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Abstract
We present results on using explanations as auxil-
iary features to improve stacked ensembles for Vi-
sual Question Answering (VQA). VQA is a chal-
lenging task that requires systems to jointly rea-
son about natural language and vision. We present
results applying a recent ensembling approach to
VQA, Stacking with Auxiliary Features (SWAF),
which learns to combine the results of multiple sys-
tems. We propose using features based on explana-
tions to improve SWAF. Using explanations we are
able to improve ensembling of three recent VQA
systems.

1 Introduction
In recent years, deep-learning has led to unprecedented break-
throughs in many avenues of Artificial Intelligence and most
notably in computer vision. Even though the results produced
by these deep networks have been groundbreaking, they lack
transparency, making them hard to understand and interpret
[Lipton, 2016]. Consequently, when such intelligent mod-
els that provide no explanation for their decisions fail, it be-
comes very difficult to do any root cause analysis. Trans-
parency is also important in order to build human trust in
systems. Recently, there has been some work by the deep
learning community on generating explanations as a way to
better understand and interpret the decisions made by deep
neural networks [Hendricks et al., 2016; Goyal et al., 2016;
Selvaraju et al., 2016].

Visual Question Answering (VQA) is a challenging task
that requires systems to attend to regions of an image or
question or both for producing an output. VQA addresses
open-ended questions about images [Antol et al., 2015] and
has attracted significant attention in the past year [Andreas
et al., 2016; Goyal et al., 2016; Agrawal et al., 2016].
It requires visual and linguistic comprehension, language
grounding as well as commonsense knowledge. A variety
of methods to address these challenges have been developed
in recent years [Fukui et al., 2016; Xu and Saenko, 2016;
Lu et al., 2016; Chen et al., 2015]. The vision compo-
nent of a typical VQA system extracts visual features us-
ing a deep convolutional neural network (CNN), and the lin-
guistic component encodes the question into a semantic vec-

Figure 1: Random sample of images with related three ques-
tions and ground truth answers taken from the VQA dataset

tor using a recurrent neural network (RNN). An answer is
then generated conditioned on the visual features and the
question vector. Some VQA models have an explicit at-
tention component in the architecture [Fukui et al., 2016;
Lu et al., 2016], whereas systems that use CNNs without at-
tention [Antol et al., 2015], the gradient for the desired class
is backpropagated through the convolutional feature maps to
obtain a visualization of the focus regions in an image.

Explanation can be helpful in not just understanding and
interpreting systems’ output but also leveraging systems for
improving performance. For example, a system that gener-
ates an explanation that is not coherent with its output is not
reliable. For VQA, explanation can be of two types – visual
or textual. The regions in an image that a model attends to
while generating an output can be considered a visual expla-
nation. The words in the question that a model attends to can
be considered a textual explanation. Most VQA systems use
visual attention, however there are some that use both visual
and textual attention while generating an output. The visual
explanation is generally represented using heat-maps that use
color intensities to highlight the regions in that image that a
model attends to. In this paper, we use visual explanation for
improving the accuracy of VQA systems.

Most VQA systems have a single underlying method that
optimizes a specific loss function and do not leverage the
advantage of using multiple diverse models. Ensembling
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systems intelligently is crucial to optimizing overall perfor-
mance. In this paper, we use Stacking with Auxiliary Fea-
tures (SWAF) [Rajani and Mooney, 2017] to more effectively
combine diverse VQA models. The key idea is that we trust
systems’ agreement on an answer more if they also agree on
its explanation. Traditional stacking [Wolpert, 1992] trains a
supervised meta-classifier to appropriately combine multiple
system outputs. SWAF further enables the stacker to exploit
additional relevant knowledge of both the component sys-
tems and the problem by providing “auxiliary features” to the
meta-classifier. Our key contribution is using visual explana-
tions to create additional useful auxiliary features for SWAF
applied to VQA. We demonstrate that ensembling three lead-
ing VQA systems using this approach outperforms a variety
of baselines and ablations.

2 Background and Related Work

VQA is the task of answering a natural language question
about the content of an image by returning an appropriate
word or phrase. Figure 1 shows a sample of images and ques-
tions from the VQA 2016 challenge. The dataset consists of
images taken from the MS COCO dataset [Lin et al., 2014]
and three questions per image obtained through Mechanical
Turk. Table 1 gives some statistics on the dataset.

Images Questions

Training 82,783 248,349
Validation 40,504 121,512

Test 81,43 244,302

Table 1: VQA dataset size

In stacking, a meta-classifier is learned to combine the out-
puts of multiple underlying systems. The stacker learns a
classification boundary based on the confidence scores pro-
vided by individual systems for each possible output. Stack-
ing With Auxiliary Features (SWAF) provides the meta-
classifier additional information, such as features of the cur-
rent problem and provenance information for the output from
individual systems. We use visual explanation that provides
information about regions in an image that are crucial for gen-
erating the output. This allows SWAF to learn which sys-
tems are reliable based on what regions of the image they at-
tend to, on which types of problems and when to trust agree-
ments between specific systems. It has previously been ap-
plied effectively to information extraction and entity link-
ing [Viswanathan et al., 2015; Rajani and Mooney, 2016;
2017]. To the best of our knowledge, there has been no prior
work on using explanation for improving ensembles. Figure 2
gives an overview of the SWAF approach.

We use SWAF to combine three diverse VQA systems such
that the final ensemble performs better than any individual
component model even on questions with low agreement.
The three component models are trained on the VQA train-
ing set and the stacker is trained on the validation data.

Figure 2: Ensemble Architecture using Stacking with Auxil-
iary Features. Given an input, the ensemble judges every pos-
sible question-answer pair produced by the component sys-
tems and determines the final output answer.

2.1 Long Short Term Memory (LSTM)
The LSTM model is one of the original baseline models used
to establish a benchmark for the VQA dataset [Antol et al.,
2015]. It combines an LSTM [Hochreiter and Schmidhuber,
1997] for the question with a CNN for the image to generate
an answer and uses one-hot encoding for the words in the
question and the penultimate layer of the VGGNet [Simonyan
and Zisserman, 2015] as image features fused together using
element-wise multiplication. We note that this model does
not have an explicit attention.

2.2 Multimodal Compact Bilinear pooling (MCB)
Traditionally, systems that combine vision and language vec-
tor representations use concatenation or element-wise prod-
uct or sum. [Fukui et al., 2016] argue that such methods
are not as effective as an outer product of the visual and
textual vectors. To overcome the challenge of high dimen-
sionality due to the outer product, the authors propose using
Multimodal Compact Bilinear pooling (MCB) to efficiently
and expressively combine multimodal features. The MCB
model extracts representations for the image using the 152-
layer Residual Network [He et al., 2015] and an LSTM em-
bedding of the question. The two vectors are pooled using
MCB and the answer is obtained by treating the problem as
a multi-class classification problem with 3, 000 possible an-
swers.

2.3 Hierarchical Question-Image Co-Attention
(HieCoAtt)

The idea behind the HieCoAtt model is that in addition to us-
ing visual attention to focus on where to look, it is equally
important to model what words to attend to in the question
(question attention) [Lu et al., 2016]. The model jointly rea-
sons about the visual and language components using “co-
attention.” Question attention is modeled using a hierarchi-
cal architecture including word, phrase, and question levels.
HieCoAtt uses two types of co-attention – parallel and se-
quential at all three levels of the question hierarchy.



Figure 3: On the left is an image from the VQA dataset and
on the right is the heat-map overlaid on the image for the
question - ’What is the man eating?’

3 Auxiliary Features for SWAF
For stacking the VQA systems, we first form unique question-
answer pairs across all outputs before passing them through
the stacker. If a system generates a given I/O pair, then we
use its probability estimate for that output, otherwise the con-
fidence is considered zero. If a question-answer pair is classi-
fied as correct by the stacker, but there is also another answer
that is classified correct for the same question, the pair with
higher classifier confidence is chosen. For questions that did
not have any answer classified as correct by the stacker, we
choose the answer with lowest classifier confidence, which
means it is least likely to be incorrect.

The confidence scores along with explanation as auxiliary
features are used by the stacker, as shown in Figure 2, to clas-
sify each question-answer pair. The auxiliary features are the
backbone of the SWAF approach, enabling the stacker to in-
telligently learn to rely on systems’ outputs conditioned on
the supporting evidence. Along with explanation, we also
use three other types of features that enable the stacker to get
more context while making a decision.

3.1 Explanation
Recently, there has been work on analyzing regions of the im-
age that VQA models focus on while answering the question
[Goyal et al., 2016]. The authors concluded that deep learn-
ing models attend to relevant parts of the image while answer-
ing the question. The parts of images that the models focus
on can be thought of as visual explanations for answering the
question. We use these visual explanations to construct aux-
iliary features for SWAF.

The part of image to which the model attends can be visual-
ized using a heat-map. Figure 3 shows an image and its heat-
map for a given question. The idea is to trust the agreement
between systems when they also agree on the heat-map expla-
nation. The heat-map of a given system is compared to every
other system’s heat-map using using the rank correlation pro-
tocol described in [Das et al., 2016]. This generates n choose
2 ”explanation agreement” auxiliary features for SWAF. The
idea behind using such features is that it enables the stacker
to learn to rely on systems that “look” at the right region of

the image when generating an answer.
We use the GradCAM algorithm [Goyal et al., 2016] to

generate explanatory heat-maps for each answer. Given an
image and category, the image is forward propagated through
the CNN part of the model. The gradients are set to zero for
all categories except the one under consideration, which is set
to 1. This signal is then backpropagated to the convolutional
feature maps of interest and is combined to compute the heat-
map.

3.2 Question and Answer Types

[Antol et al., 2015] analyzed the VQA data and found that
most questions fall into several types based on the first few
words. For example, questions beginning with “What is...”,
“Is there...”, “How many...”, or “Does the...”. Using the vali-
dation data, we discover such lexical patterns that define a set
of question types. The questions were tokenized and a ques-
tion type was formed by adding one token at a time, up to a
maximum of 5, to the current substring. The question “What
is the color of the vase?” has the following types “What”,
“What is”, “What is the”, “What is the color”, “What is the
color of”. The prefixes that contain at least 500 questions
were then retained as types. We added a final type “other” for
questions that do not fall into any of the predefined types, re-
sulting in a total of 70 question types. A 70-bit vector is used
to encode the question type as a set of auxiliary features.

The original analysis of VQA answers found that they are
38% “yes/no” and 12% numbers. There is clearly a pattern
in the VQA answers as well and we use the questions to in-
fer some of these patterns. We considered three answer types
– “yes/no”, “number” and “other”. The answer-type auxil-
iary features are encoded using a one-hot vector. We clas-
sify all questions beginning with “Does”,“Is”,“Was”,“Are”,
and “Has” as “yes/no”. Ones beginning with “How many”,
“What time”, “What number” are assigned “number” type.
These inferred answer types are not exhaustive but have good
coverage.

3.3 Question Features

We also use a bag-of-words (BOW) representation of the
question as auxiliary features. Words that occur at least five
or more times in the validation set were included. The fi-
nal sparse vector of dimension 3, 391 representing a question
was normalized by the number of unique words in the ques-
tion. [Goyal et al., 2016] showed that attending to specific
words in the question is important in VQA. Including a BOW
in the auxiliary features equips the stacker to efficiently learn
which words are important to classifying answers.

3.4 Image Features

Along with the aforementioned features, we also use “deep
visual features” of the image as additional auxiliary features.
Specifically, we use the 4, 096 features from VGGNet’s fc7
layer [Simonyan and Zisserman, 2015]. Using such image
features enables the stacker to learn to rely on systems that
are good at identifying answers for particular types of images.



Method All Yes/No Number Other

Voting (MCB + HieCoAtt + LSTM) 60.31 80.22 34.92 48.83

iBOWIMG [Zhou et al., 2015] 55.72 76.55 35.03 42.62
DPPNet [Noh et al., 2016] 57.36 80.28 36.92 42.24

LSTM [Antol et al., 2015] 58.20 80.60 36.50 43.70
HieCoAtt [Lu et al., 2016] 61.80 79.70 38.70 51.70
MCB [Fukui et al., 2016] 62.56 80.68 35.59 52.93

Stacking 62.59 81.79 34.58 51.72
+ Q/A types 62.73 82.09 35.47 52.10
+ Question Features 63.12 81.61 36.07 53.77
+ Image Features 65.44 82.08 38.08 57.15
+ Explanation∗ 65.54 82.28 38.63 57.32

Table 2: Accuracy results on the VQA open-ended test-standard set (except for the explanation features)

4 Experimental Results
We present experimental results on various baselines and ab-
lations of the Stacking With Auxiliary Features (SWAF) ap-
proach. The VQA challenge splits the test set into test-dev
and test-standard. Evaluation on either split requires submit-
ting the output to the competition’s online server.† However,
there are less restrictions on the number of submissions that
can be made to the test-dev compared to the test-standard.
The test-dev set is a subset of the standard test set consisting
of randomly selected 60, 864 questions.

We note that generating explanations is computationally
expensive and we were only able to get results on the test-dev
set with the explanation features. All the other results are re-
ported on the entire test set. We use L1 regularized SVM clas-
sification for generic stacking and stacking with only ques-
tion/answer types as auxiliary features. For the question, im-
age, and explanation features, we found that a neural network
with two hidden layers works best. The first layer is fully con-
nected and the second has approximately half the number of
neurons as the first hidden layer. We used Keras with Tensor-
flow back-end [Chollet, 2015] for implementing the network.

We compare our approach to a voting baseline which max-
imizes precision by only accepting an answer to be correct if
all the component systems predicted the exact same answer
for a given question. For questions that do not have a consen-
sus, the answer that has maximum agreement is taken with
ties broken in favor of systems with higher confidence. We
also compare against two other state-of-the-art VQA systems
not used in our ensemble: iBOWIMG [Zhou et al., 2015]
and DPPNet [Noh et al., 2016]. iBOWIMG uses softmax
over the bag-of-words representation of the question concate-
nated with GoogleNet [Szegedy et al., 2015] image features
and gives comparable performance to models using deep or
recurrent neural networks. VGG has lower error rate com-
pared to GoogleNet for CNNs and is thus our choice for im-
age features [Johnson, 2016]. DPPNet uses a CNN with a
dynamic parameter layer whose weights are determined adap-
tively based on questions using a gated recurrent unit (GRU).
∗ Result obtained on test-dev set
† http://www.visualqa.org/challenge.html

The VQA server along with reporting accuracies on the
full question set, also reports a break-up of accuracy based
on three answer categories. Table 2 shows the full set and
category-wise accuracies. Although the results using expla-
nation are on the test-dev subset of the test set and not directly
comparable, they do show a small improvement in accuracy.
The number of explanation features is small compared to all
the other feature types. So to avoid over-fitting to the other
features, we also plan on trying neural architectures in which
the different feature sets are fused at later layers in the net-
work.

5 Conclusion and Future Work
This paper has proposed and evaluated the novel idea of us-
ing explanations to improve ensembling of multiple systems.
It has demonstrated how visual explanations for visual ques-
tion answering (represented as heat-maps) can be used to aid
stacking with auxiliary features. This approach effectively
utilizes information on the degree to which systems agree on
the explanation of their answers. We also described three
other types of auxiliary features obtained from VQA prob-
lems and showed that the combination of all of these auxiliary
features, including explanation, gives the best results.

We believe that integrating explanation with ensembling
has a two-fold advantage. First, as discussed in this paper, ex-
planations can be used to improve the accuracy of an ensem-
ble. Second, explanations from the component systems can
be used to build an explanation for the overall ensemble. That
is, by combining multiple component explanations, SWAF
could also produce more comprehensible results. Therefore,
in the future, we would like to focus on explaining the results
of an ensemble. Another issue we plan to explore is using
textual explanations for VQA. We believe that the words in
the question to which a system attends can also be used to
improve ensembling. Finally, we hope to apply our approach
to additional problems beyond VQA.

Acknowledgement
This research was supported by the DARPA DEFT program
under AFRL grant FA8750-13-2-0026.



References
[Agrawal et al., 2016] Aishwarya Agrawal, Dhruv Batra,

and Devi Parikh. Analyzing the behavior of visual ques-
tion answering models. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language Pro-
cessing (EMNLP-16), 2016.

[Andreas et al., 2016] Jacob Andreas, Marcus Rohrbach,
Trevor Darrell, and Dan Klein. Learning to compose neu-
ral networks for question answering. In Proceedings of the
Conference on Natural language learning (NAACL2016),
pages 1545–1554, 2016.

[Antol et al., 2015] Stanislaw Antol, Aishwarya
Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Ba-
tra, C. Lawrence Zitnick, and Devi Parikh. VQA:
Visual question answering. In The IEEE International
Conference on Computer Vision (ICCV), December 2015.

[Chen et al., 2015] Kan Chen, Jiang Wang, Liang-Chieh
Chen, Haoyuan Gao, Wei Xu, and Ram Nevatia. ABC-
CNN: An attention based convolutional neural net-
work for visual question answering. arXiv preprint
arXiv:1511.05960, 2015.

[Chollet, 2015] Franois Chollet. Keras. https://
github.com/fchollet/keras, 2015.

[Das et al., 2016] Abhishek Das, Harsh Agrawal,
C Lawrence Zitnick, Devi Parikh, and Dhruv Batra.
Human Attention in Visual Question Answering: Do
Humans and Deep Networks Look at the Same Regions?
arXiv preprint arXiv:1606.03556, 2016.

[Fukui et al., 2016] Akira Fukui, Dong Huk Park, Daylen
Yang, Anna Rohrbach, Trevor Darrell, and Marcus
Rohrbach. Multimodal Compact Bilinear pooling for Vi-
sual Question Answering and Visual Grounding. In Pro-
ceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing (EMNLP-16), 2016.

[Goyal et al., 2016] Yash Goyal, Akrit Mohapatra, Devi
Parikh, and Dhruv Batra. Towards Transparent AI Sys-
tems: Interpreting Visual Question Answering Models. In
International Conference on Machine Learning (ICML)
Workshop on Visualization for Deep Learning, 2016, 2016.

[He et al., 2015] K. He, X. Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. arXiv
preprint arXiv:1512.03385, 2015.

[Hendricks et al., 2016] Lisa Anne Hendricks, Zeynep
Akata, Marcus Rohrbach, Jeff Donahue, Bernt Schiele,
and Trevor Darrell. Generating Visual Explanations.
arXiv preprint arXiv:1603.08507, 2016.

[Hochreiter and Schmidhuber, 1997] Sepp Hochreiter and
Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[Johnson, 2016] Justin Johnson. cnn-benchmarks. https:
//github.com/jcjohnson/cnn-benchmarks,
2016.

[Lin et al., 2014] Tsung-Yi Lin, Michael Maire, Serge Be-
longie, James Hays, Pietro Perona, Deva Ramanan, Piotr

Dollár, and C Lawrence Zitnick. Microsoft coco: Com-
mon objects in context. In European Conference on Com-
puter Vision, pages 740–755. Springer, 2014.

[Lipton, 2016] Zachary C Lipton. The mythos of model in-
terpretability. arXiv preprint arXiv:1606.03490, 2016.

[Lu et al., 2016] Jiasen Lu, Jianwei Yang, Dhruv Batra, and
Devi Parikh. Hierarchical question-image co-attention for
visual question answering. In Advances In Neural Infor-
mation Processing Systems, pages 289–297, 2016.

[Noh et al., 2016] Hyeonwoo Noh, Paul Hongsuck Seo, and
Bohyung Han. Image question answering using convolu-
tional neural network with dynamic parameter prediction.
In Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 30–38, 2016.

[Rajani and Mooney, 2016] Nazneen Fatema Rajani and
Raymond J. Mooney. Combining Supervised and Unsu-
pervised Ensembles for Knowledge Base Population. In
Proceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP-16), 2016.

[Rajani and Mooney, 2017] Nazneen Fatema Rajani and
Raymond J. Mooney. Stacking With Auxiliary Features. In
Proceedings of the Twenty-Sixth International Joint Con-
ference on Artificial Intelligence (IJCAI2017), Melbourne,
Australia, August 2017.

[Selvaraju et al., 2016] Ramprasaath R Selvaraju, Abhishek
Das, Ramakrishna Vedantam, Michael Cogswell, Devi
Parikh, and Dhruv Batra. Grad-cam: Why did you say
that? visual explanations from deep networks via gradient-
based localization. arXiv preprint arXiv:1610.02391,
2016.

[Simonyan and Zisserman, 2015] K. Simonyan and A. Zis-
serman. Very Deep Convolutional Networks for Large-
scale Image Recognition. In Proceedings of ICLR, 2015.

[Szegedy et al., 2015] Christian Szegedy, Wei Liu, Yangqing
Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. Going deeper with convolutions. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1–9, 2015.

[Viswanathan et al., 2015] V. Viswanathan, N. Rajani,
Y. Bentor, and R. Mooney. Stacked ensembles of in-
formation extractors for knowledge-base population. In
Proceedings of ACL 2015, Beijing, China, 2015.

[Wolpert, 1992] D. Wolpert. Stacked generalization. Neural
Networks, 5, 1992.

[Xu and Saenko, 2016] Huijuan Xu and Kate Saenko. Ask,
attend and answer: Exploring question-guided spatial at-
tention for visual question answering. In European Con-
ference on Computer Vision, pages 451–466. Springer,
2016.

[Zhou et al., 2015] Bolei Zhou, Yuandong Tian, Sainbayar
Sukhbaatar, Arthur Szlam, and Rob Fergus. Simple
baseline for visual question answering. arXiv preprint
arXiv:1512.02167, 2015.


