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Abstract

Multi-modal grounded language learning
connects language predicates to physical
properties of objects in the world. Sensing
with multiple modalities, such as audio,
haptics, and visual colors and shapes while
performing interaction behaviors like lift-
ing, dropping, and looking on objects en-
ables a robot to ground non-visual predi-
cates like “empty” as well as visual pred-
icates like “red”. Previous work has es-
tablished that grounding in multi-modal
space improves performance on object
retrieval from human descriptions. In
this work, we gather behavior annotations
from humans and demonstrate that these
improve language grounding performance
by allowing a system to focus on relevant
behaviors for words like “white” or “half-
full” that can be understood by looking
or lifting, respectively. We also explore
adding modality annotations (whether to
focus on audio or haptics when performing
a behavior), which improves performance,
and sharing information between linguis-
tically related predicates (if “green” is a
color, “white” is a color), which improves
grounding recall but at the cost of preci-
sion.

1 Introduction

Connecting human language predicates like “red”
and “heavy” to machine perception is part of the
symbol grounding problem (Harnad, 1990), ap-
proached in machine learning as grounded lan-
guage learning. For many years, grounded lan-
guage learning has been performed primarily in
visual space (Roy and Pentland, 2002; Liu et al.,
2014; Malinowski and Fritz, 2014; Mohan et al.,

2013; Sun et al., 2013; Dindo and Zambuto, 2010;
Vogel et al., 2010). Recently, researchers have
explored grounding in audio (Kiela and Clark,
2015), haptic (Alomari et al., 2017), and multi-
modal (Thomason et al., 2016) spaces. Multi-
modal grounding allows a system to connect lan-
guage predicates like “rattles”, “empty”, and “red”
to their audio, haptic, and color signatures, respec-
tively.

Past work has used human-robot interaction to
gather language predicate labels for objects in the
world (Parde et al., 2015; Thomason et al., 2016).
Using only human-robot interaction to gather la-
bels, a system needs to learn effectively from
only a few examples. Gathering audio and haptic
perceptual information requires doing more than
looking at each object. In past work, multiple in-
teraction behaviors are used to explore objects and
add this audio and haptic information (Sinapov
et al., 2014).

In this work, we gather annotations on what ex-
ploratory behaviors humans would perform to de-
termine whether language predicates apply to a
novel object. A robot could gather such informa-
tion by asking human users which action would
best allow it to test a particular property, e.g. “To
tell whether something is ‘heavy’ should I look
at it or pick it up?” Figure 1 shows some of the
behaviors used by our robot in previous work to
perceive objects and their properties. In this pa-
per, we show that providing a language ground-
ing system with behavior annotation information
improves classification performance on whether
predicates apply to objects, despite having sparse
predicate-object labels.

We additionally explore adding modality anno-
tations (e.g. is a predicate more auditory or more
haptic), drawing on previous work in psychology
that gathered modality norms for many words (Ly-
nott and Connell, 2009). Finally, we explore using
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Figure 1: Behaviors the robot used to explore ob-
jects. In addition, the hold behavior (not shown)
was performed after the lift behavior by holding
the object in place for half a second. The look
behavior (not shown) was also performed for all
objects.

word embeddings to help with infrequently seen
predicates by sharing information with more com-
mon ones (e.g. if “thin” is common and “narrow”
is rare, we can exploit the fact that they are lin-
guistically related to help understand the latter).

2 Dataset and Methodology

Previous work provides sparse annotations of 32
household objects (Figure 2) with language pred-
icates derived during an interactive “I Spy” game
with human users (Thomason et al., 2016). Each
predicate p ∈ P from that work is associated
with objects as applying or not applying, based
on dialog with human users. For example, pred-
icate “red” applies to several objects and not to
others, but for many objects its label is not ex-
plicitly known. Objects are represented by fea-
tures gathered during several interaction behav-
iors (Figure 1) as detailed in past work (Sinapov
et al., 2016). In this work, we focus on improv-
ing the language grounding performance of multi-
modal classifiers that predict whether each predi-
cate p ∈ P applies to each object o ∈ O.

In previous work, decisions about a predicate
and an object are made for each sensorimotor con-
text (a combination of a behavior and sensory
modality) with an SVM using the feature space
for that context (Thomason et al., 2016). A sum-
mary of sensorimotor contexts is given in Table 1.

Figure 2: Objects explored via interaction behav-
iors and for which we have sparse predicate anno-
tations.

Behaviors Modalities
look color, fpfh
drop, grasp, hold, lift
lower, press, push audio, haptics

Table 1: The contexts (combinations of robot be-
havior and perceptual modality) we use for multi-
modal language grounding. The color modality
is color histograms, fpfh is fast-point feature his-
tograms, audio is fast Fourier transform frequency
bins, and haptics is averages over robot arm joint
forces (detailed in (Sinapov et al., 2016)).

For example, a classifier is trained from the pos-
itive and negative object examples for “red” in
look/color space as well as in the less relevant
drop/audio space. These decisions are then av-
eraged together, each weighted by its Cohen’s-κ
agreement with human labels using leave-one-out
cross validation on the training data. In this way,
the look/color space for “red” is expected to have
high κ and a large influence on the decision, while
drop/audio would have low κ and not influence the
decision much.

The decision d(p, o) ∈ [−1, 1] for predicate p
and object o is defined as:

d(p, o) =
∑
c∈C

κp,cGp,c(o), (1)

for Gp,c a supervised grounding classifier trained
on labeled objects for predicate p in the feature
space of sensorimotor context c that returns in
{−1, 1} with κp,c its agreement with human la-
bels. If d(p, o) ≤ 0, we say p does not apply to o,
else that it does. We use SVMs with linear kernels
as grounding classifiers.

We extend the weighting scheme between sen-
sorimotor SVMs to include behavior information.
For each predicate derived from the “I Spy” game



Figure 3: The distribution over annotator-chosen
behaviors (left) gathered in this work, as well as
the distribution over modality norms (right) de-
rived from previous work (Lynott and Connell,
2009), for the predicates “white” and “round”.
The fpfh modality is fast-point feature histograms.

in previous work, we gather relevant behaviors
from human annotators. Annotators were asked
to mark which among the 8 exploratory behav-
iors (Table 1) they would engage in to determine
whether a given predicate applied to a novel ob-
ject. Annotators could mark as many behaviors as
they wanted for each predicate, but were required
to choose at least one.

We gathered annotations from 14 people, then
discarded the annotations from those whose av-
erage κ agreement with all other annotators was
less than 0.4 (the poor-fair agreement range). This
left us with 8 annotators whose average κ = .475
(moderate agreement). We release the full set
of gathered annotations on 81 perceptual predi-
cates across 8 behaviors as a corpus for commu-
nity use.1

Then, for each p ∈ P , we induce a distribution
over behaviors b ∈ B based on the ratio of an-
notators that marked that behavior relevant, such
that

∑
b∈B A

B
p,b = 1, with AB

p,b equal to the pro-
portion of annotators who marked behavior b rel-
evant for understanding predicate p. Some predi-
cates, like “white”, have single behavior distribu-
tions. For other predicates, like “metal”, annota-
tors chose more complex combinations of behav-
iors. Figure 3 (Left) gives some examples of be-
havior distributions from our annotations.

1http://jessethomason.com/publication_
supplements/robonlp_thomason_mooney_
behavior_annotations.csv

The decision dB(p, o) considering behavior an-
notations is calculated as

dB(p, o) =
∑
c∈C

AB
p,cb

κp,cGp,c(o), (2)

where cb is the behavior for sensorimotor context
c.

We also experiment with adding modality an-
notations (Table 1). In particular, we derive a
modality distribution for each p ∈ P such that∑

m∈M AM
p,m = 1 from modality exclusivity

norms gathered by past work for auditory, gusta-
tory, haptic, olfactory, and visual modalities (Ly-
nott and Connell, 2009). We ignore gustatory
and olfactory modalities, which have no counter-
part in our sensorimotor contexts, and create AM

p,m

scores from the auditory, haptic, and visual modal-
ity norm means. The visual modality norm is
split evenly between relevance scores AM

p,color and
AM

p,fpfh, our visual color and shape modalities.
The decision dM (p, o) considering modality an-

notations is calculated as

dM (p, o) =
∑
c∈C

AM
p,cb

κp,cGp,c(o) (3)

When the predicate p does not appear in the norm-
ing dataset from past work2, a uniform AM

p,m =
1/|M | is used. Figure 3 (Right) gives some exam-
ples of modality distributions from these norms.

The data sparsity inherent in language ground-
ing from limited human interaction means some
predicates have just a handful of positive and
negative examples, while more common predi-
cates may have many. If we have few exam-
ples for “narrow” but many for “thin,” we can
share some information between them. For ex-
ample, if κthin,grasp/haptic is high, we should trust
the grasp/haptic sensorimotor context for “nar-
row” more than “narrow”s κ estimates alone sug-
gest.

We explore sharing κ information between
related predicates by calculating their cosine
distance in word embedding space by using
Word2Vec (Mikolov et al., 2013) vectors derived
from Google News.3 For every pair of predicates
p, q ∈ P with word embedding vectors vp, vq we
calculate similarity as

w(p, q) =
1

2
(1 + cos(vp, vq)), (4)

2About half the predicates have norming information.
3https://github.com/mmihaltz/

word2vec-GoogleNews-vectors



p r f1
mc .282 .355 .311
κ .406 .460 .422
B+κ .489 .489 .465
M+κ .414 .466 .430
W+κ .373 .474 .412

Table 2: Precision (p), recall (r), and f1 (f1)
of predicate classifiers across weighting schemes.
mc gives majority class baseline. Weighting
schemes consider only validation confidence (κ,
as in previous work), confidence and behavior an-
notations (B+κ), confidence and modality anno-
tations (M+κ), and confidence and word similar-
ity (W+κ). Note that we show the average per-
predicate f -measure, not the f -measure of the av-
erage per-predicate precision and recall.

which falls in [0, 1], and subsequently take a
weighted average of κ values using these similari-
ties as weights to get decisions dW (p, o) as

dW (p, o) =
∑
c∈C

|P |−1 ∑
q∈P

κq,cw(p, q)

Gp,c(o)

(5)

3 Experimental Evaluation

We calculated precision, recall, and f -measure be-
tween human labels and predicate decisions when
weighting constituent sensorimotor context classi-
fiers by the schemes described above: kappa confi-
dence only (Eq 1, κ), adding behavior annotations
(Eq 2, B+κ), adding modality annotations (Eq 3,
M+κ), and sharing kappas across predicates using
word similarity (Eq 5, W+κ).

We calculated these metrics for each predicate4

and averaged scores across all predicates. We
use leave-one-object-out cross validation to obtain
performance statistics for each weighting scheme.

Table 2 gives the results for predicates that have
at least 3 positive and 3 negative training object
examples.5

We observe that adding behavior annotations or
modality annotations improves performance over

4Decisions were made for each testing object and marked
correct or incorrect against human labels that object, if avail-
able for the predicate.

5The trends are similar when considering all predicates,
but the scores and differences in performance are lower due
to many predicates having only a single positive or negative
example.

using kappa confidence alone, as was done in past
work. Sharing kappa confidences across similar
predicates based on their embedding cosine simi-
larity improves recall at the cost of precision.

Adding behavior annotations helps more than
adding modality norms, but we gathered behav-
ior annotations for all predicates, while modal-
ity annotations were only available for a subset
(about half). Adding behavior annotations helped
the f -measure of predicates like “pink”, “green”,
and “half-full”, while adding modality annotations
helped with predicates like “round”, “white”, and
“empty”.

Sharing confidences through word similarity
helped with some predicates, like “round”, at the
expense of domain-specific meanings of predi-
cates like “water”. In the “I Spy” paradigm from
which these data were gathered, the authors noted
that “water” correlated with object weight because
all of their water bottle objects were partially or
completely full (Thomason et al., 2016). Thus, in
that domain, “water” is synonymous with “heavy”.
In a less restricted domain, word similarity may
add less real world “noise” to the problem.

4 Conclusions and Future Work

In this work, we have demonstrated that behavior
annotations can improve language grounding for
a platform with multiple interaction behaviors and
modalities. In the future, we would like to apply
this intuition in an embodied dialog agent. If a per-
son asks a service robot to “Get the white cup.”,
the robot should be able to ask “What should I
do to tell if something is ‘white’?”, a behavior an-
notation prompt. A human-robot POMDP dialog
policy could be learned, as in previous work (Pad-
makumar et al., 2017), to know when this kind of
follow-up question is warranted.

Additionally, we will explore other methods of
sharing information between predicates from lex-
ical information. For example, choosing a maxi-
mally similar neighboring word, rather than doing
a weighted average across all known words, may
yield better results (e.g. the best neighbor of “nar-
row” is “thin”, so don’t bother considering things
like “green” at all).
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pages 13–18.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. In Proceedings of the 26th International Con-
ference on Neural Information Processing Systems.
Lake Tahoe, Nevada, pages 3111–3119.

Shiwali Mohan, Aaron H. Mininger, and John E. Laird.
2013. Towards an indexical model of situated
language comprehension for real-world cognitive

agents. In Proceedings of the 2nd Annual Confer-
ence on Advances in Cognitive Systems. Baltimore,
Maryland, USA.

Aishwarya Padmakumar, Jesse Thomason, and Ray-
mond J. Mooney. 2017. Integrated learning of dia-
log strategies and semantic parsing. In Proceedings
of the 15th Conference of the European Chapter of
the Association for Computational Linguistics. Va-
lencia, Spain, pages 547–557.

Natalie Parde, Adam Hair, Michalis Papakostas,
Konstantinos Tsiakas, Maria Dagioglou, Vangelis
Karkaletsis, and Rodney D. Nielsen. 2015. Ground-
ing the meaning of words through vision and inter-
active gameplay. In Proceedings of the 24th Inter-
national Joint Conference on Artificial Intelligence.
Buenos Aires, Argentina, pages 1895–1901.

Deb Roy and Alex Pentland. 2002. Learning words
from sights and sounds: a computational model.
Cognitive Science 26(1):113–146.

Jivko Sinapov, Priyanka Khante, Maxwell Svetlik, and
Peter Stone. 2016. Learning to order objects using
haptic and proprioceptive exploratory behaviors. In
Proceedings of the 25th International Joint Confer-
ence on Artificial Intelligence.

Jivko Sinapov, Connor Schenck, and Alexander
Stoytchev. 2014. Learning relational object cate-
gories using behavioral exploration and multimodal
perception. In IEEE International Conference on
Robotics and Automation.

Yuyin Sun, Liefeng Bo, and Dieter Fox. 2013. At-
tribute based object identification. In International
Conference on Robotics and Automation. IEEE,
Karlsruhe, Germany, pages 2096–2103.

Jesse Thomason, Jivko Sinapov, Maxwell Svetlik, Pe-
ter Stone, and Raymond Mooney. 2016. Learn-
ing multi-modal grounded linguistic semantics by
playing “I spy”. In Proceedings of the 25th Inter-
national Joint Conference on Artificial Intelligence.
pages 3477–3483.

Adam Vogel, Karthik Raghunathan, and Dan Jurafsky.
2010. Eye spy: Improving vision through dialog. In
Association for the Advancement of Artificial Intel-
ligence. pages 175–176.


