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Abstract

Solving the visual symbol grounding prob-
lem has long been a goal of artificial intel-
ligence. The field appears to be advancing
closer to this goal with recent breakthroughs
in deep learning for natural language ground-
ing in static images. In this paper, we propose
to translate videos directly to sentences using
a unified deep neural network with both con-
volutional and recurrent structure. Described
video datasets are scarce, and most existing
methods have been applied to toy domains
with a small vocabulary of possible words.
By transferring knowledge from 1.2M+ im-
ages with category labels and 100,000+ im-
ages with captions, our method is able to
create sentence descriptions of open-domain
videos with large vocabularies. We compare
our approach with recent work using language
generation metrics, subject, verb, and object
prediction accuracy, and a human evaluation.

1 Introduction

For most people, watching a brief video and describ-
ing what happened (in words) is an easy task. For
machines, extracting the meaning from video pixels
and generating natural-sounding language is a very
complex problem. Solutions have been proposed for
narrow domains with a small set of known actions
and objects, e.g., (Barbu et al., 2012; Rohrbach et
al., 2013), but generating descriptions for “in-the-
wild” videos such as the YouTube domain (Figure 1)
remains an open challenge.

Progress in open-domain video description has
been difficult in part due to large vocabularies and

Input video:

Our output: A cat is playing with a toy.
Humans: A Ferret and cat fighting with each other. / A cat and
a ferret are playing. / A kitten is playing with a ferret. / A kitten
and a ferret are playfully wrestling.

Figure 1: Our system takes a short video as input and out-
puts a natural language description of the main activity in
the video.

very limited training data consisting of videos with
associated descriptive sentences. Another serious
obstacle has been the lack of rich models that can
capture the joint dependencies of a sequence of
frames and a corresponding sequence of words. Pre-
vious work has simplified the problem by detecting
a fixed set of semantic roles, such as subject, verb,
and object (Guadarrama et al., 2013; Thomason et
al., 2014), as an intermediate representation. This
fixed representation is problematic for large vocabu-
laries and also leads to oversimplified rigid sentence
templates which are unable to model the complex
structures of natural language.

In this paper, we propose to translate from video
pixels to natural language with a single deep neu-
ral network. Deep NNs can learn powerful fea-
tures (Donahue et al., 2013; Zeiler and Fergus,
2014), but require a lot of supervised training data.
We address the problem by transferring knowledge
from auxiliary tasks. Each frame of the video is
modeled by a convolutional (spatially-invariant) net-
work pre-trained on 1.2M+ images with category la-
bels (Krizhevsky et al., 2012). The meaning state
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and sequence of words is modeled by a recurrent
(temporally invariant) deep network pre-trained on
100K+ Flickr (Hodosh and Hockenmaier, 2014) and
COCO (Lin et al., 2014) images with associated sen-
tence captions. We show that such knowledge trans-
fer significantly improves performance on the video
task.

Our approach is inspired by recent breakthroughs
reported by several research groups in image-to-text
generation, in particular, the work by Donahue et
al. (2014). They applied a version of their model
to video-to-text generation, but stopped short of
proposing an end-to-end single network, using an
intermediate role representation instead. Also, they
showed results only on the narrow domain of cook-
ing videos with a small set of pre-defined objects
and actors. Inspired by their approach, we utilize
a Long-Short Term Memory (LSTM) recurrent neu-
ral network (Hochreiter and Schmidhuber, 1997) to
model sequence dynamics, but connect it directly to
a deep convolutional neural network to process in-
coming video frames, avoiding supervised interme-
diate representations altogether. This model is sim-
ilar to their image-to-text model, but we adapt it for
video sequences.

Our proposed approach has several important ad-
vantages over existing video description work. The
LSTM model, which has recently achieved state-of-
the-art results on machine translation tasks (French
and English (Sutskever et al., 2014)), effectively
models the sequence generation task without requir-
ing the use of fixed sentence templates as in previous
work (Guadarrama et al., 2013). Pre-training on im-
age and text data naturally exploits related data to
supplement the limited amount of descriptive video
currently available. Finally, the deep convnet, the
winner of the ILSVRC2012 (Russakovsky et al.,
2014) image classification competition, provides a
strong visual representation of objects, actions and
scenes depicted in the video.

Our main contributions are as follows:
• We present the first end-to-end deep model for

video-to-text generation that simultaneously
learns a latent “meaning” state, and a fluent
grammatical model of the associated language.

• We leverage still image classification and cap-
tion data and transfer deep networks learned on
such data to the video domain.

• We provide a detailed evaluation of our model
on the popular YouTube corpus (Chen and
Dolan, 2011) and demonstrate a significant im-
provement over the state of the art.

2 Related Work

Most of the existing research in video description
has focused on narrow domains with limited vocab-
ularies of objects and activities (Kojima et al., 2002;
Lee et al., 2008; Khan and Gotoh, 2012; Barbu et
al., 2012; Ding et al., 2012; Khan and Gotoh, 2012;
Das et al., 2013b; Das et al., 2013a; Rohrbach et
al., 2013; Yu and Siskind, 2013). For example,
Rohrbach et al. (2013), Rohrbach et al. (2014) pro-
duce descriptions for videos of several people cook-
ing in the same kitchen. These approaches generate
sentences by first predicting a semantic role repre-
sentation, e.g., modeled with a CRF, of high-level
concepts such as the actor, action and object. Then
they use a template or statistical machine transla-
tion to translate the semantic representation to a sen-
tence.

Most work on “in-the-wild” online video has fo-
cused on retrieval and predicting event tags rather
than generating descriptive sentences; examples are
tagging YouTube (Aradhye et al., 2009) and retriev-
ing online video in the TRECVID competition (Over
et al., 2012). Work on TRECVID has also included
clustering both video and text features for video re-
trieval, e.g., (Wei et al., 2010; Huang et al., 2013).

The previous work on the YouTube corpus we em-
ploy (Motwani and Mooney, 2012; Krishnamoorthy
et al., 2013; Guadarrama et al., 2013; Thomason et
al., 2014) used a two-step approach, first detecting a
fixed tuple of role words, such as subject, verb, ob-
ject, and scene, and then using a template to generate
a grammatical sentence. They also utilize language
models learned from large text corpora to aid visual
interpretation as well as sentence generation. We
compare our method to the best-performing method
of Thomason et al. (2014). A recent paper by Xu
et al. (2015) extracts deep features from video and a
continuous vector from language, and projects both
to a joint semantic space. They apply their joint em-
bedding to SVO prediction and generation, but do
not provide quantitative generation results. Our net-
work learns a joint state vector implicitly, and addi-
tionally models sequence dynamics of the language.
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Predicting natural language desriptions of still
images has received considerable attention, with
some of the earliest works by Aker and Gaizauskas
(2010), Farhadi et al. (2010), Yao et al. (2010), and
Kulkarni et al. (2011) amongst others. Propelled by
successes of deep learning, several groups released
record breaking results in just the past year (Don-
ahue et al., 2014; Mao et al., 2014; Karpathy et al.,
2014; Fang et al., 2014; Kiros et al., 2014; Vinyals
et al., 2014; Kuznetsova et al., 2014).

In this work, we use deep recurrent nets (RNNs),
which have recently demonstrated strong results for
machine translation tasks using Long Short Term
Memory (LSTM) RNNs (Sutskever et al., 2014; Cho
et al., 2014). In contrast to traditional statistical
MT (Koehn, 2010), RNNs naturally combine with
vector-based representations, such as those for im-
ages and video. Donahue et al. (2014) and Vinyals
et al. (2014) simultaneously proposed a multimodal
analog of this model, with an architecture which
uses a visual convnet to encode a deep state vector,
and an LSTM to decode the vector into a sentence.

Our approach to video to text generation is in-
spired by the work of Donahue et al. (2014), who
also applied a variant of their model to video-to-text
generation, but stopped short of training an end-to-
end model. Instead they converted the video to an
intermediate role representation using a CRF, then
decoded that representation into a sentence. In con-
trast, we bypass detection of high-level roles and use
the output of a deep convolutional network directly
as the state vector that is decoded into a sentence.
This avoids the need for labeling semantic roles,
which can be difficult to detect in the case of very
large vocabularies. It also allows us to first pre-train
the model on a large image and caption database,
and transfer the knowledge to the video domain
where the corpus size is smaller. While Donahue et
al. (2014) only showed results on a narrow domain
of cooking videos with a small set of pre-defined
objects and actors, we generate sentences for open-
domain YouTube videos with a vocabulary of thou-
sands of words.

3 Approach

Figure 2 depicts our model for sentence generation
from videos. Our framework is based on deep image
description models in Donahue et al. (2014);Vinyals
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Figure 2: The structure of our video description network.
We extract fc7 features for each frame, mean pool the
features across the entire video and input this at every
time step to the LSTM network. The LSTM outputs one
word at each time step, based on the video features (and
the previous word) until it picks the end-of-sentence tag.

et al. (2014) and extends them to generate sentences
describing events in videos. These models work
by first applying a feature transformation on an im-
age to generate a fixed dimensional vector represen-
tation. They then use a sequence model, specifi-
cally a Recurrent Neural Network (RNN), to “de-
code” the vector into a sentence (i.e. a sequence of
words). In this work, we apply the same principle of
“translating” a visual vector into an English sentence
and show that it works well for describing dynamic
videos as well as static images.

We identify the most likely description for a given
video by training a model to maximize the log like-
lihood of the sentence S, given the corresponding
video V and the model parameters θ,

θ∗ = argmax
θ

∑
(V,S)

log p(S|V ; θ) (1)

Assuming a generative model of S that produces
each word in the sequence in order, the log proba-
bility of the sentence is given by the sum of the log
probabilities over the words and can be expressed
as:

log p(S|V ) =
N∑
t=0

log p(Swt |V, Sw1 , . . . , Swt−1)

where Swi represents the ith word in the sentence
and N is the total number of words. Note that we
have dropped θ for convenience.

A sequence model would be apt to model
p(Swt |V, Sw1 , . . . , Swt−1), and we choose an RNN.
An RNN, parameterized by θ, maps an input xt,
and the previously seen words expressed as a hid-
den state or memory, ht−1 to an output zt and an
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updated state ht using a non-linear function f :

ht = fθ(xt, ht−1) (2)

where (h0 = 0). In our work we use the highly
successful Long Short-Term Memory (LSTM) net
as the sequence model, since it has shown supe-
rior performance on tasks such as speech recogni-
tion (Graves and Jaitly, 2014), machine translation
(Sutskever et al., 2014; Cho et al., 2014) and the
more related task of generating sentence descrip-
tions of images (Donahue et al., 2014; Vinyals et al.,
2014). To be specific, we use two layers of LSTMs
(one LSTM stacked atop another) as shown in Fig-
ure 2. We present details of the network in Section
3.1. To convert videos to a fixed length representa-
tion (input xt), we use a Convolutional Neural Net-
work (CNN). We present details of how we apply
the CNN model to videos in Section 3.2.

3.1 LSTMs for sequence generation
A Recurrent Neural Network (RNN) is a gener-
alization of feed forward neural networks to se-
quences. Standard RNNs learn to map a sequence
of inputs (x1, . . . , xt) to a sequence of hidden states
(h1, . . . , ht), and from the hidden states to a se-
quence of outputs (z1, . . . , zt) based on the follow-
ing recurrences:

ht = f(Wxhxt +Whhht−1) (3)

zt = g(Wzhht) (4)

where f and g are element-wise non-linear functions
such as a sigmoid or hyperbolic tangent, xt is a fixed
length vector representation of the input, ht ∈ RN

is the hidden state with N units, Wij are the weights
connecting the layers of neurons, and zt the output
vector.

RNNs can learn to map sequences for which the
alignment between the inputs and outputs is known
ahead of time (Sutskever et al., 2014) however it’s
unclear if they can be applied to problems where the
inputs (xi) and outputs (zi) are of varying lengths.
This problem is solved by learning to map sequences
of inputs to a fixed length vector using one RNN,
and then map the vector to an output sequence using
another RNN. Another known problem with RNNs
is that, it can be difficult to train them to learn long-
range dependencies (Hochreiter et al., 2001). How-
ever, LSTMs (Hochreiter and Schmidhuber, 1997),

xt

ht-1

xt
ht-1 xt ht-1

xt ht-1

ht(=zt)

Cell

Output 
Gate

Input 
Gate

Forget 
Gate

Input 
Modulation
Gate

LSTM Unit

Figure 3: The LSTM unit replicated from (Donahue et
al., 2014). The memory cell is at the core of the LSTM
unit and it is modulated by the input, output and forget
gates controlling how much knowledge is transferred at
each time step.

which incorporate explicitly controllable memory
units, are known to be able to learn long-range tem-
poral dependencies. In our work we use the LSTM
unit in Figure 3, described in Zaremba and Sutskever
(2014), and Donahue et al. (2014).

At the core of the LSTM model is a memory cell c
which encodes, at every time step, the knowledge of
the inputs that have been observed up to that step.
The cell is modulated by gates which are all sig-
moidal, having range [0, 1], and are applied multi-
plicatively. The gates determine whether the LSTM
keeps the value from the gate (if the layer evaluates
to 1) or discards it (if it evaluates to 0). The three
gates – input gate (i) controlling whether the LSTM
considers its current input (xt), the forget gate (f )
allowing the LSTM to forget its previous memory
(ct−1), and the output gate (o) deciding how much
of the memory to transfer to the hidden state (ht),
all enable the LSTM to learn complex long-term de-
pendencies. The recurrences for the LSTM are then
defined as:
it = σ(Wxixt +Whiht−1) (5)

ft = σ(Wxfxt +Whfht−1) (6)

ot = σ(Wxoxt +Whoht−1) (7)

ct = ft � ct−1 + it � φ(Wxcxt +Whcht−1) (8)

ht = ot � φ(ct) (9)

where σ is the sigmoidal non-linearity, φ is the
hyperbolic tangent non-linearity, � represents the

1497



product with the gate value, and the weight matri-
ces denoted by Wij are the trained parameters.

3.2 CNN-LSTMs for video description

We use a two layer LSTM model for generating de-
scriptions for videos based on experiments by Don-
ahue et al. (2014) which suggest two LSTM layers
are better than four and a single layer for image to
text tasks. We employ the LSTM to “decode” a vi-
sual feature vector representing the video to gener-
ate textual output. The first step in this process is to
generate a fixed-length visual input that effectively
summarizes a short video. For this we use a CNN,
specifically the publicly available Caffe (Jia et al.,
2014) reference model, a minor variant of AlexNet
(Krizhevsky et al., 2012). The net is pre-trained
on the 1.2M image ILSVRC-2012 object classifica-
tion subset of the ImageNet dataset (Russakovsky et
al., 2014) and hence provides a robust initialization
for recognizing objects and thereby expedites train-
ing. We sample frames in the video (1 in every 10
frames) and extract the output of the fc7 layer and
perform a mean pooling over the frames to generate
a single 4,096 dimension vector for each video. The
resulting visual feature vector forms the input to the
first LSTM layer. We stack another LSTM layer on
top as in Figure 2, and the hidden state of the LSTM
in the first layer is the input to the LSTM unit in the
second layer. A word from the sentence forms the
target of the output LSTM unit. In this work, we
represent words using “one-hot” vectors (i.e 1-of-N
coding, where is N is the vocabulary size).

Training and Inference: The two-layer LSTM
model is trained to predict the next word Swt in
the sentence given the visual features and the pre-
vious t − 1 words, p(Swt |V, Sw1 , . . . , Swt−1). Dur-
ing training the visual feature, sentence pair (V, S)
is provided to the model, which then optimizes the
log-likelihood (Equation 1) over the entire training
dataset using stochastic gradient descent. At each
time step, the input xt is fed to the LSTM along with
the previous time step’s hidden state ht−1 and the
LSTM emits the next hidden state vector ht (and a
word). For the first layer of the LSTM xt is the con-
catenation of the visual feature vector and the pre-
vious encoded word (Swt−1 , the ground truth word
during training and the predicted word during test

time). For the second layer of the LSTM xt is zt of
the first layer. Accordingly, inference must also be
performed sequentially in the order h1 = fW (x1, 0),
h2 = fW (x2, h1), until the model emits the end-
of-sentence (EOS) token at the final step T . In our
model the output (ht = zt) of the second layer LSTM
unit is used to obtain the emitted word. We apply
the Softmax function, to get a probability distribu-
tion over the words w in the vocabulary D.

p(w|zt) =
exp(Wwzt)∑

w′∈D exp(Ww′zt)
(10)

where Ww is a learnt embedding vector for word w.
At test time, we choose the word ŵ with the maxi-
mum probability for each time step t until we obtain
the EOS token.

3.3 Transfer Learning from Captioned Images
Since the training data available for video descrip-
tion is quite limited (described in Section 4.1), we
also leverage much larger datasets available for im-
age captioning to train our LSTM model and then
fine tune it on the video dataset. Our LSTM model
for images is the same as the one described above
for single video frames (in Section 3.1, and 3.2). As
with videos, we extract fc7 layer features (4096 di-
mensional vector) from the network (Section 3.2) for
the images. This forms the visual feature that is in-
put to the 2-layer LSTM description model. The vo-
cabulary is the combined set of words in the video
and image datasets. After the model is trained on
the image dataset, we use the weights of the trained
model to initialize the LSTM model for the video de-
scription task. Additionally, we reduce the learning
rate on our LSTM model to allow it to tune to the
video dataset. This speeds up training and allows
exploiting knowledge previously learned for image
description.

4 Experiments

4.1 Datasets
Video dataset. We perform all our experiments
on the Microsoft Research Video Description Cor-
pus (Chen and Dolan, 2011). This video corpus is
a collection of 1970 YouTube snippets. The dura-
tion of each clip is between 10 seconds to 25 sec-
onds, typically depicting a single activity or a short
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sequence. The dataset comes with several human
generated descriptions in a number of languages;
we use the roughly 40 available English descriptions
per video. This dataset (or portions of it) have been
used in several prior works (Motwani and Mooney,
2012; Krishnamoorthy et al., 2013; Guadarrama et
al., 2013; Thomason et al., 2014; Xu et al., 2015) on
action recognition and video description tasks. For
our task we pick 1200 videos to be used as train-
ing data, 100 videos for validation and 670 videos
for testing, as used by the prior works on video de-
scription (Guadarrama et al., 2013; Thomason et al.,
2014; Xu et al., 2015).

Domain adaptation, image description datasets.
Since the number of videos for the description task is
quite small when compared to the size of the datasets
used by LSTM models in other tasks such as trans-
lation (Sutskever et al., 2014) (12M sentences), we
use data from the Flickr30k and COCO2014 datasets
for training and learn to adapt to the video dataset
by fine-tuning the image description models. The
Flickr30k (Hodosh and Hockenmaier, 2014) dataset
has about 30,000 images, each with 5 or more de-
scriptions. We hold out 1000 images at random for
validation and use the remaining for training. In ad-
dition to this, we use the recent COCO2014 (Lin
et al., 2014) image description dataset consisting of
82,783 training images and 40,504 validation im-
ages, each with 5 or more sentence descriptions. We
perform ablation experiments by training models on
each dataset individually, and on the combination
and report results on the YouTube video test dataset.

4.2 Models

HVC This is the Highest Vision Confidence
model described in (Thomason et al., 2014). The
model uses strong visual detectors to predict confi-
dence over 45 subjects, 218 verbs and 241 objects.

FGM (Thomason et al., 2014) also propose a fac-
tor graph model (FGM) that combines knowledge
mined from text corpora with visual confidences
from the HVC model using a factor graph and per-
forms probabilistic inference to determine the most
likely subject, verb, object and scene tuple. They
then use a simple template to generate a sentence
from the tuple. In this work, we compare the out-
put of our model to the subject, verb, object words

predicted by the HVC and FGM models and the sen-
tences generated from the SVO triple.

Our LSTM models We present four main mod-
els. LSTM-YT is our base two-layer LSTM model
trained on the YouTube video dataset. LSTM-
YTflickr is the model trained on the Flickr30k (Ho-
dosh and Hockenmaier, 2014) dataset, and fine
tuned on the YouTube dataset as descibed in Section
3.3. LSTM-YTcoco is first trained on the COCO2014
(Lin et al., 2014) dataset and then fine-tuned on the
video dataset. Our final model, LSTM-YTcocoflickr
is trained on the combined data of both the Flickr
and COCO models and is tuned on YouTube. To
compare the overlap in content between the im-
age dataset and YouTube dataset, we use the model
trained on just the Flickr images (LSTMflickr) and
just the COCO images (LSTMcoco) and evaluate
their performance on the test videos.

4.3 Evaluation Metrics and Results

SVO accuracy. Earlier works (Krishnamoorthy et
al., 2013; Guadarrama et al., 2013) that reported re-
sults on the YouTube dataset compared their method
based on how well their model could predict the sub-
ject, verb, and object (SVO) depicted in the video.
Since these models first predicted the content (SVO
triples) and then generated the sentences, the S,V,O
accuracy captured the quality of the content gener-
ated by the models. However, in our case the se-
quential LSTM directly outputs the sentence, so we
extract the S,V,O from the dependency parse of the
generated sentence. We present, in Table 1 and Ta-
ble 2, the accuracy of S,V,O words comparing the
performance of our model against any valid ground
truth triple and the most frequent triple found in hu-
man description for each video. The latter evalua-
tion was also reported by (Xu et al., 2015), so we
include it here for comparison.

Sentence Generation. To evaluate the generated
sentences we use the BLEU (Papineni et al., 2002)
and METEOR (Banerjee and Lavie, 2005) scores
against all ground truth sentences. BLEU is the
metric that is seen more commonly in image de-
scription literature, but a more recent study (Elliott
and Keller, 2014) has shown METEOR to be a bet-
ter evaluation metric. However, since both metrics
have been shown to correlate well with human eval-
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Model S% V% O%
HVC (Thomason et al., 2014) 86.87 38.66 22.09
FGM (Thomason et al., 2014) 88.27 37.16 24.63
LSTMflickr 79.95 15.47 13.94
LSTMcoco 56.30 06.90 14.86
LSTM-YT 79.40 35.52 20.59
LSTM-YTflickr 84.92 38.66 21.64
LSTM-YTcoco 86.58 42.23 26.69
LSTM-YTcoco+flickr 87.27 42.79 24.23

Table 1: SVO accuracy: Binary SVO accuracy compared
against any valid S,V,O triples in the ground truth descrip-
tions. We extract S,V,O values from sentences output by
our model using a dependency parser. The model is cor-
rect if it identifies S,V, or O mentioned in any one of the
multiple human descriptions.

Model S% V% O%
HVC (Thomason et al., 2014) 76.57 22.24 11.94
FGM (Thomason et al., 2014) 76.42 21.34 12.39
JointEmbed1

(Xu et al., 2015) 78.25 24.45 11.95
LSTMflickr 70.80 10.02 07.84
LSTMcoco 47.44 02.85 07.05
LSTM-YT 71.19 19.40 09.70
LSTM-YTflickr 75.37 21.94 10.74
LSTM-YTcoco 76.01 23.38 14.03
LSTM-YTcoco+flickr 75.61 25.31 12.42

Table 2: SVO accuracy: Binary SVO accuracy compared
against most frequent S,V,O triple in the ground truth de-
scriptions. We extract S,V,O values from parses of sen-
tences output by our model using a dependency parser.
The model is correct only if it outputs the most frequently
mentioned S, V, O among the human descriptions.

uations, we compare the generated sentences using
both and present our results in Table 3.

Human Evaluation. We used Amazon Mechan-
ical Turk to also collect human judgements. We
created a task which employed three Turk workers
to watch each video, and rank sentences generated
by the different models from “Most Relevant” (5)
to “Least Relevant” (1). No two sentences could
have the same rank unless they were identical. We
also evaluate sentences on grammatical correctness.
We created a different task which required work-
ers to rate sentences based on grammar. This task

1They evaluate against a filtered set of groundtruth SVO
words which provides a tiny boost to their scores.

Model BLEU METEOR

FGM (Thomason et al., 2014) 13.68 23.90
LSTM-YT 31.19 26.87
LSTM-YTflickr 32.03 27.87
LSTM-YTcoco 33.29 29.07
LSTM-YTcoco+flickr 33.29 28.88

Table 3: Scores for BLEU at 4 (combined n-gram 1-4),
and METEOR scores from automated evaluation metrics
comparing the quality of the generation. All values are
reported as percentage (%).

Model Relevance Grammar

FGM (Thomason et al., 2014) 2.26 3.99
LSTM-YT 2.74 3.84
LSTM-YTcoco 2.93 3.46
LSTM-YTcoco+flickr 2.83 3.64
GroundTruth 4.65 4.61

Table 4: Human evaluation mean scores. Sentences were
uniquely ranked between 1 to 5 based on their relevance
to a given video. Sentences were rated between 1 to 5 for
grammatical correctness. Higher values are better.

displayed only the sentences and did not show any
video. Here, workers had to choose a rating be-
tween 1-5 for each sentence. Multiple sentences
could have the same rating. We discard responses
from workers who fail gold-standard items and re-
port the mean ranking/rating for each of the evalu-
ated models in Table 4.

Individual Frames. In order to evaluate the ef-
fectiveness of mean pooling, we performed exper-
iments to train and test the model on individual
frames from the video. Our first set of experiments
involved testing how well the image description
models performed on a randomly sampled frame in
the video. Similar to Tables 1 and 2, the model
trained on Flickr30k when tested on random frames
from the video scored better on subjects and verbs
with any valid accuracy of 75.16% and 11.65% re-
spectively; and 9.01% on objects. The one trained
on COCO did better on objects (12.54%, any valid
accuracy) but very poorly on subjects and verbs.
In our next experiment, we used image description
models (trained on Flickr30k, COCO or a combi-
nation of both) and fine-tuned them on individual
frames in the video by picking a different frame
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Model (individual frames) BLEU METEOR

LSTMflickr 08.62 18.56
LSTMcoco 11.39 20.03
LSTM-YT-frameflickr 26.75 26.51
LSTM-YT-framecoco 30.77 27.66
LSTM-YT-framecoco+flickr 29.72 27.65

Table 5: Scores for BLEU at 4 (combined n-gram 1-4),
and METEOR scores comparing the quality of sentence
generation by the models trained on Flickr30k and COCO
and tested on a random frame from the video. LSTM-
YT-frame models were fine tuned on individual frames
from the Youtube video dataset. All values are reported
as percentage (%).

for each description in the YouTube dataset. These
models were tested on a random frame from the test
video. The overall trends in the results were similar
to those seen in Tables 1 and 2. The model trained
on COCO and fine-tuned on individual video frames
performed best with any valid S,V,O accuracies
84.8%, 38.98%, and 22.34% respectively. The one
trained on both COCO and Flickr30k had any valid
S,V,O accuracies of 85.67%, 38.83%, and 19.72%.
We report the generation results for these models in
Table 5.

5 Discussion

Image only models. The models trained purely
on the image description data LSTMflickr and
LSTMcoco achieve lower accuracy on the verbs and
objects (Tables 1, 2) since the YouTube videos en-
compass a wider domain and a variety of actions not
detectable from static images.

Base LSTM model. We note that in the SVO
binary accuracy metrics (Tables 1 and 2), the base
LSTM model (LSTM-YT) achieves a slightly lower
accuracy compared to prior work. This is likely due
to the fact that previous work explicitly optimizes to
identify the best subject, verb and object for a video;
whereas the LSTM model is trained on objects and
actions jointly in a sentence and needs to learn to in-
terpret these in different contexts. However, with re-
gard to the generation metrics BLEU and METEOR,
training based on the full sentence helps the LSTM
model develop fluency and vocabulary similar to that
seen in the training descriptions and allows it to out-
perform the template based generation.

Transferring helps. From our experiments, it is

clear that learning from the image description data
improves the performance of the model in all criteria
of evaluation. We present a few examples demon-
strating this in Figure 4. The model that was pre-
trained on COCO2014 shows a larger performance
improvement, indicating that our model can effec-
tively leverage a large auxiliary source of training
data to improve its object and verb predictions. The
model pre-trained on the combined data of Flickr30k
and COCO2014 shows only a marginal improve-
ment, perhaps due to overfitting. Adding dropout
as in (Vinyals et al., 2014) is likely to help prevent
overfitting and improve performance.

From the automated evaluation in Table 3 it is
clear that the fully deep video-to-text generation
models outperform previous work. As mentioned
previously, training on the full sentences is probably
the main reason for the improvements.

Testing on individual frames. The experiments
that evaluated models on individual frames (Section
4.3) from the video have trends similar to those seen
on mean pooled frame features. Specifically, the
model trained on Flickr30k, when directly evaluated
on YouTube video frames performs better on sub-
jects and verbs, whereas the one trained on COCO
does better on objects. This is explained by the fact
that Flickr30k images are more varied but COCO
has more examples of a smaller collection of objects,
thus increasing object accuracy. Amongst the mod-
els trained on images and individual video frames,
the ones trained on COCO (and the combination of
both) perform well, but are still a bit poorer com-
pared to the models trained on mean-pooled fea-
tures. One point to note however is that, these mod-
els were trained and evaluated on random frames
from the video, and not necessarily a key-frame or
most-representative frame. It’s likely that choosing
a representative frame from the video might result in
a small improvement. But, on the whole, our exper-
iments show that models trained on images alone do
not directly perform well on video frames, and a bet-
ter representation is required to learn from videos.

Mean pooling is significant. Our additional
experiments that trained and tested on individual
frames in the video, reported in section 4.3, suggest
that mean pooling frame features gives significantly
better results. This could potentially indicate that
mean pooling features across all frames in the video
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is a reasonable representation for short video clips
at least for the task of generating simple sentential
descriptions.

Human evaluation. We note that the sentences
generated by our model have been ranked more rel-
evant (Table 4) to the content in the video than pre-
vious models. However, there is still a significant
gap between the human ground truth sentence and
the ones generated by the LSTM models. Addi-
tionally, when we ask Turkers to rate only the sen-
tences (they are not provided the video) on grammat-
ical correctness, the template based FGM (Thoma-
son et al., 2014) achieves the highest ratings. This
can be explained by the fact that their work uses a
template technique to generate sentences from con-
tent, and is hence grammatically well formed. Our
model sometimes predicts prepositions and articles
more frequently, resulting in duplicates and hence
incorrect grammar.

6 Conclusion

In this paper we have proposed a model for video
description which uses neural networks for the en-
tire pipeline from pixels to sentences and can poten-
tially allow for the training and tuning of the entire
network. In an extensive experimental evaluation,
we showed that our approach generates better sen-
tences than related approaches. We also showed that
exploiting image description data improves perfor-
mance compared to relying only on video descrip-
tion data. However our approach falls short in better
utilizing the temporal information in videos, which
is a good direction for future work. We will re-
lease our Caffe-based implementation, as well as the
model and generated sentences.
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Figure 4: Examples to demonstrate effectiveness of trans-
ferring from the image description domain. YT refer to
the LSTM-YT, YTcoco to the LSTM-YTcoco, and YTco-
coflickr to the LSTM-YTcoco+flickr models. GT is a ran-
dom human description in the ground truth. Sentences in
bold highlight the most accurate description for the video
amongst the models. Bottom two examples show how
transfer can overfit. Thus, while base LSTM-YT model
detects water and monkey, the LSTM-YTcoco and LSTM-
YTcocoflickr models fail to describe the event completely.
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