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Abstract
Ensembling methods are well known for improv-
ing prediction accuracy. However, they are limited
in the sense that they cannot effectively discrimi-
nate among component models. In this paper, we
propose stacking with auxiliary features that learns
to fuse additional relevant information from multi-
ple component systems as well as input instances
to improve performance. We use two types of aux-
iliary features – instance features and provenance
features. The instance features enable the stacker to
discriminate across input instances and the prove-
nance features enable the stacker to discriminate
across component systems. When combined to-
gether, our algorithm learns to rely on systems that
not just agree on an output but also the provenance
of this output in conjunction with the properties of
the input instance. We demonstrate the success of
our approach on three very different and challeng-
ing natural language and vision problems: Slot Fill-
ing, Entity Discovery and Linking, and ImageNet
Object Detection. We obtain new state-of-the-art
results on the first two tasks and significant im-
provements on the ImageNet task, thus verifying
the power and generality of our approach.

1 Introduction
Ensembling multiple systems is a well known standard ap-
proach to improving accuracy in machine learning [Diet-
terich, 2000]. Ensembles have been applied to a wide variety
of problems in all domains of artificial intelligence includ-
ing natural language processing (NLP) and computer vision.
However, these techniques do not learn to adequately dis-
criminate across the component systems and thus are unable
to optimally integrate them. Therefore, combining systems
intelligently is crucial for improving the overall performance.
We seek to integrate knowledge from multiple sources to im-
prove ensembling using a new approach we call Stacking with
Auxiliary Features (SWAF). Stacking [Wolpert, 1992] uses
supervised learning to train a meta-classifier to combine mul-
tiple system outputs. The auxiliary features enable the stacker
to fuse additional relevant knowledge from multiple systems
and thus leverage them to improve prediction.

In this paper, we consider the general machine learning
problem of combining structured outputs from multiple sys-
tems to improve accuracy by using auxiliary features. We
use two types of auxiliary features – those that enable the
stacker to discriminate across instances, which we call in-
stance features, and those that enable the stacker to discrim-
inate across component systems, which we call provenance
features. Stacking with auxiliary features can be success-
fully deployed to any problem whose output instances have
confidence scores and optionally provenance that justifies the
output. The exact form of provenance is specific to the task
(e.g. a region in a text or an image) and captures “where”
the system got its answer. Provenance indicates the origin
of the generated output for each system and can be used to
measure reliability of system outputs. Figure 1 gives a gener-
alized overview of our approach to combining multiple sys-
tem outputs. The idea behind using auxiliary features is that
an output is more reliable if not only multiple systems pro-
duce it, but if they also agree on its provenance, and there are
sufficient supporting instance features. The SWAF algorithm
requires identifying appropriate instance and provenance fea-
tures for a given task.

We use SWAF to demonstrate new state-of-the-art results
on two of the three tasks and significant improvements over
the best component system for the third task. The first two
are in NLP and part of the NIST Knowledge Base Popula-
tion (KBP) challenge – Cold Start Slot-Filling (CSSF)† and
Entity Discovery and Linking (EDL) [Ji et al., 2016]. The
third task is in computer vision and part of the ImageNet 2015
challenge [Russakovsky et al., 2015] – Object Detection from
images. All the three tasks are difficult and well-known chal-
lenge problems. Auxiliary features for each of the tasks are
identified based on the goal and supplementary resources for
the problem. On all three tasks, SWAF outperforms the indi-
vidual component systems as well as other ensembling meth-
ods such as stacking without auxiliary features, Mixtures of
Experts [Jacobs et al., 1991], and simple voting; verifying the
generality and power of stacking with auxiliary features.

2 Background and Related Work
NIST annually conducts the Cold Start Slot Filling (CSSF)
and Entity Discovery and Linking (EDL) competitions in the

†http://www.nist.gov/tac/2016/KBP/
ColdStart/index.html
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Figure 1: Our stacking approach to combining system outputs using
confidence scores and two types of auxiliary features for improving
prediction

KBP track of the Text Analysis Conference (TAC). The goal
of the 2016 CSSF task† is to fill specific slots of information
for a given set of query entities based on a supplied text cor-
pus. The goal of the 2016 EDL task [Ji et al., 2016] is to dis-
cover entities based on a supplied text corpus as well as link
these entities to an existing English Knowledge Base (KB)
or cluster the mention with a NIL ID if the system could not
successfully link the mention to any entity in the KB. Both
the CSSF and EDL tasks involved two foreign languages —
Spanish and Chinese — along with English. The ImageNet
object detection task [Russakovsky et al., 2015] is a widely
known annual challenge for evaluating vision systems on a
large real world corpus. The objective of the task is to pro-
duce a list of object categories present in the image along
with an axis-aligned bounding box indicating the position and
scale of every instance of each detected object category.

For the CSSF task, participating teams employed a va-
riety of techniques such as distant supervision, universal
schemas, relevant document extraction, relation-modeling,
open-IE, and inference [Ferguson et al., 2016; Kisiel et al.,
2015]. The top performing 2016 CSSF system [Zhang et
al., 2016] leverages both distant supervision [Mintz et al.,
2009] and pattern-based relation extraction. Another sys-
tem, UMass IESL [Chang et al., 2016], uses distant supervi-
sion, rule-based extractors, and semi-supervised matrix em-
bedding methods. The EDL task on the other hand involves
two NLP subtasks – Named Entity Recognition (NER) as
well as disambiguation. The top performing 2016 EDL sys-
tem used a combination of deep neural networks and Con-
ditional Random Fields (CRFs) for mention detection and
a language-independent probabilistic disambiguation model
for entity linking [Sil et al., 2016].

For ImageNet object detection in 2015, the top perform-
ing team used a deep residual net [He et al., 2015] and sev-
eral other teams deployed a version of faster R-CNN (Region
based Convolutional Neural Networks) with selective search
[Ren et al., 2015]. Faster R-CNN is a more efficient variant of
fast R-CNN [Girshick, 2015] that first uses Region Proposal
Networks (RPN) to train an end-to-end network for generat-
ing region proposals.

Meta-learning addresses the question of how can we im-
prove the performance of learning algorithms by using meta-
data about learning [Vilalta and Drissi, 2002]. Stacking is
a type of meta-learning in which a meta-classifier is learned
to combine the outputs of multiple underlying systems. The
stacker learns a classification boundary based on the confi-
dence scores provided by individual systems for each pos-
sible output. However, many times the scores produced by
systems are not probabilities or not well calibrated and can-
not be meaningfully compared. In such circumstances, it is
beneficial to also have other reliable auxiliary features, as
in our approach. Previously, it has been shown that stack-
ing improves performance on slot filling [Viswanathan et al.,
2015]. However, our auxiliary features outperform this ap-
proach, resulting in a new state-of-the-art result on slot filling.
To the best of our knowledge, there has been no prior work
on ensembling for EDL, and our approach beats the current
state-of-the-art system. There has been some work on stack-
ing for multi-layer object recognition [Peppoloni et al., 2014]
but our paper is the first to use stacking for ensembling ob-
ject detectors and we obtain significant improvements over
the component systems. One past work combined basic ML
models trained on the same set of features using stacking and
obtained performance comparable to selecting the best clas-
sifier from the ensemble by cross validation on simple binary
classification tasks [Džeroski and Ženko, 2004]. On the other
hand, we use complex end-to-end diverse systems and evalu-
ate on more difficult tasks with structured outputs.

Mixtures of Experts (ME) [Jacobs et al., 1991] is another
meta-learning algorithm in which the problem space is par-
titioned stochastically into a number of sub-spaces, with the
idea that each learner (expert) is specialized to a particular
subspace. ME uses divide-and-conquer to soft switch be-
tween learners covering different sub-spaces of the input by
employing a supervised gating network that is learned using
Expectation-Maximization (EM). More recently, the ME al-
gorithm was extended to use a different gating network at
each layer in a multilayer network, forming a Deep Mixture
of Experts [Eigen et al., 2013]. We compare our results to
ME because of its similarity to the use of instance features in
SWAF by adapting the ensemble decision based on properties
of the specific instance being classified.

3 Overview of the Tasks
In this section we give a short overview of each of the three
tasks we used to evaluate SWAF.

3.1 Cold Start Slot Filling
The goal of CSSF is to collect information (fills) about spe-
cific attributes (slots) for a set of entities (queries) from a
given corpus. The query entities can be a person (PER), orga-
nization (ORG) or geo-political entity (GPE). The evaluation
included a total of forty-one fixed slots.‡ Some slots (like
per:age) are single-valued while others (like per:children) are
list-valued i.e., they can take multiple slot fillers.

‡https://tac.nist.gov/2016/KBP/
ColdStart/guidelines/TAC_KBP_2016_
ColdStartTaskDescription_1.0.pdf



The queries are provided in an XML format that includes
an ID for the query, the name of the entity, and the type of en-
tity (PER, ORG or GPE). The corpus consists of documents
from discussion forums and newswire, each identified by a
unique ID. The output is a set of slot fills for each query.
Along with each slot fill, systems must also provide its prove-
nance in the corpus in the form docid:startoffset-endoffset,
where docid specifies a source document and the offsets de-
marcate the text in this document containing the extracted
filler. Systems also optionally provide a confidence score to
indicate their certainty in the extracted information.

3.2 Entity Discovery and Linking
The goal of EDL is to discover all entity mentions in a corpus
of English, Spanish and Chinese documents. The entities can
be a person (PER), organization (ORG), geo-political entity
(GPE), facility (FAC), or location (LOC). The extracted men-
tions are then linked to an existing English KB entity using
its ID. If there is no KB entry for an entity, systems are ex-
pected to cluster all the mentions for that entity using a NIL
ID. A version of FreeBase [Bollacker et al., 2008] is used as
the KB.

The input is a corpus of documents in the three languages
and an English KB (FreeBase) of entities, each with a name,
ID, type, and several relation tuples that allow systems to dis-
ambiguate entities. The output is a set of extracted mentions,
each with a string, its provenance in the corpus, and a cor-
responding KB ID if the system could successfully link the
mention, or else a mention cluster with a NIL ID. Systems
can also provide a confidence score for each mention.

3.3 Object Detection for Images
The goal of the object detection task is to detect all instances
of object categories (out of the 200 predefined categories)
present in the image and localize them by providing coor-
dinates of the axis-aligned bounding boxes for each instance.

The object detection corpus is divided into training, valida-
tion and test sets. The training set consists of approximately
450K images including both positive and negative instances,
annotated with bounding boxes; the validation set consists of
around 20K images also annotated for all object categories
and the test set has 50K images. The output for the task is the
image ID, the object category (1-200), a confidence score,
and the coordinates of the bounding box.

4 SWAF Method
Figure 1 shows an overview of our system which trains a final
meta-classifier for combining multiple systems. The specific
auxiliary features depend on the task under consideration as
described in the sections below.

4.1 Stacking
Stacking is a popular ensembling methodology in machine
learning [Wolpert, 1992] and has been very successful in
many applications including the top performing systems in
the Netflix competition [Sill et al., 2009]. The idea is to em-
ploy multiple learners and combine their predictions by train-
ing a “meta-classifier” to weigh and combine multiple mod-
els using their confidence scores as features. By training on

a set of supervised data that is disjoint from that used to train
the individual models, it learns how to combine their results
into an improved ensemble model that performs better than
each individual component system. In our approach, struc-
tured outputs must be represented as key-value pairs. The
meta-classifier makes a binary decision whether or not to ac-
cept each distinct output pair. Thus before deploying the al-
gorithm on a task, it is crucial to identify the key which serves
as a unique handle for ensembling systems as well as the val-
ues which are results provided by a system for a particular
key. Note that there is only one instance of a key in a given
system’s output, while there could be multiple values for a
given key. The output of the ensemble is similar to the output
of an individual system, but it productively aggregates results
from different systems. In a final post-processing step, the
outputs that are labeled as “correct” by the meta-classifier are
kept while the others are removed.

For the CSSF task, the key is a query entity along with a
slot type, such as per:age of “Barack Obama”, and the value
is a computed slot fill, such as “55”. For list-valued slot types
such as org:subsidiaries, the key instance is repeated in the
output for each value. For EDL, we define the key to be the
KB ID (or NIL) of an entity and the value to be a mention,
i.e. a string that references that entity in the text. For Ima-
geNet Object Detection, we use the image ID as the key and
the value is a detected object category. The next step is to rep-
resent the output pair instances consistently. For a particular
key-value pair, if a system produced it and if it also provides
a confidence score then we use that as input, but if it doesn’t
provide a confidence value then we assume it to be 1.0. On
the other hand, if a system did not produce a key-value pair
then we use a confidence of zero i.e. that key-value is incor-
rect according to that system. The confidence for each system
is then given as input to the meta-classifier together with the
auxiliary features described in the next section.

For the two NLP tasks, we used an L1 regularized linear
SVM weighted by the number of instances for each class, as a
meta-classifier for stacking. For the object detection task, we
used an SVM with an RBF kernel. A small random sample
of the training set (10%) was used as validation data to set the
hyper-parameters for each of the tasks.

4.2 Auxiliary Features
As discussed earlier, we use two types of auxiliary features:
provenance and instance. For provenance features, we use
the provenance information for each generated output pair.
Provenance indicates “where” the system found the output
and thus depends on the task. For the KBP tasks, provenance
is in the form of a substring in the document corpus. For
object detection, it is a bounding box in the image.

For CSSF, if a system successfully extracts a relation then
it must provide provenance indicating the location of the ex-
tracted slot fill in the corpus. For EDL, if a system success-
fully links a mention to a KB ID, then it must provide the
mention provenance indicating the origin of the mention in
the corpus. For both these NLP tasks, the provenance is in the
form of docid and startoffset–endoffset that gives the source
document in the corpus and offset in this document. For the
ImageNet object detection task, if a system successfully de-



tects a target category then it must provide a bounding box
localizing the object in the image. The bounding box is in
the form 〈xmin, ymin, xmax, ymax〉. The bounding box for
object detection is similar to provenance for the KBP tasks,
giving where in the input is the information supporting the
conclusion.

The idea behind using provenance information in auxiliary
features is that an output is more reliable if multiple systems
agree not only on the decision itself, but also on its prove-
nance. In order to enable the stacker to leverage this infor-
mation, we develop features that measure provenance agree-
ment across systems. The Jaccard similarity coefficient is a
statistical measure of similarity between sets and is thus use-
ful in measuring the degree of overlap between the prove-
nance provided by systems. For the CSSF and EDL tasks, the
provenance strings are used to capture similarity as follows.
For a given key, if N systems that generate a value have the
same docid for their document provenance, then the prove-
nance overlap (PO) score for a system n is calculated as the
intersection of the provenance strings divided by their union,
averaged over all other systems:

PO(n) =
1

|N | ×
∑

i∈N,i 6=n

|substring(i) ∩ substring(n)|
|substring(i) ∪ substring(n)|

Thus, systems that generate a value from different documents
for the same key have zero provenance overlap. For the object
detection task, the Jaccard coefficient is used to measure the
overlap between bounding boxes across systems. For a given
image ID, if N systems detect the same object instance, then
the bounding box overlap (BBO) score for a system n is cal-
culated as the the intersection of the areas of bounding boxes,
divided by their union:

BBO(n) =
1

|N | ×
∑

i∈N,i 6=n

|Area(i) ∩ Area(n)|
|Area(i) ∪ Area(n)|

We note that for the CSSF task, two systems are said to have
extracted the same slot fill for a key if the fills are exactly
same, on the other hand, for the EDL task, two systems are
said to have linked the same mention for a key if the mentions
overlap to any extent. Finally for the ImageNet task, two sys-
tems are said to have detected the same object instance for a
key if the Intersection Over Union (IOU) of the areas of their
bounding boxes is greater than 0.5. If the output values don’t
meet this criteria for a given key, then they are considered to
be two different values for the same key. For a key-value pair,
we obtain as many features as the number of component sys-
tems using the above equations for each task. We note that
the use of provenance as features does not require access to
the large corpus of documents or images and is thus compu-
tationally inexpensive.

The idea behind using the instance auxiliary features is
that some systems are better at some sub-tasks. One could
imagine that some systems are good at extracting relations
for certain slot types (e.g.: slot types that expect a location as
an output) and similarly some models learn to better localize
object categories with certain attributes (e.g.: furry objects).
For example, a classifier could learn not to trust an object de-
tection output for the target class ‘dog’ from a system that is
not good at detecting dogs. The instance features enable the
stacker to learn such patterns using task specific information
in conjunction with the provenance features.

For the CSSF task, we use a one-hot encoding of the slot
type (e.g. per:age) and for the EDL task, we use a one-hot
encoding of the entity type (PER/ORG/GPE/FAC/LOC) as
instance features. Another instance feature we used for the
KBP tasks is the similarity between the key document and the
value document. For the CSSF task, the key is the query entity
along with slot type and thus the key document is the query
document provided to participants to disambiguate query en-
tities that could potentially have the same name but refer to
different entities. For the EDL task, the key is the KB ID of
an entity and so we created a pseudo-document for every en-
tity consisting of it’s KB description as well as all relations
involving the entity that exist in the KB, which we use as the
key document. The document that the CSSF and EDL sys-
tems provide as provenance is the value document for both
the tasks. The instance auxiliary feature uses cosine similar-
ity to compare the key and value documents represented as
standard TF-IDF weighted vectors. The intuition is that if a
key-value pair is correct then the key and value documents
should be similar because they are discussing the same entity.

Recently, [Francis-Landau et al., 2016] used contextual
information to disambiguate entity mentions for the entity-
linking problem and showed that measuring semantic similar-
ity at different granularities of the mention text and potential
KB document leads to improved performance. We consider
the mention text at three levels of granularity – title, men-
tion sentence and entire mention document. The potential KB
document is split into two – title and entire document. We
first embed words into vectors by training a word2vec model
[Mikolov et al., 2013] with word vector dimension of 100,
window-size set to 8, 10 negative samples and 10 iterations
on FreeBase. Thereafter, we use these vectors to measure
semantic similarity between words at each granularity of the
mention text and the potential KB document. In this way, we
obtain six pairwise similarity measures which are also used
as instance features for the EDL task.

For the ImageNet task, we use two types of instance fea-
tures. First, we use a one-hot encoding of the object cate-
gory (total 200). Second, we use a bag of visual words for
the image using Scale-Invariant Feature Transform (SIFT) as
the feature descriptor [Lowe, 2004] as well as the 4, 096 fea-
tures from VGGNet’s fc7 layer [Simonyan and Zisserman,
2015]. Note that some underlying object detection systems
also use these features for classification and we show that
using them for learning the top-level meta-classifier further
boosts the performance.

4.3 Post-processing
Once we obtain the decision for each key-value pair from
the stacker, we perform some final post-processing to pro-
duce output that is in the same format as that generated by
an individual system. For CSSF, each list-valued slot fill that
is classified as correct is included in the final output. For
single-valued slots, if multiple fills are classified as correct
for the same query and slot type, we only include the fill with
the highest meta-classifier confidence. For the EDL task, for
each entity mention link that is classified as correct, if the link
is a KB ID then we include it in the final output, but if the link
is a NIL ID then we keep it aside until all mention links are



Method Precision Recall F1
Stacking with both provenance + instance auxiliary features 0.258 0.439 0.324

Stacking with just provenance auxiliary features 0.252 0.377 0.302
Stacking with just instance auxiliary features 0.257 0.346 0.295

Stacking without auxiliary features 0.311 0.253 0.279
Top ranked CSSF system in 2016 [Zhang et al., 2016] 0.265 0.302 0.260
Oracle Voting baseline (4 or more systems must agree) 0.191 0.379 0.206

Mixtures of Experts (ME) model 0.168 0.321 0.180

Table 1: Results on 2016 Cold Start Slot Filling (CSSF) task using the official NIST scorer

processed. Thereafter, we resolve the NIL IDs across sys-
tems since NIL ID’s for each system are unique. We merge
NIL clusters across systems into one if there is at least one
common entity mention among them. Finally, we give a new
NIL ID for these newly merged clusters.

For ImageNet object detection, each object instance that
is classified as correct by the stacker is included in the final
output and its bounding box is calculated as follows. If mul-
tiple systems detected the object instance, then we sum the
overlapping areas between a system’s bounding box and that
of every other system that also detected the exact same in-
stance and we do this for every such system. The system with
the maximum sum has a bounding box with the maximum
overlap with other systems, and thus is used as the bounding
box for the ensemble. When there are only two systems that
produced an ouput, this method does not discriminate so we
use the bounding box produced by the system with the higher
confidence score. We also experimented with using the union
or intersection of bounding boxes across systems as the ag-
gregate bounding box for the ensemble, but this approach is
heavily penalized by the ImageNet evaluation metric. For a
standard sized image (larger than 25 × 25 pixels), the detec-
tion scorer considers an object to be localized correctly iff
the IOU of the output bounding box and the ground-truth is
≥ 0.5.

5 Experimental Results
We evaluated stacking with auxiliary features (SWAF) on
three challenge problems, comparing our full system to vari-
ous ablations and prior results. All KBP results were obtained
using the official NIST scorer provided after the competition
ended.§ For object detection, we used the scorer provided
with the ImageNet devkit.

SWAF relies on training data for learning and thus for the
two KBP tasks, we only use systems that participated in both
the 2015 and 2016 competitions. This allows us to train the
stacker on 2015 system outputs and use the trained model to
evaluate on the 2016 data. In this way, we used 8 common
systems for CSSF and 6 for EDL. We were unable to obtain
all competing systems’ outputs for the ImageNet task, so we
used two state-of-the-art deep neural models pre-trained on
the ImageNet object-detection training set, the ZF and VGG
models [Ren et al., 2015]. We ran these models on the valida-
tion set using the faster-RCNN method [Ren et al., 2015] with

§http://www.nist.gov/tac/2016/KBP/
ColdStart/tools.html,https://github.com/
wikilinks/neleval

selective search [Uijlings et al., 2013] using the Caffe system
[Jia et al., 2014]. We also use the Deformable Parts Model
(DPM) [Felzenszwalb et al., 2010] with selective search for
object detection, to produce a final ensemble of three systems.
DPM is very slow to test and was unable to process the en-
tire test set on all 200 categories. Therefore, we performed
10-fold cross validation on the validation set, testing our ap-
proach on a total of about 20K images.

For the CSSF task, systems are evaluated against a gold
standard using precision, recall and F1 scores for the ex-
tracted slot fills. The EDL evaluation uses the mention CEAF
metric [Ji et al., 2015] for measuring precision, recall and
F1. This metric finds the optimal alignment between system
and gold standard clusters, and then evaluates precision and
recall micro-averaged over mentions. For the ImageNet chal-
lenge, the detection task is evaluated using the average preci-
sion (AP) on a precision-recall curve. The predicted bound-
ing box for a detection is considered correct if its intersection
over union with the ground truth exceeds a threshold of 0.5
[Russakovsky et al., 2015]. The official scorer gives the AP
for each of the 200 classes along with the median and mean
AP. We report the median AP and mean AP (mAP).

We compare our results to several baselines. For all three
tasks, we compare to stacking without using any auxiliary
features and various ablations of the provenance and instance
auxiliary features. We also compare to the top ranked systems
for both the CSSF and EDL tasks in 2016. For the 2015 object
detection task, we were unable to obtain the state-of-the-art
system and thus it was not part of our ensemble. For this
reason, only for this task, we compare our results to the best
performing component system. Our results also include the
“oracle” voting baseline for ensembling the system outputs.
For this approach, we vary the threshold on the number of
systems that must agree to identify an “oracle” threshold that
results in the highest F1 score by plotting a precision-recall
curve and finding the best F1. This method found an optimal
threshold of 4 for both the CSSF and EDL tasks and 1 for the
object detection task. We note that oracle voting is “cheating”
to give the best possible voting baseline.

Tables 1 and 2 show the results for CSSF and EDL, respec-
tively. Stacking with both instance and provenance features
consistently performed the best on both tasks, outperform-
ing all ablations, the ME algorithm, as well as the top ranked
systems from the 2016 competition. Oracle voting performs
very poorly, indicating that naive ensembling is not advanta-
geous. The relative ranking of our approaches is the same on
both the CSSF and EDL tasks, thus demonstrating that our



Method Precision Recall F1
Stacking with both provenance + instance auxiliary features 0.739 0.600 0.662

Stacking with just provenance auxiliary features 0.767 0.544 0.637
Stacking with just instance auxiliary features 0.752 0.542 0.630

Stacking without auxiliary features 0.723 0.537 0.616
Top ranked EDL system in 2016 [Sil et al., 2016] 0.717 0.517 0.601

Mixtures of Experts (ME) model 0.721 0.494 0.587
Oracle Voting baseline (4 or more systems must agree) 0.588 0.412 0.485

Table 2: Results on 2016 Entity Discovery and Linking (EDL) task using the official NIST scorer and the CEAFm metric

Method Mean AP Median AP
Stacking with provenance + instance auxiliary features 0.506 0.497

Stacking with just provenance auxiliary features 0.502 0.494
Mixtures of experts (ME) model 0.494 0.489

Stacking with just instance features 0.461 0.450
Stacking without auxiliary features 0.451 0.441

Best standalone system (VGG + selective search) 0.434 0.430
Oracle Voting baseline (1 or more systems must agree) 0.366 0.368

Table 3: Results on 2015 ImageNet object detection task using the official ImageNet scorer.

approach is very general and provides improved performance
on two quite different and challenging NLP problems. On the
other hand, the ME algorithm is not robust since its perfor-
mance is inversely proportional to the number of component
systems. Since the CSSF task had more systems (i.e. 8) than
the EDL task (i.e. 6), the ME algorithm is unable to learn a
good gating network for system selection and thus performs
worse than the voting baseline. By training on an increasing
percentage of the previous year’s data and retesting on 2016
data at each step, we concluded that although systems get bet-
ter over the years, it is still advantageous to train on a previous
year’s output.

Table 3 shows the results for the ImageNet 2015 object de-
tection task. Again, using stacking with both types of auxil-
iary features beats the best individual component system as
well as the oracle voting baseline significantly. For the vot-
ing baseline, we consider an object instance to be the same
if the systems’ bounding boxes have IOU greater than 0.5.
If we were able to use the top-ranked system from the com-
petition as part of our ensemble, we would expect to obtain
a new state-of-the-art result. Since we use cross-validation
for obtaining these results, we performed a pairwise t-test
with significance level 0.05 and found that using any abla-
tion of stacking with auxiliary features is significantly better
(p-value< 0.05) than using the best component system, al-
though using stacking alone is not significantly worse. The
ME algorithm performs significantly better than the individ-
ual components since it works well given the small number
of component systems (i.e. 3), but it is still worse than our
best approach. On analyzing the results, we found that the
AP of several object classes differed widely across systems
and even more so between the deep systems and DPM. Us-
ing SWAF, the meta-classifier learns to discriminate systems
based on the auxiliary features and is thus able to leverage
the best aspects of each individual system. An analysis of the
results showed that SWAF particularly does well on localiz-

ing objects in images that have multiple instances of the same
object, i.e. the image could be considered to be “cluttered”.

6 Conclusion
In this paper, we introduced stacking with auxiliary features
(SWAF), a novel approach to ensemble multiple diverse sys-
tem outputs. The auxiliary features enable the system to learn
to appropriately use provenance and instance information to
aid the optimal integration of multiple systems. We demon-
strated that our approach is a general, effective approach by
applying it to three very different, challenging AI problems
requiring structured output: Cold Start Slot Filling and the
Entity Discovery and Linking tasks in NLP, and ImageNet
object detection in computer vision. SWAF obtained very
promising results on all three tasks, outperforming the best
component systems as well as other ensembling methods.
The approach provides an overall F1 score of 32.4% on the
2016 KBP CSSF task and CEAFm F1 of 66.2% on the 2016
KBP EDL, and an overall mAP of 50.6% on the ImageNet
object detection task. We achieve a new state-of-the-art on
the two KBP tasks and significant improvements over base-
lines on the detection task.

We observe that the well known mixture-of-experts method
is not robust because of its assumption that the underlying
systems are trained on different feature sub-spaces, which is
not always the case. On analyzing the results obtained by
SWAF, we find that it does better when the component out-
puts differ widely and have low confidences. The gain in per-
formance from SWAF comes from output decisions that are
difficult to make without context; however, using auxiliary
features enables fusion of additional relevant information, al-
lowing the stacker to make the right decision.
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D. Lin. Feature-weighted linear stacking. arXiv preprint
arXiv:0911.0460, 2009.

[Simonyan and Zisserman, 2015] K. Simonyan and A. Zis-
serman. Very Deep Convolutional Networks for Large-
scale Image Recognition. In Proceedings of ICLR, 2015.

[Uijlings et al., 2013] J. Uijlings, K. Van de Sande, T. Gev-
ers, and A. Smeulders. Selective search for object recog-
nition. IJCV, 2013.

[Vilalta and Drissi, 2002] R. Vilalta and Y. Drissi. A Per-
spective View and Survey of Meta-learning. Artificial In-
telligence Review, 2002.

[Viswanathan et al., 2015] V. Viswanathan, N. Rajani,
Y. Bentor, and R. Mooney. Stacked ensembles of in-
formation extractors for knowledge-base population. In
Proceedings of ACL, 2015.

[Wolpert, 1992] D. Wolpert. Stacked generalization. Neural
Networks, 5, 1992.

[Zhang et al., 2016] Y. Zhang, A. Chaganty, A. Paranjape,
D. Chen, J. Bolton, P. Qi, and C. Manning. Stanford at
TAC KBP 2016: Sealing Pipeline Leaks and Understand-
ing Chinese. In Proceedings of TAC, 2016.


