state the problem in the title
(e.g., “Black screen appears when we seek over an AdGroup”) and initiate a discussion
by making the first utterance (U1), which usually elaborates on the problem (e.g., “When
playing ads using AdsMediaSource and AdsLoader, if we seek over...”). Other participants

1https://github.com/google/ExoPlayer/issues/5507
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join the discussion at later points in time through utterances (U2...UT ), where T is the
total number of utterances. Throughout the discussion, developers discuss various aspects
of the bug, including a potential solution (Arya et al., 2019). As the discussion progresses,
the cause of the bug is identified as the shutter getting closed “when seeking to an
unprepared period” and a solution emerges: “suppress closing the shutter in this case,
provided the old and new periods belong to the same window.” We study the task of
generating a concise description of the solution (e.g., “Prevent shutter closing for within-
window seeks to unprepared periods”) by synthesizing relevant content within the title
and sequence of utterances (U1, U2...).

7.2. Data

We build a corpus by mining issue reports corresponding to open-source projects from
GitHub Issues, as done in prior work (Kavaler et al., 2017; Panichella et al., 2021). We
specifically collect examples from Java projects. Issue reports can entail feature requests
as well as bug reports. In this work, we focus on the latter. We identify bug reports
by searching for “bug” in the labels assigned to a report and by using a heuristic for
identifying bug-related commits (Karampatsis and Sutton, 2020a).

7.2.1. Data Collection

A bug report is organized as an event timeline, recording activity from when the report is
opened to when it is closed. From comments that are posted on this timeline, we extract
utterances which form the discussion corresponding to a bug report, ordered based on
their timestamps. We specifically consider bug reports that are linked to source code and
documentation changes made in the code repository to resolve the bug (Nguyen et al.,
2012). These changes are made through commits and pull requests, which also appear
on the timeline. Changes made in a commit or pull request are described using natural
language, in the corresponding commit message (Loyola et al., 2017; Xu et al., 2019a)
or pull request title (Kononenko et al., 2018; Zhao et al., 2019) respectively. In practice,
developers write commit messages and pull request titles after making code changes.
However, much like prior work (Chakraborty and Ray, 2021), we treat them as a proxy
for solution descriptions which can drive bug-resolving code changes.

Furthermore, we extract the position of a commit or pull request on the timeline,
relative to the utterances in the discussion. We consider this as the point at which a
developer acquired enough information about the solution to implement the necessary
changes and describe these changes with the corresponding commit message or pull re-
quest title. So, if the implementation is done immediately after Ug on the timeline, then
we take this position tg as the “gold” time step for when sufficient context becomes avail-
able to generate an informative description of the solution. This leads to examples of the
form (Title, U1...UT , tg, description). We disregard examples consisting of multiple com-
mit messages and PR titles, so there is at most one example per issue report. However,
for future work (Section 10.1), we believe such examples can be useful for to support
generating descriptions at multiple time steps.
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7.2.2. Handling Noise

Upon studying the data, we deemed it necessary to perform filtering for more effective
supervision and accurate evaluation, as commonly done for tasks in this domain (Sec-
tion 2.8). After applying simple heuristics to reduce noise, we obtain the examples which
we focus on in this work, the full dataset. However, we identify three sources of noise that
are more difficult to control with simple heuristics and propose techniques to quantify
them. We use these to build a filtered subset of the full dataset that is less noisy. This
subset is used for more detailed analysis of the models that are discussed in the paper,
and we find that training on this subset leads to improved performance (Section 7.5).

• Generic descriptions: Commit messages and pull request titles are sometimes
generic (e.g., “fix issue.”) (Etemadi and Monperrus, 2020). To limit such cases, we
compute normalized inverse word frequency (NIWF), which is used in prior work to
quantify specificity (Zhang et al., 2018). The filter excludes 1,658 examples in which
the reference description’s NIWF score is below 0.116 (10th percentile computed
from training data).

• Uninformative descriptions: Instead of describing the solution, the commit
message or pull request title sometimes essentially re-state the problem (which is
usually mentioned in the title of the bug report). To control for this, we compute
the percentage of unique, non-stopword tokens in the reference description which
also appear in the title. The filtered subset excludes 3,552 additional examples in
which this percentage is 50% or more.

• Discussions without sufficient context: While enough context is available to
a developer to implement a solution at tg, this context may not always be available
in the discussion and could instead be from their technical expertise or external
resources. Sometimes, the solution is not mentioned within the discussion. For
instance, in the discussion in the footnote2, only a stack trace and personal ex-
changes between developers are present. From the utterance before the PR, “Or
PM me the query that failed” suggests that an offline conversation occurred. Since
relevant content is not available in such cases, it is unreasonable to expect to gen-
erate an informative description. We try to identify examples in which there is
no useful content for generating the target output by using a previously proposed
approach (Nallapati et al., 2017) for greedily constructing an extractive summary
based on a reference abstractive summary. The filtered subset excludes 1,262 more
examples for which a summary could not be constructed. After applying all three
filtering techniques, we are left with 5,856 examples.

7.2.3. Preprocessing

We retain inlined code; however, we remove code blocks and embedded code snippets,
as done in prior work (Tabassum et al., 2020; Ahmad et al., 2021). Capturing meaning
from large bodies of code often requires reasoning with respect to the abstract syntax
tree (Alon et al., 2019) and data and control flow graphs (Allamanis et al., 2018b). We
also do not use source code files within a project’s repository. We leave it to future work
to incorporate large bodies of code. We discard URLs and mentions of GitHub usernames

2https://github.com/prestodb/presto/issues/14567
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Train Valid Test Total
Projects 395 (330) 145 (111) 134 (104) 412 (344)
Examples 9,862 (4,664) 1,232 (599) 1,234 (593) 12,328 (5,856)

# Commit messages 4,520 (2,355) 410 (234) 386 (189) 5,316 (2,778)
# PR titles 5,342 (2,309) 822 (365) 848 (404) 7,012 (3,078)

Avg T 3.9 (4.5) 3.8 (4.4) 4.0 (4.4) 3.9 (4.5)
Avg tg 2.9 (3.4) 2.9 (3.4) 3.2 (3.6) 2.9 (3.4)
Avg utterance length (#tokens) 68.4 (75.6) 74.8 (84.3) 70.2 (75.7) 69.2 (76.5)
Avg title length (#tokens) 10.6 (10.6) 11.2 (11.0) 11.5 (11.3) 10.7 (10.7)
Avg description length (#tokens) 9.1 (10.5) 8.9 (9.9) 9.1 (10.1) 9.1 (10.4)

Table 7.1: Data statistics. In parentheses, we show metrics computed on the filtered subset.

from utterances. From the description, we remove references to issue numbers and pull
request numbers.

7.2.4. Partitioning

The dataset spans bug reports from April 2011 - July 2020. We partition the dataset
based on the timestamp of the commit or pull request associated with a given example.
Namely, we require all timestamps in the training set to precede those in the validation
set and all timestamps in the validation set to precede those in the test set. Partitioning
with respect to time ensures that we are not using models trained on future data to make
predictions in the present, more closely resembling the real-world scenario (Nie et al.,
2021). Dataset statistics are shown in Table 7.1.

7.3. Models

1 2 3 4

Full
Title 73.0 88.9 94.0 96.1
U1...Utg 54.7 87.6 95.0 97.6
Title + U1...Utg 47.9 82.0 91.2 94.8

Filtered
Title 82.3 95.6 98.4 99.4
U1...Utg 49.9 87.4 95.1 97.8
Title + U1...Utg 47.5 86.0 94.5 97.5

Table 7.2: Percent of novel unigrams, bigrams, tri-
grams, and 4-grams in the reference description, with
respect to the title, U1...Utg , and title + U1...Utg . The
high percentages show that generating solutions is an
abstractive task.

We benchmark various models for
generating informative solution de-
scriptions in a static setting, in which
we leverage the oracle context from
the discussion (i.e., the title and
U1...Utg). From Table 7.1, the av-
erage length of a single utterance is
∼70 tokens while the average descrip-
tion length is only ∼9 tokens. There-
fore, this task requires not only effec-
tively selecting content about the so-
lution from the long context (which
could span multiple utterances) but
also synthesizing this content to produce a concise description. Following See et al.
(2017), we compute the percent of novel n-grams in the reference description with re-
spect to the input context in Table 7.2. The high percentages underline the need for
an abstractive approach, rather than an extractive one which generates a description by
merely copying over utterances or sentences within the discussion.3 Furthermore, success

3We observe very low performance with extractive approaches.
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on this task requires complex, bimodal reasoning over technical content in the discussion,
encompassing both natural language and source code.

We describe the models we consider below. To represent the input in neural models,
we insert <TITLE START> before the title and <UTTERANCE START> before each
utterance.

• Copy Title: Though the bug report title typically only states a problem, we
observe that it sometimes also puts forth a possible solution, so we evaluate how
well it can serve as a concise description of the solution.

• Seq2Seq + Ptr: We consider a transformer encoder-decoder model in which we
flatten the context into a single input sequence (Vaswani et al., 2017). Generating
the output typically requires incorporating out-of-vocabulary tokens from the input
that are specific to a given software project, so we support copying with a pointer
generator network (Vinyals et al., 2015).

• Hier Seq2Seq + Ptr: Inspired by hierarchical approaches for dialogue response
generation (Serban et al., 2016), we consider a hierarchical variant of the Seq2Seq
+ Ptr model with two separate encoders: one that learns a representation of an in-
dividual utterance, and one that learns a representation of the whole discussion. We
encode Ut using a transformer-based encoder and feed the contextualized represen-
tation of its first token (<UTTERANCE START>) into the RNN-based discussion
encoder to update the discussion state, st. When encoding Ut, we also concatenate
st−1 to embeddings, to help the model relate Ut with the broader context of the dis-
cussion. Note that we treat the title as U0 in the discussion. This process continues
until Utg is encoded, at which point all accumulated token-level hidden states are
fed into a transformer-based decoder to generate the output. Unlike the Seq2Seq
+ Ptr model which is designed to reason about the full input at once, this approach
reasons step-by-step, with self-attention in the utterance encoder only being applied
to tokens within the same utterance. Since the input context for this task is often
very large, we investigate whether it is useful to break down the encoding process
in this way. We also equip this model with a pointer generator network.

• PLBART: Ahmad et al. (2021) recently proposed PLBART, which is pretrained
on a large amount of code from GitHub and software-related natural language from
StackOverflow, using BART-like (Lewis et al., 2020) training objectives. With
fine-tuning, PLBART achieves state-of-the-art performance on many program and
language understanding tasks like code summarization/generation. We fine-tune
PLBART on our training set and evaluate its ability to comprehend bug report
discussions and generate descriptions of solutions.4 Note that PLBART truncates
input to 1024 tokens.

• PLBART (F): Since PLBART is pretrained on a large amount of data, we can
afford to reduce the fine-tuning data. So we fine-tune on only the filtered subset
of the training set (Section 7.2.2), to investigate whether fine-tuning on this “less
noisy” sample can lead to improved performance.

4We use PLBART rather than vanilla BART because it achieves higher performance for our task.
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Model BLEU-4 METEOR ROUGE-L

Full

Copy Title 14.4‖ 13.1 24.4§

Seq2Seq + Ptr 12.6 9.8 25.0‡

Hier Seq2Seq + Ptr 12.4 9.6 24.1§

PLBART 16.6 14.5 28.3
PLBART (F) 14.2‖ 12.3 25.1‡

Filtered

Copy Title 10.0∗† 8.3 16.6
Seq2Seq + Ptr 10.2∗ 7.5 20.1
Hier Seq2Seq + Ptr 9.9† 7.4 19.6
PLBART 12.3‡ 9.9 21.1
PLBART (F) 12.3‡ 10.2 21.9

Table 7.3: Automated metrics for generation. Scores for Seq2Seq + Ptr and Hier Seq2Seq
+ Ptr are averaged across three trials. Differences that are not statistically significant are
indicated with matching symbols.

7.4. Results: Automated Metrics

We compute common text generation metrics, BLEU-4 (Papineni et al., 2002), ME-
TEOR (Banerjee and Lavie, 2005), and ROUGE-L (Lin, 2004). We compute statistical
significance with bootstrap tests (Berg-Kirkpatrick et al., 2012) with p < 0.05. Results
are in Table 7.3. On the full test set, PLBART outperforms other models by statistically
significant margins, demonstrating the value of pretraining on large amounts of data5.
PLBART (F) underperforms PLBART on the full test set; however, on the filtered sub-
set, PLBART (F) either beats or matches PLBART. We find that there is a large drop in
performance across models between the full test set and filtered subset. As demonstrated
by the relatively high performance of the naive Copy Title baseline, models can perform
well by simply copying or rephrasing the title in many cases, for the full test. However,
the filtered subset is designed to remove uninformative reference descriptions that merely
re-state the problem. Nonetheless, because critical keywords relevant to the solution are
often also in the title, the Copy Title baseline can still achieve reasonable scores on the
filtered subset, even beating Seq2Seq + Ptr and Hier Seq2Seq + Ptr on METEOR.
Although automated metrics provide some signal, they emphasize syntactic similarity
over semantic similarity. For further evaluation, we conduct human evaluation.

7.5. Results: Human Evaluation

Users are asked to read through the content in the title and the discussion (U1...Utg). For
each example, they are shown predictions from the 5 models discussed in Section 7.3,
and they must select one or more of the descriptions that is most informative towards
resolving the bug. If all candidates are uninformative, then they select a separate op-
tion: “All candidates are poor.” There is also another option to indicate that there is
insufficient context about the solution (Section 7.2.2), making it difficult to evaluate can-
didate descriptions. They must also write a rationale for their selection. Before starting
the annotation task, users must watch a training video in which we walk through seven

5While Seq2Seq + Ptr and Hier Seq2Seq + Ptr are slightly smaller than PLBART in model size, we
find that randomly initializing a model resembling PLBART’s architecture results in lower performance
than both of these.
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examples in detail.
Since annotation requires not only technical expertise, but also high cognitive load and

time commitment, it is hard to perform human evaluation on a large number of examples
with multiple judgments per example. Similar to Iyer et al. (2016), we resort to having
each example annotated by one user to obtain more examples. We recruited 8 graduate
students with 3+ years of programming experience and familiarity with Java. Each user
annotated 20 examples, leading to annotations for 160 unique examples in the full test
set. Note that these users are not active contributors, thus they will likely select the
option pertaining to insufficient context more often than if they were active contributors
to these projects who have a deeper understanding of their implementations. However,
it is difficult to conduct a user study at a similar scale with contributors. Nonetheless,
there are developers aiming to become first-time contributors for a particular project (Tan
et al., 2020). Our study better aligns with this use case.

In Table 7.4, we show that PLBART (F) substantially outperforms all other models,
with users selecting its output 33.1% of the time. Even though the title typically only
states a problem, users selected it 8.1% of the time. From rationales that users were asked
to write, we found that there were cases in which the title not only posed the problem
but also offered a solution. Users rarely preferred the output of Seq2Seq + Ptr and
Hier Seq2Seq + Ptr as they usually just rephrased the problem. PLBART also appears
to be re-stating the problem in many cases; however, less often than other models.

Model Full Filtered
Copy Title 8.1 6.0
Seq2Seq + Ptr 1.3∗ 1.2†

Hier Seq2Seq + Ptr 1.3∗ 1.2†

PLBART 11.9 10.5
PLBART (F) 33.1‡ 39.5
All Poor 20.0 22.1
Insufficient Context 31.9‡ 25.6

Table 7.4: Human evaluation results:
Percent of annotations for which users se-
lected predictions made by each model.
This entails 160 annotations for the full
test set, 86 of which correspond to ex-
amples in our filtered subset. Differences
that are not significant are indicated with
matching symbols.

Though we see similar trends across the full
test set and the filtered subset, all models ex-
cept PLBART (F) tend to perform worse on the
filtered subset, as previously observed on auto-
mated metrics. Also, the average number of
cases with insufficient context is lower for the
filtered subset, confirming that we are able to
reduce such cases through filtering. We find the
results on the filtered data to align better with
human judgment. By fine-tuning on the filtered
training set, PLBART (F) learns to pick out im-
portant information from within the context and
generate descriptions which reflect the solution
rather than the problem.

7.5.1. Analysis

Model Prediction
Copy Title black screen appears when we

seek over an ad group .
Seq2Seq +
Ptr

fix black ads

Hier
Seq2Seq
+ Ptr

fix seeking in ad tag

PLBART suppress closing shutter when
seeking over an ad group

PLBART
(F)

suppress closing the shutter
when seeking to an unpre-
pared period

Reference prevent shutter closing for
within - window seeks to un-
prepared periods

Table 7.5: Model outputs for the example
shown in Figure 7.1.

In Table 7.5, we show model outputs for the
example in Figure 7.1. Seq2Seq + Ptr and
Hier Seq2Seq + Ptr essentially rephrase as-
pects of the problem, which are described
in the title. Both PLBART and PLBART
(F) capture the solution, with PLBART (F)
providing more information. When there is
sufficient context, 62.4% of the time, either
PLBART or PLBART (F) generates output
that is informative towards bug resolution.
While this demonstrates that fine-tuning this
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Title PLBART (F) Reference
(1) Issue with dex: OIDC server is not

available at the ’quarkus.oidc.auth-
server-url’ URL

fix trailing slash in auth -
server url

strip trailing forward slash
from oidc url

(2) InvalidDataTypeException: UDATA
contains value larger than Inte-
ger.MAX VALUE DDR issue decod-
ing lookswitch

fix bug in byte code
dumper when tableswitch
instruction precedes ta-
bleswitch instruction

fix interpretation of switch
instructions in byte code
dumper

(3) Worldmap viewport changes when
switching between dashboard pages

don ’ t refresh widget
grid when worldmap loses
viewport

define key prop for map vi-
sualization to update map
on dimension change

(4) Workaround comments exist in
opengrok-indexer/pom.xml file while
the related issues are already fixed.

fix jflex - de / jflex # 705
( comment )

use jflex 1.8.2

(5) Why subscribe with single action for
onNext design to crush if error hap-
pened?

1 . x : fix subscription .
subscribe ( ) to return ob-
servable . empty ( ) 2 .
x : fix subscription . sub-
scribe ( ) to return observ-
able . empty ( )

fixed sonar findings

Table 7.6: Output of PLBART (F) for a sample of examples in the test set:
(1) https://github.com/quarkusio/quarkus/issues/10227,
(2) https://github.com/eclipse-openj9/openj9/issues/9294,
(3) https://github.com/Graylog2/graylog2-server/issues/7997,
(4) https://github.com//oracle/opengrok/issues/3172,
(5) https://github.com/ReactiveX/RxJava/issues/637.

large, pretrained model on our data can be
useful in supporting bug resolution in on-line
discussions to some extent, it also shows that
there is opportunity for improvement.

We manually inspected PLBART (F)’s
outputs and associated user rationales. We
observe that the model tends to perform bet-
ter when the solution is clearly stated in 1-3 consecutive sentences (Table 7.6 (1) and (2)).
When more complex synthesis is needed, it sometimes stitches together tokens from the
input incorrectly (Table 7.6 (3)). Next, although the model picks up on information in the
context, sometimes, it draws content from an elaboration of the problem from within the
discussion rather than a formulation of the solution (Table 7.6 (4)). This demonstrates
that it still struggles to disentangle content relevant to the solution from that about the
problem. We also find that it sometimes struggles to generate meaningful output when
in-lined code is present, highlighting the challenge in bimodal reasoning about code and
natural language (Table 7.6 (5)). Finally, we find problems with repetition and fluency
(Table 7.6 (1)), as commonly seen in the outputs of neural models (Holtzman et al.,
2020).
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Chapter 8

Describing Solutions for Bug Reports in Real-Time

For the generated solution descriptions from Chapter 7 to be useful in resolving bugs,
generation must be performed during ongoing discussions. In a real-time setting, the
formulation of the solution is likely not immediately available but rather emerges as the
discussion progresses and the sequence of utterances grows. So, we propose an addi-
tional task for monitoring progress in an ongoing discussion to predict the time step t
in which the title and U1...Ut constitute sufficient context for generating an informative
description. For this, we train a binary classifier to predict the time step (tg) in which
the necessary context is available, and we combine it with the generation task as a pre-
liminary investigation for a real-time generation system. More concretely, in Figure 7.1,
the solution is formulated in U4, so the correct behavior is for the classifier to predict the
negative label at t = 1, 2, 3 and the positive label at t = 4. Once the positive label is
predicted, the description is generated, conditioned on the title and U1...Utp .

8.1. Our Classifier

Our approach sequentially processes each new utterance and decides if it adds enough
information to propose a solution. We first prepend <TITLE START> to the sequence
of tokens in the title and encode it with a transformer-based encoder. We consider the
contextualized representation of this token as a vector representation of the information
available at t0, which we denote as r0. Next, to process an utterance Ut (t > 0), we
prepend <UTTERANCE START> to the sequence of utterance tokens. We concatenate
the representation at the previous time step (rt−1) to the token embeddings and pass them
through the encoder. The contextualized representation of the special token becomes rt.
Finally, we pass rt through 3 linear layers and a sigmoid layer, and then apply softmax
to classify whether or not a solution can be formulated at step t. By feeding in rt−1, we
inform the model of the prior context and evaluate the information added by Ut. We
weight the positive and negative labels using the inverse of the class proportion to handle
class imbalance (1.543 and 0.740 respectively). Additionally, to improve learning, we
augment the training data with 12,350 non-bug examples, but apply a lower weight for
these examples (0.7). The model is trained to minimize cross entropy loss.
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First Second Rand (uni) Rand (dist) RF Ours

Full

Overall 29.5 26.0 23.3 24.6 21.9 32.5
tg = 1 100.0 0.0 49.4 52.7 30.9 62.9
tg = 2 0.0 100.0 24.7 26.3 35.8 33.4
tg = 3 0.0 0.0 10.6 10.0 11.5 16.4
tg = 4 0.0 0.0 5.2 4.7 8.7 15.8
tg ≥ 5 0.0 0.0 0.9 1.3 4.3 5.6

Filtered

Overall 23.8 24.8 21.4 21.4 19.1 28.8
tg = 1 100.0 0.0 52.0 53.0 23.4 57.2
tg = 2 0.0 100.0 26.8 23.8 39.2 34.2
tg = 3 0.0 0.0 9.5 12.1 12.5 19.4
tg = 4 0.0 0.0 4.6 5.0 7.5 15.8
tg ≥ 5 0.0 0.0 1.2 1.7 3.7 7.0

Table 8.1: Accuracy (i.e., percent of times tp = tg) overall and for varying tg. All differences
are statistically significant.

8.2. Classification Baselines

To better evaluate our classifier for determining when sufficient context is available for
generating an informative description, we introduce some simple baselines. We observe
that there are many cases in which tg = 1, 2, i.e., the solution is implemented immediately
after the first or second utterance. So, we include the First baseline which always
predicts a positive label at t = 1, and Second which predicts negative at t = 1 and
positive at t = 2, if tg ≥ 2 (otherwise it never predicts positive).

Next, we include the Rand (uni) baseline which progresses through the discussion,
randomly deciding between the positive and negative label after each utterance, based
on a uniform distribution. We additionally include Rand (dist), which instead uses the
probability distribution of labels at the example-level estimated from the training and
augmentation data (i.e., pos = 1

N

∑N
n=1

1
tg

=0.549, neg = 0.451).

Finally, we include a random forest classifier (RF) which makes a classification fol-
lowing each utterance, Ut, until the positive label is predicted or t > tg. It uses TF-IDF
representations of the title and Ut as well as an aggregated representation of U1...Ut.
Additionally, it uses the following features: the position t, length of Ut, author of Ut (as
an index, with ordering dependent on entry into the discussion), frequency of utterances
made by the author, the ratio of the length of Ut to the accumulated length of U1...Ut,
and the title length.

8.3. Classification Results

We evaluate on the full and filtered test sets from Section 7.2. We present results in
Table 8.1. Results for the random baselines, random forest classifier, and our classifier
are averaged across 3 trials. On both test sets, our classifier achieves the highest overall
accuracy than. For longer discussions (with higher values of tg), we observe that RF and
our classifier, which dynamically make content-driven predictions, manage to outperform
other baselines. In general, our classifier still outperforms RF, which we attribute to the
more complex transformer-based architecture yielding better utterance representations.
We find that that accuracy deteriorates substantially as tg increases, illustrating the
challenge in handling long dialogues.
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The classifier fails to predict the positive label (before or at tg) in some cases (tp =
None). On the examples that it does predict the positive label, on average, tp is 1.704,
1.895, and 1.804 time steps before tg for the full, filtered, and curated test sets respec-
tively. While a model should wait until sufficient context is available before generating,
sometimes, the last couple utterances before the implementation do not add context
about the solution but are rather personal exchanges between developers (e.g., “Thanks
for the bug report”, “I’ll open a PR”). For this reason, we believe that predicting the
positive label slightly before tg is acceptable in certain cases.

8.4. Combined System

BLEU-4 METEOR ROUGE-L

Full
@tp 11.3 9.9 19.9
@tg 14.2 12.3 25.1

Filtered
@tp 9.5 7.8 16.3
@tg 12.3 10.2 21.8

Table 8.2: Comparing PLBART (F)’s performance
with context available at tp vs. tg. If tp = None (i.e.,
positive label is not predicted before or at tg), the pre-
dicted description is the empty string. All differences
are statistically significant.

Finally, we combine the classifier
and PLBART (F) (the best gen-
eration model from human evalu-
ation) to build a complete system
for deciding when a solution can be
proposed and then generating one.
In Table 8.2, we report automated
metrics for PLBART (F), compar-
ing model output between using the
context up till tp (the predicted time
step of classifier) versus tg. We ob-
serve that across metrics, predic-
tions generated by the same underlying model using the context at tg achieve higher scores
than those made using the context at tp. This highlights the gap in performance caused
by error propagation from the classifier. We plan to investigate a higher-performing clas-
sifier (Section 9.1) and more intricate end system that is jointly trained on generation
and classification (Section 9.2) in the future.
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Chapter 9

Proposed Work

For our first short-term goal, we aim to improve the classifier from Section 8.1 that
determines when sufficient context for generating an informative description emerges in
an ongoing discussion. The second short-term goal revolves around building an improved
combined system (relative to the pipelined approach in Section 8.3) that is jointly trained
on generation and classification.

9.1. Improving Classifier

In Chapter 8, we conducted an initial study of a real-time system which generates solu-
tion descriptions during an ongoing discussion, by pipelining a generation model with a
classifier which determines when to perform generation. Using our classifier’s predicted
label instead of the oracle label yielded much lower performance. Therefore, to improve
overall performance, we need a higher-performing classifier. In Section 7.4, we found
that using a pretrained model substantially outperforms one that is randomly initialized
for the generation task, which operates on the same type of input as the classification
task. As shown in Figure 9.1a, our classifier entails a transformer encoder, identical to
the encoder used for Seq2Seq + Ptr and Hier Seq2Seq + Ptr, followed by 3 linear
layers, a sigmoid layer, and a final softmax layer (Section 8.1). We intend to conduct
experiments in which we replace the randomly initialized transformer encoder with one
that is pretrained. For this purpose, we plan to explore CodeBERT (Feng et al., 2020)
(trained on code and comments from GitHub), BERTOverflow (Tabassum et al., 2020)
(trained on technical text from StackOverflow), and finally PLBART (trained on code
from GitHub and technical text from StackOverflow). For PLBART, we intend to con-
duct two separate experiments. The first is simply using its encoder in the same way
as before. Additionally, since PLBART is trained as a denoising autoencoder, we could
also leverage the decoder. As shown in Figure 9.1b, we will add a special token to the
end of the input sequence and take the final hidden state of the decoder corresponding
to this token as the sequence representation, similar to how BART is applied to sequence
classification tasks (Lewis et al., 2020).

To provide the model with broader context of the discussion, we had concatenated
the encoder’s learned representation for the previous utterance, rt−1, to the input em-
beddings when encoding the current utterance, Ut. We plan to investigate an alternative
strategy for incorporating this context, in which we feed in an aggregated sequence that
closely resembles the structure of the input into PLBART for the generation task: (title,
U1, U2, ..Ut). Through the self-attention layers (Vaswani et al., 2017), we believe the en-
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(a) Basic architecture of our classifier from
Section 8.1.

(b) Classifier using PLBART in which the
decoder’s final hidden state for the last to-
ken is passed into the classification layers.

Figure 9.1: Architectures for the the classification task of determining whether there is sufficient
context to generate an informative description.

coder will better learn how Ut’s content relates to the broader context of the discussion
so far. Moreover, because the formulation of the solution is not always contained within
a single utterance, this input format allows the encoder to better reason about whether
sufficient context about the solution has accumulated across utterances at time step t. To
account for PLBART’s 1024 token limit, we will remove overflowing tokens from the left
side of the subsequence of tokens corresponding to U1, ...Ut−1. In addition to preserving
critical tokens from the title and Ut, this also prioritizes tokens derived from more recent
utterances in the discussion.

Additionally, by feeding in the representation of the previous utterance, we are im-
plicitly capturing the ordering of utterances within the discussion. To explicitly specify
ordering1 and provide other salient information, we plan to incorporate additional fea-
tures by concatenating a feature vector to rt before we pass it through the classification
layers. These features include the following: position of t, author of Ut (as an index, with
ordering dependent on entry into the discussion), frequency of utterances made by the
author, and the ratio of the length of Ut to the accumulated length of U1...Ut. We found
these features to be useful during experiments with a random forest baseline classifier,
especially for longer discussions.

9.2. Jointly Training on Generation and Classification

Up till now, we have treated generating solution descriptions and classifying when to
perform generation as independent tasks; however, they are inherently intertwined. It
is not possible to generate an informative description without sufficient context, and
“sufficient” context is defined by whether it can be used to generate an informative
description. To allow these tasks to better complement one another, we intend to build
an end system which is jointly trained on both generation and classification.

We provide an overview of our proposed architecture in Figure 9.2a. The two tasks
will share an encoder, for which the input will be (title, U1, U2, ...Ut). There will be a
separate decoder for the generation task and a separate set of layers for classification. We
will initialize the encoder and decoder from PLBART. Conceptually, this is very similar
to the Jointly trained update + detection model from Section 6.1.

We will compute the loss as the sum of the losses associated with the two individ-
ual tasks. Because the classifier runs after each new utterance, the classifier should be

1Using positional encodings (Vaswani et al., 2017) to represent utterance ordering did perform well
in our initial experiments.
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(a) Basic architecture for multi-task learn-
ing with a shared encoder and a separate
decoder for generation and layers for clas-
sification.

(b) Variation of the architecture in Fig-
ure 9.2a in which the final decoder state
from generation guides the classification
task by capturing the notion of an infor-
mative description.

Figure 9.2: Architecture for jointly learning the generation and classification tasks needed for
a real-time system that generates solution descriptions by synthesizing the relevant content in
the discussion as it emerges.

trained at g time steps for any given example of the form (title, U1, U2, ...Ug). However,
the generation model should be trained to only generate at one time step, tg, when suf-
ficient context for generating an informative description is available. To account for this
discrepancy, we will mask the generation loss for t < tg during training. During inference,
if the model predicts the positive label at tp, then we take the generated description at
tp as the final prediction for the solution description.

We believe the classification task can guide content selection for the generation task by
forcing the model to identify the specific parts of the input which contribute to predicting
the positive label, i.e., the “sufficient context.” Because we frame the classification task
as determining whether sufficient context for generating an informative description is
available, we a slight variation in which we leverage learned representations from the
generation task to demonstrate what qualifies as an informative description. Namely, we
will feed the final decoder hidden state corresponding to the last token as an additional
input into the classification layers, as shown in Figure 9.2b. In principle, the decoder will
not generate an informative description before tg, so we believe this additional input will
provide some signal that will be useful in learning to predict the negative label at t < tg
and the positive label at tg.

We will compare the performances of these combined systems with the pipelined
system described in Section 8.4 as well as a new pipelined system using the best classifier
from Section 9.1. We will also compare the quality of the generated output at tp and tg,
to assess the impact of error propagation from classification. For evaluation, we plan to
again use automated metrics (Section 7.4) and human evaluation (Section 7.5).
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Chapter 10

Bonus Contributions

In this chapter, we discuss topics of interest for future work, which may be presented in
the final dissertation.

10.1. Interactively Generating Descriptions to Drive

Code Changes

A system that generates an NL description of the solution when sufficient context emerges
in an ongoing bug report discussion acts as an intelligent agent which chimes in to fa-
cilitate the implementation of the necessary code changes. However, this system is not
interactive (i.e., it cannot react to new utterances made after it performs generation).
We are interested in interactively generating descriptions to guide developers in making
code changes.

10.1.1. Interacting in Bug Report Discussions

The dataset we consider in Chapters 7-9 consists of 12,328 bug report discussions linked to
a single set of code changes (a single commit or PR), and thus there is only one associated
NL solution description. We had also mined 4,571 bug-related and 12,609 nonbug-related
issue reports corresponding to multiple commits and PRs, which we could use for learning
to perform generation at multiple time steps. For instance, if there are commits at
tg and tg+k, the system should first determine that sufficient context for generating a
solution description is available at tg and generate descriptiong using (title, U1, ...Ug)
as context. Then, it should continue monitoring progress in the discussion. At tg+k it
should recognize that another set of code changes is required, so it would generate another
solution description, descriptiong+k, using (title, U1, ...Ug+k, descriptiong) as context. It
would continue monitoring progress until the discussion terminates. For this, we plan to
first study the data we mined more closely in order to understand the nature of the code
changes in follow-up commits and PRs (e.g., the solution could have been implemented
in parts or the first solution may have been incorrect and it is later corrected).

10.1.2. Interacting in Code Review Discussions

Next, we plan to study the task of interactively generating NL descriptions to guide code
changes in a slightly different domain: code reviewing. Upon making modifications within
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Figure 10.1: PR discussion from https://github.com/apache/commons-io/pull/171.

a software project, a developer opens a PR so that other collaborators can review these
modifications to evaluate whether they efficiently implement the correct functionality
and adhere to established style guidelines (Brown and Parnin, 2020; Li et al., 2017).
During this process, reviewers post review comments at specific locations in the code
diff to point out problems they see and describe additional code changes for addressing
these problems. The developer who opened the PR, or the author, then responds by
posting comments or implementing the recommended changes. Reviewers may then post
new comments in response, either addressing the author’s comments or providing more
feedback about the new changes (Tufano et al., 2021; Li et al., 2017). This can go on for a
series of exchanges (Tsay et al., 2014; Golzadeh et al., 2019). For example, in Figure 10.1,
maxxedev (the author) opens a PR for adding “QueueInput/OutputStream as simpler
alternatives to PipedInput/OutputStream.” The reviewer, garydgregory, comments on
a diff chunk which introduces a catch block, to question why a new exception is being
instantiated rather than simply rethrowing the original one. The author then responds
to this by stating their rationale about a limitation with the InterruptedException class,
for which the reviewer describes a possible workaround in the next comment: “preserve
the original exception by calling initCause() on the new exception.” The author then
proceeds to implement this through code changes.

Because of the extensive manual effort that is required, reviewing can be very time-
consuming (Hellendoorn et al., 2021; Jiang et al., 2021a; Wessel et al., 2020) and can
also delay the release of critical software updates due to overloaded developers failing to
complete reviewing in a timely manner (Yu et al., 2015; Maddila et al., 2020). Recently,
there have been efforts to build tools for streamlining reviewing by automatically recom-
mending relevant reviewers (Yu et al., 2014), PR prioritization (van der Veen et al., 2015),
highlighting locations in the code diff which likely need a PR review comment (Hellen-
doorn et al., 2021) and providing a preview of how PR review comments should manifest
as code changes (Tufano et al., 2021). We are interested in studying the prospects for an
intelligent agent which can act as a reviewer to interactively suggest PR review comments
to guide code changes that should be made during code review.
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For a given diff chunk that is under question, we will model the dialogue between
the author and the reviewer. The agent will assume the role of a reviewer. Note that
multiple reviewers can be involved in an exchange with the author; however, we intend
to treat this as a dyadic conversation in which we collapse all reviewers into a single role.
As a first step, we assume the relevant diff chunk is specified, either manually or through
automated tools (Hellendoorn et al., 2021). We treat the original diff chunk as the first
utterance made by the author, A1. Then, using A1 as context, our agent will aim to
generate a PR comment, R1. The author will then either post a comment or make new
code changes in response, A2, and the agent will use A1, R1, A2 as context to generate
R2. This process will continue until the agent determines that the final set of changes in
the given diff chunk are acceptable.

We acknowledge that this is a very challenging task. While a model can learn to exploit
common patterns in review comments, this task still requires complex technical reasoning,
especially as the discussion progresses. So, we do not consider this as a standalone
automated system but rather one that works alongside human reviewers. Namely, we
envision a system that acts as a first-pass reviewer which generates comments early
on in the discussion. Eventually, a human reviewer will have to intervene when the
discussion reaches a stage which requires more technical expertise to comprehend the
author’s comments or code changes and respond in a meaningful way.

Here, any utterance made by the author or reviewer can consist of technical language
or code. Since PLBART is trained to reason about code and technical language and also
generate code and language, we plan to use this as the underlying architecture again.
For data, we plan to first study the PR interactions associated with the 267,216 PRs
released by (Tufano et al., 2019a). These PRs were mined from Gerrit1, a platform for
code review. Tufano et al. (2019a) specifically focus on the following three repositories:
Android, Google, and Ovirt. From an initial inspection of this data, we found 63,734 PRs
to have at least one interaction, resulting in a total of 287,648 interactions. For each of
these PRs, there is on average 4.5 interactions, with each interaction entailing on average
2.01 comments (between authors and reviewers) that are attached to 1.44 lines of code.
The interactions span on average 1.71 commits. Note that across commits, interactions
could pertain to the same lines of code (e.g., the author may have made code changes
which the reviewer has additional comments about). However, for this preliminary study,
we did not merge interactions across commits as we will need to design an approach for
performing this mapping.

We also plan to study this task for GitHub PRs as well. For an initial analysis, we
considered the 21,778 PRs which are linked to the GitHub issue reports that we mined.
From these, there are a total of 7,114 PRs with at least 1 interaction, resulting in a
total of 25,625 interactions. For each of these PRs, there is on average 3.60 interactions,
spanning 1.53 commits, with each interaction entailing 1.91 comments (between authors
and reviewers) that are attached to 1.09 lines of code. Recall that these PRs were mined
with the constraint that they had to be linked to a bug report. We plan to collect more
PRs from GitHub by relaxing that constraint and also expanding to more projects.

1https://www.gerritcodereview.com
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Figure 10.2: Solution description and suggested code changes for bug report discussion from
https://github.com/oracle/opengrok/issues/2278.

10.2. Suggesting Code Changes Based on Developer

Discussions

The generated solution descriptions are intended to facilitate bug resolution by providing
a high-level overview of the required changes. We are interested in taking the next step of
providing further guidance through suggested code changes. For instance, currently, we
focus on generating a NL description like “throw unsupported operation exception from
unused repository date format methods” to help developers in better interpreting content
from the bug report in Figure 10.2 that is relevant towards implementing the solution.
Now, to help developers reason about how such a high-level idea should materialize as
concrete code changes, we aim to generate suggested code changes which transform the
format() and parse() methods into dummy methods by replacing the current body with a
single statement: throw new UnsupportedOperationException("not implemented")

(shown at right).

10.2.1. Problem Setting

To generate bug-fixing code changes, we must first link a given bug report discussion
to the relevant, buggy code fragments within the code base. This can be achieved by
either prompting a developer to manually locate this code or leveraging automatic bug
localization systems (Saha et al., 2013; Rahman and Roy, 2018; Loyola et al., 2018; Zhu
et al., 2020). Once we identify the buggy code, we could attempt to generate code
changes by conditioning only this code, following prior work in bug fixing and applying
common code change patterns (Section 2.3). However, such approaches blindly generate
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code changes, without reasoning about the broader context or capturing developer intent.
Chakraborty and Ray (2021) recently found that incorporating code context from where
the code fragment is extracted and also providing a natural language description of intent
can lead to substantial improvements for bug fixing.

Inspired by this, we hypothesize that content within the bug report discussion can
provide valuable context for generating bug-fixing code changes. Utterances in the dis-
cussion often contain code snippets, stack traces, and error messages (Li et al., 2018b)
which serve as additional context for identifying specific code elements that are respon-
sible for the bug that need to be edited. Additionally, the discussion can also shed light
into intent, as we have shown that we can generate a natural language description of the
solution using the same context. This description effectively captures the intent of the
code changes. In fact, Chakraborty and Ray (2021) use commit messages as a proxy for
natural language descriptions of intent, which is also a source of supervision for our task
of generating solution descriptions (Section 7.2).

More concretely, for a given source code fragment S, we define Sb as the buggy
version and Sf as the fixed version, after the bug is resolved. In Section 7.1, we defined
the following task: (title, U1, U2, . . . ) → description. We now propose a new task for
leveraging the discussion context and buggy code fragment to generate the fixed code,
after applying the necessary code changes: (title, U1, U2, . . . , Sb) → Sf .

Additionally, since having a brief natural language description of intent is beneficial
for learning code edits (Chakraborty and Ray, 2021; Tufano et al., 2021; Elgohary et al.,
2021), we are interested in evaluating the value of incorporating such a concise description
as another input: (title, U1, U2, . . . , Sb, description) → Sf . For this, we plan to feed in
the output of the best generation model from Chapter 7. To further study the extrinsic
value of the generated description in capturing the solution, we intend to conduct the
following experiment: (Sb description) → Sf . Chakraborty and Ray (2021)’s approach
assumes that a human developer provides a natural language description specifying intent
for making code changes. We will evaluate how our generated descriptions fair for the
end task, relative to high-quality human descriptions as well as low-quality ones (e.g.,
generic or uninformative descriptions from Section 7.2.2).

Finally, we plan to integrate this task into a real-time setting, much like we do for the
task of generating solution descriptions (Chapters 8 and 9).

10.2.2. Approaches

Chakraborty and Ray (2021) have shown that fine-tuning PLBART with additional con-
text for generating bug fixes yields substantially higher performance than encoder-decoder
models trained from scratch as well as other pretrained models. Since we find PLBART
to also be effective in reasoning about the context within bug report discussions (Sec-
tion 7.5), we believe that it serves as a good starting point for the proposed task.

However, this model failes to consider the edit nature of bug fixing in which much of Sb

is preserved in Sf (Ding et al., 2020). As we discussed in Section 5.2.2, this unnecessarily
burdens the decoder with generating unchanged tokens, which also increases the possibil-
ity of error propagation. To reduce this burden, we plan to first add explicit copying to
PLBART, similar to how Einolghozati et al. (2020) incorporated a copy mechanism into
BART for the task of learning to rephrase in dialogue systems. We believe this will better
guide the model in learning to copy over tokens from the input. For this, we will explore
token-based copying (Vinyals et al., 2015) as well as span-based copying (Panthaplackel
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et al., 2021a), which was shown to be useful for bug fixing.
We will further attempt to eliminate this burden by studying edit-based frameworks

which are designed to only generate the edited tokens. Following the framework we
developed in Section 5.2 for learning to edit comments, we will investigate the performance
of fine-tuning PLBART to encode both the input context and decode a condensed edit
sequence, Se, which can then be aligned with Sb in order to produce Sf . Because Se

does not include unchanged tokens and includes many special tokens for specifying the
edit type (e.g., ReplaceOld, ReplaceNew), the decoder’s target output diverges from the
continuous, coherent code sequences that are used for PLBART’s pretraining. To account
for this difference, we will likely need to first fine-tune PLBART on its original pretraining
objectives using a large number of sequences structured like Se, prior to fine-tuning on
the bug fixing task.

However, by representing Sb and Sf as flattened sequences of code tokens, we discard
rich structural context provided by the ASTs corresponding to these two code fragments.
To inject structural information, we can represent them as flattened sequences of AST
nodes, following the structure-based traversal (SBT) method proposed by Hu et al. (2018).
We can produce an SBT representation of Se by computing the condensed sequence of
edits needed to transform Sb’s SBT representation to Sf ’s SBT representation. Because
PLBART is not pretrained on such representations, we will again likely need to first
fine-tune it on the original pretraining objectives with a large number of SBT sequences.

Nonetheless, PLBART is not designed to reason about structured input or generate
structured output. So, we plan to also explore more structured edit-based models that
have been previously studied for various code editing tasks (Tarlow et al., 2020; Yao
et al., 2021; Mesbah et al., 2019), which entail encoding the input context with graph-
based models (Li et al., 2016) and decoding a series of AST edits.

10.2.3. Data and Evaluation

While we can extract code changes from commits associated with the bug reports that we
collected (Section 7.2), we intend to first study this task in a more constrained setting.
Tufano et al. (2019b) developed a dataset for studying this task, entailing simpler changes
in small (< 50 tokens) and medium (50-100 tokens) Java methods. There are 58,350 small
examples (from 45,958 commits) and 65,455 medium examples (from 54,784 commits).
We plan to focus on the examples in the dataset with commits which are linked to bug
reports. Only 437 of the examples in Tufano et al. (2019b) have commits which overlap
with the 141,334 commits in all of the bug reports we mined for our corpus. While
this is a small number, there is very little overlap in the data we mined and that of
Tufano et al. (2019b). Of the 58,454 projects they mined, there are only 263 which
overlap with the 770 projects in our corpus. We intend to mine bug reports from the
remaining projects in their corpus to obtain more examples. We also plan to apply their
heuristics for extracting examples from commits to the commits in our corpus. Tufano
et al. (2019b) released 10,054,468 bug-fixing commits, most of which are not used in their
small and medium datasets. We plan to use bug-fix pairs from these unused commits for
fine-tuning PLBART on the various representations mentioned in Section 10.2.2 with the
original pretraining objectives.

Note that an “example” in the Tufano et al. (2019b) corpus does not signify a full bug
fix. It is simply one set of code changes, among possibly many others, that are required
for resolving the bug. Although generating one set is only a partial solution, we believe
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that it can still provide a starting point to developers in implementing the full solution.
For evaluation, we will use exact match, and for cases in which all sets of code changes
associated with a given commit are present in the corpus, we intend to also evaluate
which fraction of them can be correctly generated.
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Chapter 11

Conclusion

Software is constantly evolving to accommodate ever-changing technological user needs,
wants, and concerns. To prevent software quality from deteriorating under the large
volume of changes and also foster timely implementation of important changes, we aim
to guide developers in making methodical software changes through natural language.

Inconsistent comments often materialize as a result of developers failing to update
comments when they make changes to the corresponding body of code. To prevent
such inconsistencies from forming, we first designed a deep learning approach for just-
in-time inconsistency detection that encodes the syntactic structures of comments and
code, which we showed to outperform various baselines as well as post hoc models that
do not consider code changes. Next, we formulated the novel task of automatically
updating inconsistent comments based on code changes, which we addressed through a
framework that generates a sequence of edit actions by correlating cross-modal edits.
We found that our approach outperforms multiple rule-based baselines and comment
generation models, with respect to several automatic metrics and human evaluation. We
further studied multiple techniques for combining the two tasks to build a comprehensive
comment maintenance system that can detect and update inconsistent comments. For
both tasks and the combined system, we observed that incorporating a set of salient
features for explicitly associating comments and code substantially improves performance.

Next, when a software bug is reported, a discussion forms between developers to col-
laboratively resolve it. While the solution is often recommended within the discussion,
this can get buried under a large amount of text. To enable developers to more eas-
ily locate and comprehend information relevant towards implementing the bug-resolving
code changes and consequently expedite bug resolution, we presented our vision for an
automated system which generates a concise description of the solution as soon as the
necessary context becomes available in an ongoing developer discussion. Using a large
dataset that we collected through supervision derived from commits and pull requests,
we benchmarked approaches for generating informative solution descriptions. We also
conducted a preliminary study on integrating such a generation model into a real-time
setting by pipelining it with a classifier for determining when sufficient context emerges
in an ongoing discussion. Through automated and human evaluation, we demonstrated
the utility of these models and also highlighted their shortcomings, which we hope to
address in future work.

Namely, as immediate next steps, we plan to develop an improved classification ap-
proach as well as a more intricate combined system which is jointly trained on generation
and classification to allow the two interdependent tasks to better complement one an-
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other. This system learns to chime into a discussion at only one point in time and is
not currently equipped to react to new activity after it performs generation. So, as our
first long-term goal, we propose building an agent which interactively generates natu-
ral language descriptions to drive code changes. Finally, our second long-term goal is
supplementing the high-level natural language description of the solution with actual
suggestions for concrete code changes.
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Ripon K Saha, Matthew Lease, Sarfraz Khurshid, and Dewayne E Perry. 2013. Improving
bug localization using structured information retrieval. In ASE, pages 345–355. IEEE.

Abigail See, Peter J. Liu, and Christopher D. Manning. 2017. Get to the point: Summa-
rization with pointer-generator networks. In ACL, pages 1073–1083.

Iulian V. Serban, Alessandro Sordoni, Yoshua Bengio, Aaron Courville, and Joelle Pineau.
2016. Building end-to-end dialogue systems using generative hierarchical neural net-
work models. In AAAI, pages 3776–3783.

Eui Chul Shin, Miltiadis Allamanis, Marc Brockschmidt, and Alex Polozov. 2019. Pro-
gram synthesis and semantic parsing with learned code idioms. NeurIPS, 32:10825–
10835.

69



Richard Shin, Illia Polosukhin, and Dawn Song. 2018. Towards specification-directed
program repair. In ICLR Workshop.

Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, and K Vijay-Shanker.
2010. Towards automatically generating summary comments for java methods. In ASE,
pages 43–52.

Giriprasad Sridhara, Lori Pollock, and K Vijay-Shanker. 2011. Generating parameter
comments and integrating with method summaries. In ICPC, pages 71–80.

Nataliia Stulova, Arianna Blasi, Alessandra Gorla, and Oscar Nierstrasz. 2020. Towards
detecting inconsistent comments in java source code automatically. In SCAM, pages
65–69.

Akhilesh Sudhakar, Bhargav Upadhyay, and Arjun Maheswaran. 2019. “Transforming”
delete, retrieve, generate approach for controlled text style transfer. In EMNLP-
IJCNLP, pages 3267–3277.

Zeyu Sun, Qihao Zhu, Yingfei Xiong, Yican Sun, Lili Mou, and Lu Zhang. 2020. TreeGen:
A tree-based transformer architecture for code generation. In AAAI, pages 8984–8991.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning with
neural networks. In NeurIPS, pages 3104–3112.

Adam Svensson. 2015. Reducing outdated and inconsistent code comments during soft-
ware development: The comment validator program. Master’s thesis, Uppsala Univer-
sity.

Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. 2020. Intelli-
Code compose: Code generation using transformer. In ESEC/FSE, pages 1433–1443.

Jeniya Tabassum, Mounica Maddela, Wei Xu, and Alan Ritter. 2020. Code and named
entity recognition in StackOverflow. In ACL, pages 4913–4926.

Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. 2007. /*iComment: Bugs or
bad comments?*/. In SOSP, pages 145–158.

Lin Tan, Yuanyuan Zhou, and Yoann Padioleau. 2011. aComment: Mining annotations
from comments and code to detect interrupt related concurrency bugs. In ICSE, pages
11–20.

Shin Hwei Tan, Darko Marinov, Lin Tan, and Gary T. Leavens. 2012. @tComment:
Testing javadoc comments to detect comment-code inconsistencies. In ICST, pages
260–269.

Xin Tan, Minghui Zhou, and Zeyu Sun. 2020. A first look at good first issues on github.
In ESEC/FSE, pages 398–409.

Wesley Tansey and Eli Tilevich. 2008. Annotation refactoring: Inferring upgrade trans-
formations for legacy applications. SIGPLAN Notices, 43(10):295–312.

Daniel Tarlow, Subhodeep Moitra, Andrew Rice, Zimin Chen, Pierre-Antoine Manzagol,
Charles Sutton, and Edward Aftandilian. 2020. Learning to fix build errors with
Graph2Diff neural networks. In ICSE Workshops, pages 19–20.

70



Ted Tenny. 1988. Program readability: Procedures versus comments. TSE, 14(9):1271–
1279.

Ferdian Thung, David Lo, and Lingxiao Jiang. 2012. Automatic defect categorization.
In WCRE, pages 205–214.

Yuan Tian, David Lo, and Chengnian Sun. 2012a. Information retrieval based nearest
neighbor classification for fine-grained bug severity prediction. In WCRE, pages 215–
224.

Yuan Tian, Chengnian Sun, and David Lo. 2012b. Improved duplicate bug report iden-
tification. In CSMR, pages 385–390.

Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. Let’s talk about it: Evaluating
contributions through discussion in GitHub. In FSE, pages 144–154.

Michele Tufano, Jevgenija Pantiuchina, Cody Watson, Gabriele Bavota, and Denys
Poshyvanyk. 2019a. On learning meaningful code changes via neural machine transla-
tion. In ICSE, pages 25–36.

Michele Tufano, Cody Watson, G. Bavota, M. D. Penta, Martin White, and D. Poshy-
vanyk. 2019b. An empirical study on learning bug-fixing patches in the wild via neural
machine translation. TOSEM, 28:1–29.

Rosalia Tufano, Luca Pascarella, Michele Tufano, Denys Poshyvanyk, and Gabriele
Bavota. 2021. Towards automating code review activities. In ICSE.

Daniel E. Turk, Robert B. France, and Bernhard Rumpe. 2005. Assumptions underlying
agile software-development processes. Journal of Database Management, 16:62–87.

Erik van der Veen, Georgios Gousios, and Andy Zaidman. 2015. Automatically prioritiz-
ing pull requests. In MSR, pages 357–361.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez,  L ukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In
NeurIPS, volume 30.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015. Pointer networks. In NeurIPS,
pages 2692–2700.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew Richardson.
2020a. RAT-SQL: Relation-aware schema encoding and linking for text-to-SQL parsers.
In ACL, pages 7567–7578.

Wenhan Wang, Ge Li, Sijie Shen, Xin Xia, and Zhi Jin. 2020b. Modular tree network for
source code representation learning. TOSEM, 29(4):1–23.

Wenhan Wang, Kechi Zhang, Ge Li, and Zhi Jin. 2020c. Learning to represent programs
with heterogeneous graphs. arXiv preprint arXiv:2012.04188.

Jiayi Wei, Maruth Goyal, Greg Durrett, and Isil Dillig. 2020. LambdaNet: Probabilistic
type inference using graph neural networks. In ICLR.

71



Fengcai Wen, Csaba Nagy, Gabriele Bavota, and Michele Lanza. 2019. A large-scale
empirical study on code-comment inconsistencies. In ICPC, pages 53–64.

Mairieli Wessel, Alexander Serebrenik, Igor Wiese, Igor Steinmacher, and Marco A.
Gerosa. 2020. Effects of adopting code review bots on pull requests to oss projects. In
ICSME, pages 1–11.

Andrew Wood, Paige Rodeghero, Ameer Armaly, and Collin McMillan. 2018. Detecting
speech act types in developer question/answer conversations during bug repair. In
ESEC/FSE, pages 491–502.

Scott N Woodfield, Hubert E Dunsmore, and Vincent Yun Shen. 1981. The effect of
modularization and comments on program comprehension. In ICSE, pages 215–223.

Shengqu Xi, Yuan Yao, Xusheng Xiao, Feng Xu, and Jian Lu. 2018. An effective ap-
proach for routing the bug reports to the right fixers. In Asia-Pacific Symposium on
Internetware, pages 1–10.

Frank F Xu, Zhengbao Jiang, Pengcheng Yin, Bogdan Vasilescu, and Graham Neubig.
2020. Incorporating external knowledge through pre-training for natural language to
code generation. In ACL, pages 6045–6052.

Shengbin Xu, Yuan Yao, Feng Xu, Tianxiao Gu, Hanghang Tong, and Jian Lu. 2019a.
Commit message generation for source code changes. In IJCAI, pages 3975–3981.

Sihan Xu, Sen Zhang, Weijing Wang, Xinya Cao, Chenkai Guo, and Jing Xu. 2019b.
Method name suggestion with hierarchical attention networks. In SIGPLAN Workshop
on Partial Evaluation and Program Manipulation, pages 10–21.

Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze Chen, and Chris Callison-Burch. 2016.
Optimizing statistical machine translation for text simplification. TACL, 4:401–415.

Huong Nguyen Thi Xuan, Vo Cong Hieu, and Anh-Cuong Le. 2018. Adding external
features to convolutional neural network for aspect-based sentiment analysis. In NICS,
pages 53–59.

Cheng-Zen Yang, Kun-Yu Chen, Wei-Chen Kao, and Chih-Chuan Yang. 2014. Improving
severity prediction on software bug reports using quality indicators. In ICSESS, pages
216–219.

Ziyu Yao, Yu Su, Huan Sun, and Wen-tau Yih. 2019. Model-based interactive semantic
parsing: A unified framework and a text-to-SQL case study. In EMNLP-IJCNLP,
pages 5447–5458.

Ziyu Yao, Daniel S Weld, Wei-Peng Chen, and Huan Sun. 2018. StaQC: A systematically
mined question-code dataset from stack overflow. In WWW, pages 1693–1703.

Ziyu Yao, Frank F. Xu, Pengcheng Yin, Huan Sun, and Graham Neubig. 2021. Learning
structural edits via incremental tree transformations. In ICLR.

Michihiro Yasunaga and Percy Liang. 2020. Graph-based, self-supervised program repair
from diagnostic feedback. In ICML.

72



Xi Ye, Qiaochu Chen, Xinyu Wang, Isil Dillig, and Greg Durrett. 2020. Sketch-driven
regular expression generation from natural language and examples. TACL, 8:679–694.

Yunwen Ye and Kouichi Kishida. 2003. Toward an understanding of the motivation open
source software developers. In ICSE, pages 419–429.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan Vasilescu, and Graham Neubig. 2018.
Learning to mine aligned code and natural language pairs from Stack Overflow. In
MSR, pages 476–486.

Pengcheng Yin and Graham Neubig. 2017. A syntactic neural model for general-purpose
code generation. In ACL, pages 440–450.

Pengcheng Yin, Graham Neubig, Miltiadis Allamanis, Marc Brockschmidt, and Alexan-
der L. Gaunt. 2019. Learning to represent edits. In ICLR.

Xiaohan Yu, Quzhe Huang, Zheng Wang, Yansong Feng, and Dongyan Zhao. 2020. To-
wards context-aware code comment generation. In Findings of EMNLP, pages 3938–
3947.

Yue Yu, Huaimin Wang, Vladimir Filkov, Premkumar Devanbu, and Bogdan Vasilescu.
2015. Wait for it: Determinants of pull request evaluation latency on github. In MSR,
pages 367–371.

Yue Yu, Huaimin Wang, Gang Yin, and Charles X. Ling. 2014. Reviewer recommender
of pull-requests in GitHub. In ICSME, pages 609–612.

Feng Zhang, Foutse Khomh, Ying Zou, and Ahmed E. Hassan. 2012. An empirical study
on factors impacting bug fixing time. In WCRE, pages 225–234.

Neng Zhang, Qiao Huang, Xin Xia, Ying Zou, David Lo, and Zhenchang Xing. 2020.
Chatbot4QR: Interactive query refinement for technical question retrieval. TSE.

Ruqing Zhang, Jiafeng Guo, Yixing Fan, Yanyan Lan, Jun Xu, and Xueqi Cheng. 2018.
Learning to control the specificity in neural response generation. In ACL, pages 1108–
1117.

Guoliang Zhao, Daniel Alencar da Costa, and Ying Zou. 2019. Improving the pull re-
quests review process using learning-to-rank algorithms. Empirical Software Engineer-
ing, 24:2140–2170.

Jie Zhao and Huan Sun. 2020. Adversarial training for code retrieval with question-
description relevance regularization. In Findings of EMNLP, pages 4049–4059.

Yu Zhou, Gu Ruihang, Chen Taolue, Huang Zhiqiu, Panichella Sebastiano, and Gall
Harald. 2017. Analyzing APIs documentation and code to detect directive defects. In
ICSE, pages 27–37.

Ziye Zhu, Yun Li, Hanghang Tong, and Yu Wang. 2020. CooBa: Cross-project bug
localization via adversarial transfer learning. In IJCAI, pages 3565–3571.

73


