In Proceedi ngs of the Eighth International

447- 451, Evanston, |L, June 1991.

Machi ne Lear ni ng Wor kshop, pp. pp.

First-Order Theory Revision

Bradley L. Richards
Dept. of Computer Sciences
University of Texas at Austin
bradley@cs.utexas.edu

Abstract

Recent learning systems have combined explana-
tion-based and inductive learning technigues to
revise propositional domain theories (e.g.,
EITHER, RTLS, KBaNN). Inductive sysiems
working in first order logic have also been
developed (e.g., CIGOL, FOIL, FOCL). This
paper presents a theory revision system, Forte,
that merges these two developments. Forte
provides theory revision capabilities similar to
those of the propositional systems, but works
with domain theories stated in first-order logic.

1 INTRODUCTION

The past few years have seen a merger of inductive and
explanation-based capabilities into a new class of systems
performing theory revision. The premise of theory
" revision is that we can obtain a domain theory, be it from
2 book or an expert, but we cannot expect that theory to
be entirely complete or correct. Theory revision systems
use a set of training instances to improve the theory.

Forte (First-Order Revision of Theories with Examples)
is a theory revision system for first-order logic. Theories
are stated in a restricted form of Prolog, and a training set
is used to identify where faults in the theory may lie.
Forte uses operators drawn from propositional theory
revision, first-order inductive systemns, and inverse
resolution to develop possible theory revisions.

- 2 RELATED WORK
2.1 PROPOSITIONAL THEORY REVISION

There are a number of propositional theory revision
systems, including RTLS ([Ginsberg, 1990]), KBANN
(ITowell, Shavlik, and Noordewier, 1990]), and EITHER
{{Ourston and Mooney, 1990}). RTLS translates a theory
into an operational form for use by an inductive learner,
. and translates it back into the theory language after

. modification. KBANN translates the initial theory into a -

aeural network, and revises the network using standard

Raymond J. Mooney
Dept. of Computer Sciences
University of Texas, Austin

mooney@cs. utexas.edu

neural network techniques. However, extracting a revised
theory from the trained network is the subject of ongoing
research. EITHER revises the theory directly, and in this
sense is the most similar to Forte. However, ail of these
systems are limited to propositional domains. While most
finite problem domains can be expressed in propositional
form, doing so may greatly increase their size and reduce
their understandability.

2.2 FIRST-ORDER LEARNING

Stephen Muggleton first pointed the way to first-order
theory revision with his propositional system - Duce
(Muggleton, 1987]). Duce uses six theory revision
operators, which Muggleton later grouped under the
heading inverse resolution. Duce takes advantage of the
ease with which resolution steps can be reversed in

. ‘propositional logic; if we know the resolvent and either

the goal or the input clause, we can abduce the missing
element. Duce uses an oracle to verify its operations.

From Duce it was a short but important step to CIGOL,
a related system working in first-order logic ([Muggleton
and Buntine, 1988]). CIGOL performs inverse resolution
in first-order logic, but it assumes that all input clauses
are unit clauses and, like DUCE, it depends on an oracle.
Forte uses inverse resolution operators, but without these
limitations. '

[Quinlan, 1990} describes FOIL, an inductive learning
system working in first order logic. FOIL works by
generalization, construciing a set of Horn clauses that
cover the positive examplies while excluding the negative
ones. FOCL, in [Pazzani, Brunk, and Silverstein, 1991],
extends FOIL by using an input theory to guide and
augment the search process. Clauses and portions of
clauses from the input theory are considered for addition
to the rules under development by FOIL. If adding a
fragment of the input theory provides more information
gain than adding a2 newly created antecedent, the term
from the theory is chosen. Thus, providing a geod input
theory provides a substantial boost to the learning pro-
cess. The primary difference between FOCL and Forte is
that FOCL uses the input theory as an aid to ths learning
process, whereas Forte performs true theory revision.

47

448

Richards and Mooney

3 PROBLEM DEFINITION

Our objective is to create a system that performs theory
revision in first-order logic. The paragraphs below define
our terminology, provide a more formal statement of onr
objective, and describe the restrictions placed on our
prototype implementation. ' ‘

.

3.1 THEORY
A theory, T, is a Prolog program without cuts.

3.2 ASSERTION

An assertion is a predicate corresponding with the conse-
quent of one or more clauses in the theory. If an asser-
tion is given that does not correspond to a clause in the
theory, this indicates that a rule corresponding to the

assertion needs to be added to the theory.

3.3 EXAMPLE

An example is a set of related instances that share a
common set of facts. An example consisis of a set of
facts, F, 2 set of positive ground assertions, and a set of
negative ground assertions. A fact is a ground atom

" corresponding fo a predicate that may appear as an

antecedent to clauses in the theory. A ground assertion is
an instantiation of an assertion together with a boolean
value indicating whether or not the ground assertion
would be provable using a correct theory..

3.4 INSTANCE

An instance is a ground assertion with its associated truth
value plus the facts associated with the example from
which the ground assertion came. Instances that should
be provable are positive instances, and instances that
should not be provable arc negative instances. Given a
set, P, of positive instances and a set, N, of negative
instances, we say theory T is correct on these instances if

vp EP,TUF p
vin EN,TUF £ n

- A training set P U N is consistent if P N N = &. A

theory cannot be correct on an inconsistent training sct.

3.5 OBIECTIVE

Given an initial theory and a consistent set of instances,

. produce an "appropriately revised” theory that is correct

on the given instances.

3.6 DISCUSSION

We say that a theory is appropriately revised if it meets
certain beuristic criteria, namely

— A revised theory should be as similar as possible to
the initial theory, both semantically and syntactically.

-~ A revised theory should be as simple as possible.

-~ A revised theory should make meaningful general-
izations from the input instances, so that it will be as
accurate as possible on instances that did not appear
in the training set.

3.7 RESTRICTIONS

The initial version of Forte does not allow recursion or
negation in its theories, and it is vulnerable to local
maxima, which means that it does not always generate a
theory that is correct on the training set. Lifting the
theory restrictions, limiting or eliminating Forte's suscep-
tibility to iocal maxima, and providing a more formal
definition of an "appropriately revised" theory are the
primary goals of our ongoing research.

4 SYSTEM DESCRIPTION

Forte uses a training set to identify and correct errors and
omissions in the given domain theory. It chooses, if they
exist, one positive instance that is unprovable and one
negative instance that is provable and proposes revisions
to the theory that correct one of these errors. Each
revision is evaluated globally, to see what its effect is on
the theory's overall accuracy on the training set. The best
revision is implemented, and the system chooses another
pair of improperly classified instances.

Classes or categories in Forte are assertions that are to be
proven using the domain theory. Training examples may
include both attribute and refational information. Objects

. in training examples may be many-sorted, e.g., a domain
" ‘might include both birds and bicycles, each with their

own set of attributes.

The outermost layer of the program is a relatively simple
iterative shell that calis the theory revision operators,
evaluates the revisions they propose, and implements the
best such revision.

Theory revision operators come from a variety of sources.
Simple ones, like delete-rule, are drawn from proposition-
al theory revision systems. Operators for adding and
deleting antecedents are based on two separate derivations
of FOIL.. And operators for modifying intermediate rules
are drawn from inverse resolution.

Operators can have three effects on a theory: specializa-
tion, generalization, and compaction. If a positive
instance is unprovable then the theory needs to be general-
ized, whereas if a negative instance is provable the theory
needs to be specialized. Forte also compacts (simplifics)
the theory when doing so does not degrade accuracy on
the training set. Operators implemented in Forte, and
their effects, appear in Table I.

Note that, in several cases, Table I shows that an operator
can be used both to compact the theory and to generalize
or specialize #t. In these cases, thete are actually two
versions of the operator. While conceptually similar, they
work with different information toward different goals.

Table I. Operators may specialize, generalize, or compact a theory.
L.]

Operator * Spee Gen Com

Add Antecedent v

(FOIL)

Delete Rule v v
Delete Antecedent v

(Inverse FOIL)

Add Rule v

{FOIL)

Identification v v
Absorption 4 v
Deleie Antecedent s v
(ordinary)

R R S A S AT
Add antecedent (FOIL-based). If a negative example is
provable, the proof may be forced 1o fail by specializing
the theory. Each rule used in the proof is passed to a
derivative of FOIL, along with sets of positive and

negative instances. FOIL finds antecedents that distin-
guish between the positive and negative instances and

adds these to the rule. If necessary, several rutes will be
added, each covering a portion of the positive instances.

Delete rule. If a negative example is provable, each of
the rules used in the proof is considered for deletion from
the theory. When used in compaction, a rule is deleted if
doing so does not reduce the accuracy of the theory.

Delete antecedent (Inverse FOIL-based). If a positive
instance is unprovable, each failing clause in the attempt-
ed proof is considered by delete-antecedent. This opera-
tor depends on a conceptual derivative of FOIL, called
Inverse FOIL (IFOIL). Sets of positive and negative
-instances are passed to IFOIL., which deletes antecedents
1o create a rule allowing proof of some or all of the
positive instances, but none of the negative ones. If
necessary, IFOIL wiil create multiple rules to cover all
positive instances.

Add rule (FOI -based). If a positive instance is vnprov-
able, each failure point in its proof is considered for add-
rnide. The failing clause is copied, with the failing
antecedent deleted. If this allows the instance to be
proven, FOIL is called to add any new amecedents that
are required to keep negative instances from also becom-
ing provable.

Identificdtion (inverse resolution}. Identification con-
structs an alternate definition for an antecedent identified
in a failure point. It develops an alternate definition by
performing an inverse resolution step using two existing
rules in the domain theory. For example, suppose we
need an alternate definition for predicate x, and we have
the following two rules in the domain theory: '

First-Order Theory Revision

a<b, x
a<b,c,d

Identification will replace these two rules with the
logically equivalent pair:

a<b, x
Xx<g¢,d

While this has no effect on the deductive closure of these
rules alone, we have now introduced a new definition of
x into the theory, which may allow our positive example
to be proven. In first order logic, unification substantial-
ly complicates the picture, but the basic concept remains
the same,

When used in compaction, identification seeks pairs of
rules where it can construct definitions of intermediate
predicates as shown. These changes are implemented if
they reduce the size of the theory without reducing its
accuracy.

Absorption (inverse resolution). Absorption is the
complement of identification. - Rather than constructing
new definitions for intermediate predicates, absorption
secks to allow existing definitions to come into play.
Suppose predicate ¢ in the rule below is a failure point:

a<b,cd ‘ 03]

Now suppose our domain theory contains the following
rule, as well as other rules with consequent x:

X<c,d

In uthis case, absorption would replace rule (1) with the
new rule

a<b, x

thereby possibly allowing alternate definitions of x to be

used when proving a.

In compaction, absorption makes the same kind of modifi-
cations fo rules, trying to reduce the size of the theory
without adversely affecting its accuracy.

Delete Antecedent (ordinary). The delete aniecedent
operator based on Inverse FOIL may be unable to develop
a revision that excludes all negative instances. However,
deleting an antecedent may still improve performance on
the training set. Hence, this operator independently
considers antecedents identified in failure points for
deletion from the theory. When used in compaction, this
operator will delete an antecedent if doing so does not
degrade the performance of the theory on the training set.

5 RESULTS

In this section we present results showing Forte's learning
performance on the family domain used in {Quinlan,
1990] to test FOEL.. This gives us a basis for comparison
to a first-order inductive learner. Readers familiar with
FOIL should note that Forte's instance-based representa-
tion is substantially different from the tuple representation

449

450

Richards and Mooney

Family Data
Without Initial Theory

Accurecy
Too% Mq\'\.
SO TR
80%
70%
B0%
0% L L L 1 L ; .

8 26 5o 75 100 126 150 ws 200

'i'rnininu Instances

—+— Tralning Set —— Tout Sat

Family Data
With Initial Theory

Acturacy
0% —
0%
80%
70* ..
eo% ..
50% \ 1 \ \ . . .
a 25 &0 75 100 126 150 75 200

Training instances

i Tralning 86t —— Tent Set

Figure 1. Forte performance on twelve family relations, with no
initial theory. Data points are averaged over 21 trials.

used by FOIL. FOIL used the equivalent of 2400
training instances to achieve 97.5% accuracy on this data.
Forte's carning performance, both with and without an
initial theory, is shown in Figures 1 and 2.

Training sets given to Forte were randomly selected from
a database that included all 112 positive instances and 272
negative instances, which were chosen as being those
closest to being provable. These are, in essence, the most
useful negative instances to the theory revision process.
FOIL, in its representation, had the equivalent of all
positive instances and all negative instances that share
their base constant with a positive instance (e.g., if John
has an wacle, then FOIL would receive all negatlvc

~ instances of the form uncle(X, john)). .
With no initial theory, Forte averaged 83 % accuracy with

150 training instances, and improved slowly thereafter.

With no training, we can reach 71 % accuracy by guessing
all instances to be negative. The initial fall-off in accura-
cy seen in Figure 1 reflects that fact that, with fewer than
75 instances, we do not have enough data for meaningful
learning across twelve concepts. The training set perfor-
mance shows that Forte is being caught in local maxima;
in fact, with more than 75 instances, Forte rarely achieves
100% accuracy on the training set.

With an initial theory, Forte's performance improves
dramatically. The given theory begins with an accuracy
of 83%. Forte can completely correct the theory with as
few as 120 training instances, and it rarely falls into local
maxima. By the time Forte has seen 150 instances (an

“average of 12.5 per concept), training and test accuracies

have nearly converged.

Figure 2. Forte performance on twelve family relations, using the
initial theory shown in section 5.1 of the text. Averaged over 21 trials.

5.1 Revised theory

The theory below is the initial theory given to Forie in
Figure 2. It contains muitiple faults, including missing
and added rules, missing and added antecedents, and
incorrect antecedents. Added and incorrect items are
shown in italics, and missing items are struck out.

wife(X, Y) :- gender(X, female), married(X, Y).

husbaad() +—peaderGG-male)-marred 353

mother(X, Y) :- gender(X, male), paremt(X, Y).

father(X, Y) :- gender(X, male), parent{X, Y).

daughter(X, Y) :- gender(X, female), parest(y¥-X3.

son(X, Y) ;- gender(X, male), parent(Y, X), gender(Y, female).
sister(X, Y} :- gender(X, female), parent(Z, X), parent(Z, Y).
brother(X, Y) :- gender(X, male), parent(Z, X), pareni(Z, Y),
brother(X, Y) >- pareniZ, Y).

auat(X, Y) - gender(X, female), aunt_uncle(X, Y).

uncle(X, Y) :- gender(X, male), sibling(X, B), parent(B, Y).
niece(X, Y) :- gender(X, female), aunt_uncle{Y, X).
nephew(X, Y} :- gender(X, male), auvnt_uncle(Y, X).
annt_uacle(X, Y) :- sibling(X, B), parent(B, Y).
aunt_uvncle(X, Y) ;- married(X, A), sibling(A, C), parent(C, Y).
sibling(X, Y) :- parent(A, X), parent(A, Y), X \=Y.

Using 120 instances, Forte produced the correctly revised
theory below, where additional compactions are shown in
itatics.

wife(X, Y) :- gender(X, female), married(X, Y).
husband(X, Y) :- gender(X, male), married(X, Y).
mather(X, ¥) :- parent(X, Y), gender(X, female).
father(X, Y) :- gender(X, male), parent(X, Y.
daughter(X, Y) :- gender(X, female), parent(Y, X).
son(X, Y) i gender(X, male), parent(Y, X).

sister(X, Y) :- pender(X, female), sibling(X, ¥).
brother(X, Y) :- gender(X, male), sibling(X, ¥}.
aunt(X, Y) :- gendér(X, female), aunt_uncle(X, Y).
uncle(X, Y) :- gender(X, male), aunt_uncle(X, Y).
niece(X, Y) :- gender(X, female), aunt_uncle(Y, X).
nephew(X, Y) :- gender(X, male), amnt uncle(Y, X).
aunt_uncle(X, Y) :- sibling(X, B), parent(B, Y).
aunt_wncle(X, Y) :- mardied(X, A), sibling(A, C), parest(C, Y).
sibling(X, Y) :- parent(A, X), parent(A, Y), X \=Y.

<

6 CONCLUSION

- Theory revision is an exciting development in machine
learning, since it allows a system to take advantage of
expert knowledge without requiring the expert to be
infallible. In this paper we presented a system, Forte,
that performs theory revision in first-order logic. Forte
builds on prior work done in propositional theory revi-
sion, inductive learning, and inverse resolution. Future
versions of Forte will lift a number of restrictions placed
on the current system. Planned enhancements will
introduce recursion and negation into the domain theories,
and limit or eliminate Forte's susceptibility to local
maxima.

Acknowledgements

This research was supported in part by the Air Force
Institute of Technology faculty preparation program, and
in part by the NASA Ames Research Center under grant
NCC 2-629. '

References

A. Ginsberg, "Theory Reduction, Theory Revision, and
Retranslation,” Proceedings of the Eighth National
Conference on Ariificial Intelligence (AAAI-1990),
pp 777-782.

S. Muggleton, "Duce, an Oracle based approach to
constructive induction,” Proceedings of the Tenth Interna-

First-Order Theory Revision

451

~tional ~ Joint ~ Conference ~on ~Artificial ~ Intelligence
(IICAI-87), pp 287-292.

S. Muggleton and W. Buntine, "Machine Invention of
First-order Predicates by Inverting Resolution,” Proceed-
ings of the Fifth International Conference on Machine
Learning, pp 339-352, 1988

D. Qurston and R. J. Mooney, "Changing the Rules: A
Comprehensive Approach to Theory Refinement,"
Proceedings of the Eighth National Conference on
Artiticial Intelligence (AAAI-1990), pp 815-820.

M. J. Pazzani, C. A. Brunk, and G. Silverstein, "A
knowledge-intensive approach to relational concept
learning," Proceedings of .the Eighth International
Workshop on Machine Learning, 1991.

J. R. Quinlan, "Learning Logical Definitions from
Relations," Machine Learning, 5:239-266, 1990.

G. G. Towell, J. W. Shavlik, and M. Q. Noordewier,

"Refinement of Approximate Domain Theories by Knowl- |

edge-Based Neural Networks," Proceedings of the Eighth
National Conference on Artificial Intelligence
{AAAI-1990), pp 861-866.

