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Recently, visual question answering (VQA) emerged as a challenge multi-modal task and

gained in popularity. The goal is to answer questions that query information associated

with the visual content in the given image. Since the required information could be from

both inside and outside the image, common types of visual features, such as object and

attribute detection, fail to provide enough materials for answering the questions. Textual

resources, such as captions, explanations, encyclopedia articles, can help VQA systems

comprehensively understand the image, reason following the right path, and access external

facts. Specifically, they provide concise descriptions of the image, precise reasons for the

correct answer, and factual knowledge beyond the image.

We presented completed work on generating image captions that are targeted to

help answer a specific visual question. We introduced an approach that generates textual

explanations and used these explanations to determine which answer is mostly supported. We
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used explanations to recognize the critical objects for solving the visual question and trained

the VQA systems to be influenced by these objects most. We also explored using textual

resources to provide external knowledge beyond the visual content that is indispensable for

a recent trend towards knowledge-based VQA. We further propose to break down visual

questions such that each segment, which carries a single piece of semantic content in the

question, can be associated with its specific knowledge. This separation aims to help the

VQA system understand the question structure to satisfy the need for linking different aspects

of the question to different types of information within and beyond the image.
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Chapter 1

Introduction

Over the past few years, Visual Question Answering (VQA), spanning both the visual and

linguistic domains, emerged as a challenging task that attracts tons of attention. The goal is

to answer open-ended natural language questions that query information associated with the

visual content in the given image. Part of the increasing attraction comes from the belief

that VQA offers a step forward to achieving “AI-complete” tasks by stressing the need for

various AI capabilities required to access, process, and reason upon multi-modal information

for solving the visual questions. For example, fine-grained object, attribute, relation, and

activity detection is necessary for understanding the image. Furthermore, commonsense

knowledge is indispensable when the implication of the visual content is the main focus.

Recently, there is a trend towards knowledge-based VQA, querying the information from

other knowledge resources beyond the images.

Due to the necessity of the multi-modal information from various aspects, the input

features and supervision choices are critical. We have witnessed a clear shift from using grid

features pretrained on image classification tasks to using region-based features pretrained on

object and attribute detection. Those features can provide common labels, pair-wise relations,

and attributes for the objects in the image; however, they still lack representation power for

all the required information, which could be from both inside and outside the image. For
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example, the relationship among several objects is hard to characterize; commonsense and

specific knowledge beyond the images are missing. Textual resources, such as captions,

explanations, encyclopedia articles, can help VQA systems comprehensively understand

the image, reason following the right path, and access external facts by providing concise

descriptions of the image, precise reasons for the correct answer, and factual statements. On

the supervision side, textual explanations help the VQA systems understand why the answer

is correct, where the common annotations only provide what is correct.

We generate image captions targeted to help answer a specific visual question. We

also introduce an approach that generates textual explanations and used these explanations

to determine which answer is most supported. We use explanations to recognize the key

objects for solving the visual question and trained the VQA systems to be mostly influenced

by these objects. We also explore using textual resources to provide external knowledge

beyond the visual content indispensable for knowledge-based VQA.

Finally, we propose some short-term and long-term goals to better utilize textual

resources to improve VQA performance. First, we would like to break down visual questions

such that each segment, carrying a single piece of semantic content, can be associated with

its specific knowledge. This separation aims to help the VQA system understand the question

structure to satisfy the need for linking different aspects of the question to different types of

information within and beyond the image. Second, since the retrieval process is not jointly

trained with the VQA systems, it is possible that the retrieved facts, though they are right

from their perspective, sometimes mislead the answer predictor. Therefore, we also want to

determine the relevance of the retrieved knowledge to ensure the precision of knowledge

and achieve better performance. Finally, as a long-term goal, we would like to step toward

building a more interpretable VQA system using textual resources.
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Chapter 2

Related Work

We review some of the relevant background knowledge for our work. We first introduce

different types of visual question answering (VQA) and common approaches. Then, we

discuss the textual content generation, including image captioning and explanations. Finally,

we present graphical networks for VQA.

2.1 Visual Question Answering

We review the visual question answering literature in three aspects: question types, visual

content representation, and VQA systems.

2.1.1 Visual Questions Types

Visual Question Answering (VQA) is a multimodal task of answering a question that queries

information associated with the visual content in the image. The questions cover a vast set of

visual information, focusing on different visual aspects, and require different AI capabilities

due to their multimodal nature (Antol et al., 2015). General visual questions (Antol et al.,

2015; Krishna et al., 2017) mainly focus on asking single visual features present in the image,

including colors, shapes, materials, quantity, attributes, relations of objects as shown in 2.1
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Q: What color is the stripe 
on the bus?
A: Yellow

Q: Is the man to the right of 
the player that wears gloves?
A: No

Q: Where would you find the animal
 in the background in the wild? 
A: Africa

Q: Is the man getting wet?
A: Yes

(a) General Question (b) Compositional Question (c) Commonsense Question (d) knowledge-based Question

Figure 2.1: Examples of different types of visual questions.

(a). Compositional visual questions (Hudson and Manning, 2019) (in 2.1 (b)) stress the

need for a deeper semantic understanding of vision and language. Instead of answering the

question in one step, VQA systems need to properly understand every hop in the questions

and linked these hops to the corresponding visual content. As a step further, an intelligent

should understand both “what is in the image” and the implication of the visual scene that

requires a significant amount of commonsense knowledge (Park et al., 2018). For example,

the system should understand that when people is surfing, they will get wet as shown in

2.1 (c). Besides, there is also a trend towards knowledge-based VQA (Wang et al., 2017;

Marino et al., 2019) where the VQA systems need to retrieve relevant knowledge to correctly

answer the questions. For example, the system not only need to recognize the “animal” in

the question refers to the elephant, but also need to retrieve the knowledge that this type of

elephant lives in Africa.

2.1.2 Visual Representations

The visual and textual representation of the image and question is crucial to provide the

VQA systems sufficient yet concise information to predict the answers. An LSTM+CNN

baseline system (Antol et al., 2015) uses grid features as inputs produced by CNNs pre-

trained on a large-scale image classification dataset (Russakovsky et al., 2015). In order
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to enable attention to be calculated at the level of objects and other salient image regions,

Up-Down systems introduce object and attribute detection (Ren et al., 2015b) as the visual

representation. For better answering commonsense questions where the key clues cannot be

visually detected, human justifications (Park et al., 2018) are employed to teach the VQA

systems the right reason for the right answer. In order to gather sufficient outside knowledge

beyond the image, Wikipedia (Wikipedia contributors, 2004) and concepts from conceptnet

(Speer et al., 2017) are commonly used as additional inputs (Marino et al., 2021, 2019; Wu

et al., 2021).

2.1.3 Visual Question Answering Systems

VQA systems have witnessed significant progress on the modeling side. LSTM+CNN

baseline systems (Antol et al., 2015; Ren et al., 2015a; Fukui et al., 2016; Goyal et al.,

2017; Li et al., 2018a) encode the image and question using CNN and RNN, respectively.

Up-Down systems (Anderson et al., 2018; Li et al., 2018b; Wu and Mooney, 2019b) use

object-level features to determine important ones for the question using Top-Down attention.

In order to better present relations between objects, graph neural nets are used to link objects

together, enabling the VQA systems to reason among groups of objects according to the

visual questions. As VQA requires a vast set of AI skills, recent multimodal transformers (Yu

et al., 2019a; Zhou et al., 2020; Lu et al., 2020a, 2019; Tan and Bansal, 2019; Liu et al., 2019;

Li et al., 2019, 2020a; Chen et al., 2020) are pretrained on many auxiliary tasks, including

VQA (Antol et al., 2015), referring-resolution (Yu et al., 2016), image captioning (Chen

et al., 2015; Sharma et al., 2018), etc., using various multimodal datasets. Cross attention

modules are built over the textual and visual modalities to learn a joint representation for the

entire question and the detected objects. With a large amount of training data and a wide

range of pretraining tasks, these models achieve promising performance on various VQA

benchmarks(Antol et al., 2015; Hudson and Manning, 2019; Singh et al., 2019; Marino et al.,

2019). In order to incorporate knowledge from various external sources, knowledge-based
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VQA systems often employ fact graphs (Tompson et al., 2014; Narasimhan et al., 2018; Li

et al., 2020b; Marino et al., 2021) as a different modality of inputs.

2.2 Image Captioning

Recent image captioning models have experienced a clear shift from attention-based deep-

learning models (Donahue et al., 2015; Karpathy and Fei-Fei, 2015; Vinyals et al., 2015;

Luo et al., 2018; Liu et al., 2018) to multimodal transformers (Cornia et al., 2020; He et al.,

2020; Liu et al., 2021). With the help of large image description datasets (Chen et al., 2015),

these models have demonstrated remarkable results.

However, deep neural models still tend to generate general captions based on the

most significant objects(Vijayakumar et al., 2016). Although previous works (Luo et al.,

2018; Liu et al., 2018) build captioning models that are encouraged to generate different

captions with discriminability objectives, the captions are usually less informative and fail to

describe most objects and their relationships diversely.

We would like to use the captions to provide additional information to enrich the

VQA features sets. We develop an approach to generating captions that directly focus on the

critical objects in the VQA process and provide information that can help the VQA module

predict the answer for a particular question.

2.3 Explanations for Visual Question Answering

2.3.1 Visual Explanation

Several approaches have been proposed to visually explain decisions made by vision systems

by highlighting relevant image regions. For example, GradCAM (Selvaraju et al., 2017)

analyzes the gradient space to find visual regions that most affect the decision. Attention

mechanisms (Singh et al., 2018; Anderson et al., 2018) in VQA models can also be directly

utilized to determine highly-attended regions and generate visual explanations.
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In order to train a VQA system to be right for the right reason(Ross et al., 2017),

recent research has collected human visual attention highlighting image regions that most

contribute to the answer. Two popular approaches are to have crowdsourced workers deblur

the image (Das et al., 2017) or select segmented objects from the image (Park et al., 2018).

Then, the VQA systems try to align either the VQA system’s attention (Zhang et al., 2019;

Qiao et al., 2018) or the gradient-based visual explanation (Selvaraju et al., 2019) to the

human attention. These approaches help the systems focus on the right regions and improve

VQA performance when the training and test distributions are very different, such as in the

VQA-CP dataset (Agrawal et al., 2018).

2.3.2 Textual and Multi-Modal Explanation

While visual explanations highlight key image regions behind the decision, textual explana-

tions (Park et al., 2018) explain the reasoning process and crucial relationships between the

detected objects. As a step further, there has also been some work on multimodal explana-

tions that link textual and visual explanations. A recent extension of this work (Hendricks

et al., 2018) first generates multiple textual explanations and then filters out those that could

not be grounded in the image. We argue that a good explanation should focus on referencing

visual objects that actually influenced the system’s decision, therefore generating more

faithful explanations.

2.4 Graphical Networks

Graph Convolutional Networks (GCNs) (Kipf and Welling, 2017) generalize Convolutional

Networks (CNN) to accommodate graph-structured input. Various types of graph input

for VQA have been explored including scene graphs generated by an object and relation

detector (Ren et al., 2015b; Yang et al., 2018), and knowledge graphs retrieved from a wide

range of sources, such as DB-Pedia (Auer et al., 2007), ConceptNet (Liu and Singh, 2004),

VisualGenome (Krishna et al., 2017) and hasPart KB (Bhakthavatsalam et al., 2020). Most
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KB-VQA systems (Ramnath and Hasegawa-Johnson, 2021; Narasimhan et al., 2018; Li

et al., 2020b; Marino et al., 2021) build their GCNs on top of these knowledge graphs and

extract relevant evidence using the entire question representation.
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Chapter 3

Completed Work

We present our completed work on utilizing textual resources in the following sections.

3.1 Generating Captions for VQA

Human Captions :
1) A man on a blue surfboard on top of some rough water.

2) A young surfer in a wetsuit surfs a small wave.

3) A young man rides a surf board on a small wave while 

a man swims in the background.

4) A young man is on his surf board with someone in the background.

5) A boy riding waves on his surf board in the ocean.

Question 1: Does this boy have a full wetsuit on?

Caption: A young man wearing wetsuit surfing on a wave.

Question 2: What color is the board?

Caption: A young man riding a wave on a blue surfboard.

Figure 3.1: Examples of our generated
question-relevant captions. During the train-
ing phase, our model selects the most relevant
human captions for each question (marked by
the same color).

Exploiting textual features from the image,

tersely encoding the necessary information

to answer the questions, is not sufficiently

studied. This information could be richer

than the visual features in that the sentences

have fewer structural constraints and can

easily include the attributes of and relation

among multiple objects. In fact, we observe

that appropriate captions can be very use-

ful for many VQA questions. We explore

a novel approach that generates question-

relevant image descriptions, which contain

information that is directly relevant to a par-
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ticular VQA question. Fig. 3.1 shows examples of our generated captions given different

questions.

Specifically, our model first extracts image features V = {v1, v2, ..., vK} and ques-

tion features q to produce their joint representation that are further used to generate question-

related captions as shown in the left in 3.2. Next, our caption embedding module encodes

the generated captions as caption features c as shown in the bottom of 3.2. After that, a VQA

module is built on question, image, and caption features to predict the answer (right part in

3.2). The work is published as a conference paper at ACL 2019.

3.1.1 Generating Question-Relevant Captions

Image Captioning Module. We adopt an image captioning module similar to that of An-

derson et al. (2018), which takes the object detection features as inputs and learns attention

weights over those objects’ features in order to predict the next word at each step. The

key difference between our module and theirs lies in the input features and the caption

supervision. Specifically, we use the question-attended image features Vq as inputs and

only use the most relevant caption, which is automatically determined in an online fashion

(detailed below), for each question-image pair to train the captioning module. This ensures

that only question-relevant captions are generated.

Selecting Relevant Captions for Training. Previously, Li et al. (2018b) selected relevant

captions for VQA based on word similarities between captions and questions; however, their

approach does not take into account the details of the VQA process. In contrast, during

training, our approach dynamically determines for each problem the caption that will most

improve VQA. We do this by updating with a shared descent direction (Wu et al., 2018)

which decreases the loss for both captioning and VQA. This ensures a consistent target for

both the image captioning module and the VQA module in the optimization process.

During training, we compute the cross-entropy loss for the i-th caption using Eq. 3.1,

10
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Figure 3.2: Overall structure of our model that generates question-relevant captions to aid
VQA. Our model is first trained to generate question-relevant captions as determined in an
online fashion in phase 1. Then, the VQA model is fine-tuned with generated captions from
the first phase to predict answers. ⊗ denotes element-wise multiplication and ⊕ denotes
element-wise addition. Blue arrows denote fully-connected layers (fc) and yellow arrows
denote attention embedding.

and back-propagate the gradients only from the most relevant caption determined by solving

Eq. 3.2.

Lci =−
T∑
t=1

log(p(wc
i,t|wc

i,t−1)) (3.1)

In particular, we require the inner product of the current gradient vectors from the predicted

answer and the human captions to be greater than a positive constant ξ, and further select the

caption that maximizes that inner product.

arg max
i

K∑
k=0

(
∂ŝpred

∂vqk

)T ∂ log(p(Wc
i ))

∂vqk

s.t.

K∑
k=0

(
∂ŝpred

∂vqk

)T ∂ log(p(Wc
i ))

∂vqk
> ξ

(3.2)

where the ŝpred is the logit1 for the predicted answer, Wc
i denotes the i-th human caption for

the image and k traverses the K object features.
1The input to the softmax function.
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Therefore, given the solution to Eq. 3.2, i?, the final loss of our joint model is the

sum of the VQA loss and the captioning loss for the selected captions as shown in Eq. 3.3. If

Eq. 3.2 has no feasible solution, we ignore the caption loss.

L = Lvqa + Lci? (3.3)

3.1.2 Utilizing Captions for VQA

As illustrated in Fig. 3.2, we use both question features q and caption features c to generate

the visual attention Acv to weight the images’ feature set V, producing attended image

features vqc. Finally, we add vqc to the caption features c and further perform element-wise

multiplication with the question features q (Anderson et al., 2018) to produce the joint

representation of the question, image and caption, which is then used to predict the answer.

3.1.3 Experimental Evaluation

We first report the experimental results on the VQA task and compare our results with

the state-of-the-art methods in this section. We use the VQA v2.0 dataset (Antol et al.,

2015) for the evaluation of our proposed joint model, where the answers are balanced in

order to minimize the effectiveness of learning dataset priors. This dataset is used in the

VQA 2018 challenge and contains over 1.1M questions from the over 200K images in the

MSCOCO 2015 dataset (Chen et al., 2015). After that, we perform ablation studies to verify

the contribution of additional knowledge from the generated captions and the effectiveness

of using caption representations to adjust the top-down visual attention weights.

As demonstrated in Table 3.1, our single model outperforms other state-of-the-art

single models by a clear margin, i.e. 2.06%, which indicates the effectiveness of including

caption features as additional inputs. In particular, we observe that our single model

outperforms other methods, especially in the ’Num’ and ’Other’ categories. This is because

the generated captions can provide more numerical clues for answering the ’Num’ questions

12



Test-standard
Yes/No Num Other All

Prior (Goyal et al., 2017) 61.20 0.36 1.17 25.98
Language-only (Goyal et al., 2017) 67.01 31.55 27.37 44.26
MCB (Fukui et al., 2016) 78.82 38.28 53.36 62.27
Up-Down (Anderson et al., 2018) 82.20 43.90 56.26 65.32
VQA-E (Li et al., 2018b) 83.22 43.58 56.79 66.31
Ours(single) 84.69 46.75 59.30 68.37
Ours(Ensemble-10) 86.15 47.41 60.41 69.66

Table 3.1: Comparison of our results on VQA with the state-of-the-art methods on the
test-standard data. Accuracies in percentage (%) are reported.

since the captions can describe the number of relevant objects and provide general knowledge

for answering the ’Other’ questions. Furthermore, an ensemble of 10 models with different

initialization seeds results in a score of 69.7% for the test-standard set.
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3.2 Self-Critical Reasoning for VQA under Changing Prior

A critical aspect of a VQA system being trustworthy is to answer the question with correct

rationale. A number of recent VQA systems (Trott et al., 2018; Zhang et al., 2019; Selvaraju

et al., 2019; Qiao et al., 2018) learn to not only predict correct answers but also be “right

for the right reasons” (Ross et al., 2017; Selvaraju et al., 2019). These systems are trained

to encourage the network to focus on regions in the image that humans have somehow

annotated as important (which we will refer to as “important regions.”). However, many

times, the network also focuses on these important regions even when it produces a wrong

answer. Previous approaches do nothing to actively discourage this phenomenon, which we

have found occurs quite frequently.

For example, as shown in Figure 3.3, we ask the VQA system, “What is the man

eating?”. The baseline system predicts “hot dog” but focuses on the banana because hot dog

appears much more frequently in the training data. What’s worse, this error is hard to detect

when only analyzing the correct answer “banana” that has been successfully grounded in the

image.

Our self-critical approach prevents the most common answer from dominating

the correct answer. We first construct a proposal set of influential objects using textual

explanations. Then, we penalize the network for focusing on this region when its predicted

answer for this question is wrong. Figure 3.4 shows an overview of our approach. Besides

the UpDn VQA system (left top block), our approach contains two other components, we

first recognize and strengthen the most influential objects (left bottom block), and then we

criticize incorrect answers that are more highly ranked than the correct answer and try to

make them less sensitive to these key objects (right block). As recent research suggests

that gradient-based methods more faithfully represent a model’s decision making process

(Selvaraju et al., 2019; Zhang et al.; Wu et al., 2018; Jain and Wallace, 2019), we use a

modified GradCAM (Selvaraju et al., 2017) to compute the answer a’s sensitivity to the i-th

14



  

     Hot dog 
    (baseline) > Banana 

(self-critical) 
Hot dog 
(self-critical)

Human Visual 
    Attention

Banana 
(baseline) <

41 39

30

20

Pizza   Hot  Donut  Sand
           Dog             wich

13
12

4

2

Cake   Banana  No  burrito

Question: What is the man eating?                 Baseline Prediction: Hot Dog (wrong)                                           Our Prediction: Banana (correct)    

Test Answer 
Distribution

Training Answer 
    Distribution

(a) (g)(f)(e)(d)(c)(b)

Figure 3.3: Example of a common answer misleading the prediction even though the VQA
system has the right reasons for the correct answer. Figure (a) shows the important regions
extracted from human visual attention. Figure (b), (e) show the answers’ distribution for the
question “What is the man eating?” in the training and test dataset. Figure (c), (d) show
the most influential region for the prediction “hot dog” and “banana” using the baseline
UpDn VQA system and Figure (f), (g) show the influential region for the prediction “hot
dog” and “banana” using the VQA system after being trained with our self-critical objective.
The number on the bounding box shows the answer’s sensitivity to the object.

object features vi as shown in Eq. 3.4.2 The work is published as a conference paper at

NeurIPS 2019.

S(a, vi) :=
(
∇viP (a|V, q)

)T
1 (3.4)

3.2.1 Constructing Influential Object Set

Our approach ideally requires identifying important regions that a human considers most

critical in answering the question. However, directly obtaining such a clear set of influential

objects from either visual or textual explanations is hard, as the visual explanations also

highlight the neighbor objects around the most influential one, and grounding textual expla-

nations in images is still an active research field. We relax this requirement by identifying a
21 denotes a vector with all 1’s.
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What utensil is pictured? 

∇"𝑝(𝑓𝑜𝑟𝑘|𝑄,𝒱)

Influence 
Strengthen
Loss

OR

There is a fork 
near the cake.

Self Critical 
Loss

Answer 
Prediction

∇"𝑝(𝑘𝑛𝑖𝑓𝑒|𝑄, 𝒱)
Knife
(0.72)

Fork
(0.66)

Proposal object set

Explaining prediction “fork”

Explaining prediction “knife”

Extracting the most influential object

Visual feature set 𝒱Original image

Human visual explanation

Human textual explanation

The most influential object

Figure 3.4: Model overview. In the left top block, the base UpDn VQA system first detects
a set of objects and predicts an answer. We then analyze the correct answer’s sensitivity
(Fork) to the detected objects via visual explanation and extract the most influential one in
the proposal object set as the most influential object, further strengthened via the influence
strengthen loss (left bottom block). Finally, we analyze the competitive incorrect answers’
sensitivities (Knife) to the most influential object and criticize the sensitivity until the VQA
system answers the question correctly (right block). The number on a bounding box is the
answer’s sensitivity to the given object.

proposed set of influential objects I for each QA pair. This set may be noisy and contain

some irrelevant objects, but we assume that it includes the most relevant object. We explore

three different methods for constructing this proposal set, as described below:

Construction from Visual Explanations. Following HINT (Selvaraju et al., 2019), we use

the VQA-HAT dataset (Das et al., 2017) as the visual explanation source. HAT maps contain

a total of 59, 457 image-question pairs, corresponding to approximately 9% of the VQA-CP

training and test set. We also inherit HINT’s object scoring system that is based on the

normalized human attention map energy inside the proposal box relative to the normalized

energy outside the box. We score each detected object from the bottom-up attention and

build the potential object set by selecting the top |I| objects.

Construction from Textual Explanations. Recently, (Park et al., 2018) introduced a textual
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explanation dataset that annotates 32, 886 image-question pairs, corresponding to 5% of the

entire VQA-CP dataset. To extract the potential object set, we first assign part-of-speech

(POS) tags to each word in the explanation using the spaCy POS tagger (Honnibal and

Montani, 2017) and extract the nouns in the sentence. Then, we select the detected objects

whose cosine similarity between the Glove embeddings (Pennington et al., 2014) of their

category names, and any of the extracted nouns’ is greater than 0.6. Finally, we select the

|I| objects with the highest similarity.

Construction from Questions and Answers. Since the above explanations may not be

available in other datasets, we also consider a simple way to extract the proposal object set

from just the training QA pairs alone. The method is quite similar to the way we construct

the potential set from textual explanations. The only difference is that instead of parsing the

explanations, we parse the QA pairs and extract nouns from them.

3.2.2 Recognizing and Strengthening Influential Objects

Given a proposal object set I and the entire detected object set V , we identify the object

that the correct answer is most sensitive to and further strengthen its sensitivity. We first

introduce a sensitivity violation term SV(a, vi, vj) for answer a and the i-th and j-th object

features vi and vj as the amount of sensitivity that vj surpasses vi, as shown in Eq. 3.5.

SV(a, vi, vj) = max
(
S(a, vj)− S(a, vi), 0

)
(3.5)

Based on the assumption that the proposal set contains at least one influential object that

a human would use to infer the answer, we impose the constraint that the most sensitive

object in the proposal set should not be less sensitive than any object outside the proposal

set. Therefore, we introduce the influence strengthen loss Linfl in Eq. 3.6:

Linfl = min
vi∈I

( ∑
vj∈V\I

SV(agt, vi, vj)
)

(3.6)
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where the agt denotes the ground truth answer. The key differences between our influence

strengthen loss and the ranking-based HINT loss are that (1) we relax the unnecessary

constraint that the objects should follow the exact human ranking, and (2) it is easier to adapt

to different types of explanation (e.g. textual explanations) where such detailed rankings are

not available.

3.2.3 Criticizing Incorrect Dominant Answers

Next, for the incorrect answers ranked higher than the correct answer, we attempt to decrease

the sensitivity of the influential objects. For example, in VQA-CP, bedrooms are the most

common room type. Therefore, during testing, systems frequently incorrectly classify

bathrooms (rare in the training data) as bedrooms. Since humans identify a sink as an

influential object when identifying bathrooms, we want to decrease the influence of sinks on

concluding bedroom.

In order to address this issue, we design a self-critical objective to criticize the VQA

systems’ incorrect but competitive decisions based on the most influential object v∗ to which

the correct answer is most sensitive as defined in Eq. 3.7.

v∗ = arg min
vi∈I

( ∑
vj∈V\I

SV(agt, vi, vj)
)

(3.7)

Precisely, we extract a bucket of at most B predictions with higher confidence than the

correct answer B = {a1, a2, ..., a|B|} and utilize the proposed self-critical loss Lcrit to

directly minimize the weighted sensitivities of the answers in the bucket B to the selected

most influential object, as shown in Eq. 3.8.

Lcrit =
∑
a∈B

w(a)(S(a, v∗)− S(agt, v∗)) (3.8)

where agt denotes the ground truth answer. Because several answer candidates could be

similar (e.g. cow and cattle), we weight the sensitivity gaps in Eq. 3.8 by the cosine
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Expl. VQA-CP v2 test
All Yes/No Num Other

GVQA(Agrawal et al., 2018) 31.3 58.0 13.7 22.1
UpDn (Anderson et al., 2018) 39.7 42.7 11.9 46.1
UpDn+AttAlign (Selvaraju et al., 2019) 38.5 42.5 11.4 43.8
UpDn+AdvReg. (Ramakrishnan et al., 2018) 41.2 65.5 15.5 35.5
UpDn+SCR (ours) QA 48.47 70.41 10.42 47.29
UpDn+HINT (Selvaraju et al., 2019) HAT 47.7 70.0 10.7 46.3
UpDn+SCR (ours) HAT 49.17 71.55 10.72 47.49
UpDn+SCR (ours) VQA-X 49.45 72.36 10.93 48.02

Table 3.2: Comparison of the results on VQA-CP test dataset with the state-of-the-art
systems. The upper part includes VQA systems without human explanations during training,
and the VQA systems in the bottom part use either visual or textual human explanations.
The “Expl.” column shows the source of explanations for training the VQA systems. SCR is
the short hand for our self-critical reasoning approach.

distance between the answers’ 300-d Glove embeddings (Pennington et al., 2014), i.e.

w(a) = cosine dist(Glove(agt), Glove(a)). In the multi-word answer case, the Glove

embeddings of these answers are computed as the sum of the individual word’s Glove

embeddings.

3.2.4 Experimental Evaluation

Table 3.2 shows results on the VQA-CP dataset, comparing our results with the state-of-

the-art methods. VQA-CP (Agrawal et al., 2018) is a diagnostic reconfiguration of the

VQA v2 dataset where the distribution of the QA pairs in the training set is significantly

different from those in the test set. Most state-of-the-art VQA systems are found to highly

rely on language priors and experience a catastrophic performance drop on VQA-CP. We

evaluate our approach on VQA-CP in order to demonstrate that it generalizes better and is

less sensitive to distribution changes.

Our system significantly outperforms other state-of-the-art systems (e.g., HINT (Sel-

varaju et al., 2019)) by 1.5% on the overall score for VQA-CP when using the same human
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visual explanations (VQA-HAT), which indicates the effectiveness of directly criticizing

the competitive answers’ sensitivity to the most influential objects. Moreover, using human

textual explanations as supervision is even a bit more effective. With only about half the

number of explanations compared to VQA-HAT, these textual explanations improve VQA

performance by an additional 0.3% on the overall score, achieving a new state-of-the-art of

49.5%.

Without human explanations, our approach that only uses the QA proposal object set

as supervision clearly outperforms all of the previous approaches, even those that use human

explanations. We further analyzed the quality of the influential object proposal sets extracted

from the QA pairs by comparing them to those from the corresponding human explanations.

On average, the QA proposal sets contain 57.1% and 54.3% of the objects in the VQA-X and

VQA-HAT proposal object sets, respectively, indicating a significant but not perfect overlap.

Note that our self-critical objective remarkably improves VQA performance in the

’Yes/No’ and ’Other’ question categories; however, it does not do as well in the ’Num’

category. This is understandable because counting problems are generally more challenging

than the other two types and require the VQA system to consider all of the objects jointly.

Therefore, criticizing only the most sensitive ones does not improve the performance.
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3.3 Competing Explanations for VQA

Candidate 1:  No     VQA confidence: 0.88
Sample Retrieved Explanations: 
1. The train looks European as well as the railings and 
surrounding area.
2. The wording on the train is in English.
3. 4…. 8…
Verification score: 0.17
Final Confidence: 0.15

Question:  Is this in an Asian country?
Human Explanation: The information provided on the 
train’s marquee is comprised of Asian characters.

Candidate 2:  Yes    VQA Confidence: 0.79 
Sample Retrieved Explanations: 
1. It does not look like a standard American train.
2. The signs are all in Japanese.
3. 4…. 8…
Verification score: 0.97
Final confidence: 0.77

Figure 3.5: An example of utilizing retrieved
explanations to correct the original VQA pre-
diction. Though the original VQA confidence
of the correct answer “Yes” is lower than that
of the incorrect answer “No”, the retrieved
explanations for “Yes” support their answer
better, resulting in a higher verification score
and a final correct decision.

Most state-of-the-art VQA systems (Ander-

son et al., 2018; Kim et al., 2018; Ben-

Younes et al., 2017; Jiang et al., 2018; Ca-

dene et al., 2019; Lu et al., 2019; Liu et al.,

2019; Tan and Bansal, 2019) are trained to

fit the answer distribution using question

and visual features and achieve high perfor-

mance on simple visual questions. However,

these systems often exhibit poor explanatory

capabilities and take shortcuts by only focus-

ing on simple visual concepts or question

priors instead of finding the right answer

for the right reasons (Ross et al., 2017; Sel-

varaju et al., 2019). This problem becomes

increasingly severe when the questions re-

quire more complex reasoning and common-

sense knowledge.

For more complex questions, VQA

systems need to be right for the right rea-

sons in order to generalize well to test prob-

lems. Textual explanations encode richer

information such as detailed attributes, relationships, or commonsense knowledge that is not

necessarily directly found in the image. Therefore, we adopt textual explanations to guide

VQA systems. In particular, our approach considers explanations for multiple competing

answers, comparing these explanations when choosing a final answer, as shown in Figure

3.3.
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As shown in Figure 3.6, after the base VQA system computes the top-k answers, our

approach retrieves the most supportive explanations for each answer from the training set

to construct the set of competing explanations. Then, these explanations are used to help

generate explanations for the current question. Next, we learn to predict verification scores

that indicate how well the retrieved or generated explanations support the predictions given

the input question and visual content. The final answer is determined by jointly considering

the original answer probabilities and these verification scores. The work is published as a

workshop paper at AAAI 2020.

3.3.1 VQA Module and Candidate Answers Generation

Many recent VQA systems (Fukui et al., 2016; Ben-Younes et al., 2017; Ramakrishnan

et al., 2018) utilize a trainable top-down attention mechanism over convolutional features

to recognize relevant image regions. These systems first extract a visual feature set V =

{vi, ..., v|V|} for each image whose element vi is a feature vector for the i-th detected object.

On the language side, UpDn systems sequentially encode each question Q to produce a

question vector q. Let f denote the answer prediction operator that takes both visual features

and question features as input and predicts the confidence for each answer a in the answer

candidate set A, i.e. P (a|V, Q) = f(V,q). The VQA task is framed as a multi-label

regression problem with the gold-standard soft scores as targets in order to be consistent with

the evaluation metric. Finally, binary cross-entropy loss with soft score is used to supervise

the sigmoid-normalized outputs.

We briefly introduce two variants of this approach adopted in our experiments:

UpDn. This is the original UpDn system, which uses a single layer GRU to encode questions.

The question vector is then used to compute single-stage attention over the detected objects

to produce attended visual features. Finally, a two-layer feed-forward network computes

answer probabilities given the joint features of the question and visual content.

LXMERT. In order to learn richer representations for both questions and visual content,
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Answer 
Prediction

No
(0.88)

Yes
(0.79)

VQA
Encoder

Question:  Is this in an 
Asian country? 𝒒 𝒗 𝒂

…
…

OR

Retrieved Explanation Set :
1. It does not look like a standard American train.
2. The signs are all in Japanese.
3. 4. ….8…

Explanation 
System

Generated Explanation Set :
1. The signs are typical with Japanese. 
2. All the signs are displayed in an Japanese city.
3. 4. ….8…

𝒒 𝒗 𝒂

Verification 
System

𝒒 𝒗

Verifying Answer “Yes”

𝒂

Verifying Answer “No”

Yes
(0.77)

No
(0.15)

(0.97)

(0.17)

Figure 3.6: Our approach first predicts a set of answer candidates and retrieves explanations
for each based on the answer, question, and visual content. These explanations are then used
to generate improved explanations. Finally, either retrieved or generated explanations are
employed to predict verification scores that are used to reweight the original predictions and
compute the final answer.

LXMERT (Tan and Bansal, 2019) uses transformers (Vaswani et al., 2017; Devlin et al.,

2019) that learn multiple layers of attention over the input. In particular, it first learns 9

layers over the input question and 5 layers over detected objects, then finally learn another 5

layers of attention across the two modalities to produce the final joint representation.

3.3.2 Collecting Explanations for Candidate Answers

Retrieving Explanations This section presents our approach to retrieving the most support-

ive human textual explanation from the training set for each answer candidate. Ideally, we

would dynamically retrieve explanations for each answer at each iteration. However, this

would be very computational costly because the question and visual features have to be

computed for each image from the training set. Therefore, we adopt the below relaxation for

computational efficiency that only needs to compute the features once.

In particular, we first pretrain the VQA system, and extract the question and visual

embeddings, q and v , for each QV pair in the training set. For UpDn, we use the attended vi-

sual features and the question GRU’s last hidden state as the visual and question embeddings.

For LXMERT, we use the last cross-modal attention layer’s visual and question output as the
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embeddings.

Then, for each QV pair, we only compute the top-10 answer candidates since the top-

10 answers together achieve high recall. After that, for each answer candidate a, we extract

explanations from the training set that have the same ground truth answer 3 as the current

candidate. We then sort these explanations by the L2 distance between the explanations’ QV

embeddings, q� v, and the example’s and pick the closest 8 explanations as the competing

explanations set denoted as Xa.

Generating Explanations Next, the retrieved explanations for similar VQA examples from

the training set are used to help generate even better explanations.

We adopt the explainer from (Wu and Mooney, 2019a), a two-layer LSTM network

similar to the UpDn captioner (Anderson et al., 2018), as our baseline. Since the current

VQA systems are built upon detected objects, we use them as visual inputs instead of

segmentations.

The baseline explainer first computes a set of question-attended visual features, U ,

and an average pooled version, ū. The explainer then uses ū and U together with question

and answer embeddings as inputs to produce explanations.

Our approach simply replaces the average pooled question-attended visual features ū

with the retrieved explanations’ features, x. We use a single-layer GRU to encode all of the

retrieved explanations for the correct answer, and then max pool the last hidden states among

these explanations to compute x. We sample 8 explanations for each answer candidate to

construct the generated explanation set.

3.3.3 Learning and Utilizing Verification Scores

A verification system is trained to score how well a generated or retrieved explanation

supports a corresponding answer candidate given the question and visual content. The

verification system takes four inputs: the visual, question, answer and its explanation features;
3More specifically, the soft score of the answer candidate in the retrieved explanation’s example is over 0.6

24



and outputs the verification score, i.e. S(Q,V, a, x) = σ(f2(f(q), f(v), f(a), f(φ(x))).

where a is the one-hot embedding of the answer, and φ(x) is the feature vector for the

explanation, x, encoded using a GRU (Cho et al., 2014), φ. We use fn to denote n consecutive

feed-forward layers (for simplicity n is omitted when n = 1). We use σ to denote the sigmoid

function. The verification system is similar to the answer predictor in architecture except for

the number of outputs.

Given the VQA examples with their explanations in the VQA-X dataset, we use

binary cross-entropy loss Lm to maximize the verification score for the matching human

explanations, i.e. Lm = − log(S(Q,V, a, x)).

Intuitively, we want the verification score S to be high only when the explanation is

matched to the VQA example, i.e. replacement of any of the four input sources should lower

the score. Therefore, we designed the five kinds of replacements below for constructing

negative examples. Specifically, we replace visual, question, answer, explanation and

answer-explanation pairs once a time, producing five losses i.e.

Lqr = − log(1− S(Q′,V, a, x)) (3.9)

Lvr = − log(1− S(Q,V ′, a, x)) (3.10)

Lar = Ea′∼p(a′|QV ), s(a′)<0.6[− log(1− S(Q,V, a′, x))] (3.11)

Lar = max
x′∈Xa′

[− log(1− S(Q,V, a, x′))] (3.12)

Laxr = − log( max
x′∈Xa′

(1− S(Q,V, a′, x′))) (3.13)

Finally, the total verification loss is the sum of the aforementioned 6 losses as shown in Eq.

3.14:

Lverification = λLm + Lqr + Lvr + Lar + Lxr + Laxr (3.14)

Since we have more negative examples (5 ways to form negative examples) and only one

25



positive example, we assign a larger loss weight (i.e. λ = 10) for the only positive example.

Using Verification Scores The original VQA system provides the answer probabilities

conditioned on the question and visual content, i.e. P (a|Q,V). The verification scores

S(Q,V, a, x) are further used to reweight the original VQA predictions so that the final

predictions P̃ (a|Q,V), shown in Eq. 3.15, can take the explanations into account.

P̃ (a|Q,V) = P (a|Q,V) max
x∈Xa

S(Q,V, a, x) (3.15)

where Xa denotes the generated or retrieved explanation set for the answer a.

Since we try to select the correct answer with its explanation, the prediction P̃ (a|Q,V)

should only be high when the answer a is correct and the explanation x supports a, which is

enforced using the loss in Eq. 3.16:

Lvqae = − log(P (a|Q,V)S(Q,V, a, xa))− log(1− P̃ (a′|Q,V)) (3.16)

where xa denotes the human explanation for the answer a.

During testing, we first extract the top 10 answer candidates A, and then select the

explanation for the answer candidate with the highest verification score. Then, we compute

the explanation-reweighted score for each answer candidate to determine the final answer

a? = arg maxa∈A P̃ (a|Q,V).

3.3.4 Experimental Evaluation

Table 3.3 reports the results of our competing explanation approach in VQA v2 and VQA-X

dataset. VQA-X datasets contains visual questions that require humans to be of age 9 or

higher and are believed to require more commonsense knowledge. Our approach combined

with UpDn pretrained on the entire VQA v2 dataset achieves the best results. When training

only on the VQA-X training set, we improve the original UpDn and LXMERT by 4.5 % and

1.2 %, respectively. UpDn benefits more from using competing explanations than LXMERT,
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VQA-X Pretrain VQA v2 Pretrain
Gen. Expl. Ret. Expl. Gen. Expl. Ret. Expl.

UpDn (Anderson et al., 2018) 74.2 74.2 83.6 83.6
UpDn+E (ours) 78.0 78.7 85.1 85.4
LXMERT (Tan and Bansal, 2019) 76.8 76.8 83.7 83.7
LXMERT+E (ours) 77.3 78.0 84.1 84.7

Table 3.3: Question answering accuracy on VQA-X using both UpDn and LXMERT as a
base system,“+E” denotes using our competing explanations approach. “Gen. Expl.” and
“Ret. Expl.” denote using generated and retrieved explanations, respectively.

but both improve. By using transformers, LXMERT already creates better but less flexible

representations, which are harder to improve upon by using explanations. Because we do not

use the official LXMERT model parameters pretrained on multiple large datasets (VQA-X

test set is used as the training set for the official released model) and only train the LXMERT

on the VQA v2 dataset, the performance of LXMERT is not better than UpDn.
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3.4 Multi-Modal Answer Validation for Knowledge-Based VQA

Q: Is this a healthy dish?

• Forrest gump, named after general 
Nathan Bedford Forrest, narrates the 
story of his life.

• Gump is portrayed as viewing the …

Wikipedia facts

• Vegetarian food 

ConceptNet relations

• Eating vegetables
• Beans

HasProperty

HasProperty
RelatedTo

Healthy
Healthy
Healthy

Q: Which movie featured a 
man in this position telling 
his life story to strangers?

Q: What breed of dog is
the dog in this photo?

Image knowledge

Ours: Yes

Ours: Forrest Gump

Ours: Golden retriever

Baseline: Cloth

Baseline: No

Baseline: Shepherd

Figure 3.7: We address the problem of knowledge-based question answering. Retrieving
relevant knowledge among diverse knowledge sources (visual knowledge, textual facts,
concepts, etc.) is quite challenging. The goal in this paper is to learn what knowledge
source should be used for a particular question and how to validate a set of potential answer
candidates using that source.

Over the past few years, the domain of Visual Question Answering (VQA) has

witnessed significant progress (Antol et al., 2015; Zhu et al., 2016; Hudson and Manning,

2019; Singh et al., 2019). There is a recent trend towards knowledge-based VQA (Marino

et al., 2019) which requires information beyond the content of the images. To correctly

answer those challenging questions, the model requires not only the ability of visual recog-

nition, but also logical reasoning and incorporating external knowledge about the world.

These knowledge facts can be obtained from various sources, such as image search engines,

encyclopedia articles, and knowledge bases about common concepts and their relations.

Figure 3.7 illustrates a few visual questions and the knowledge from different external

sources required to answer them. Each question needs a different type of external knowledge.

For example, to identify the movie that featured a man telling his life story to strangers, we

need to link the image content and question to some textual facts (blue box in the figure);

Vegetarian food and eating vegetables is related to the concept of health (green box); and

28



What English city is famous 
for a tournament for the 
sport this man is playing?

The modern game of tennis originated in Birmingham, England, in the late 
19th century as lawn tennis.

It is popular for sports fixtures and hosts several annual events including a
free opera concert at the opening of the opera season, other open-air
concerts, carnival and labour day celebrations, and the Copenhagen historic
grand prix, a race for antique cars.

Wimbledon is notable for the longest running sponsorship in sports history
due to its association with slazenger who have supplied all tennis balls for the
tournament since 1902.

Question +   
Image

Question +
Image +
Incorrect Answer
(Copenhagen)

Question +
Image +
Correct Answer
(Wimbledon)

Figure 3.8: Examples of retrieved Wikipedia sentences using different sets of search words.
The sentences retrieved using only the words in questions and objects in images (top) and the
wrong answer (middle) are hardly helpful to answer the question. However, with the correct
answer “Wimbledon” (bottom), the quality of the retrieved fact is significantly improved.

the retrieved images for ‘golden retriever’ (yellow box) are visually similar to the dog in

the question image. The challenge is to effectively retrieve and correctly incorporate such

external knowledge in an open domain question answering framework.

However, knowledge retrieved directly for the question and image is often noisy

and not useful for predicting the correct answer. For example, as shown in Figure 3.8, the

sentences retrieved using only the words in questions and objects in images (top) or a wrong

answer (middle) are hardly helpful to answer the question. This increases the burden on the

answer predictor, leading to only marginal improvements from the use of retrieved knowledge

(Marino et al., 2019). Interestingly, with the correct answer “Wimbledon” (bottom), the

quality of the retrieved fact is significantly improved, making it useful to answer the question.

This observation motivates us to use retrieved knowledge for answer validation rather than

for producing the answer.

To address this challenge, we propose a new framework called MAVEx or Multi-

modal Answer Validation using External knowledge. The key intuition behind MAVEx is

that verifying the validity of an answer candidate using retrieved knowledge is more reliable

compared to open knowledge search for finding the answer. Therefore, we learn a model

to evaluate the validity of each answer candidate according to the retrieved facts. For this

approach to work, we need a small set of answer candidates to start with. We observe that

while state-of-the-art VQA models struggle with knowledge-based QA, these models are

surprisingly effective at generating a small list of candidates that often contains the correct
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Noun Chunks (S1-a)

Phrase 1:

Phrase 2: 

Object Linking (S1-b)

Phrase 1: 

Phrase 2: 

Annotations (S1-c)

Phrase 1: 

Phrase 2: 

- board (tagging)
- coca cola (brand)

- stop sign (tagging)
- stop (OCR)
- coca cola (brand)

Search Words 

- Board
- Coca Cola
- Stop sign
- Stop
- Cola brand
- Signs
- Found
- ...
- 1892

Wikipedia Sentences (S3-a)

ConceptNet Concepts (S3-b)

Images (S3-c)

In 1892, Candler set out to incorporate a second company; "The 
Coca-Cola Company" (the current corporation) …

<Cola, RelatedTo, Limonade>, <diet coke, RelatedTo, cola> 
<Coca Cola, IsA, Coke>, <water, RelatedTo, Cola> …

Statement: The cola brand on the 
signs was founded in 1892.

Conversion to Statement (S2)

Question: When was the cola 
brand on the signs founded?   
Answer: 1892

cola brand

signs

𝑆!"

𝑊!#
…

Figure 3.9: An example of the retrieval process for one question-answer pair.

answer. Using these candidates to guide knowledge search makes retrieved facts less noisy

and often more pertinent to the question, as shown in Figure 3.8.

3.4.1 Multi-Modal Knowledge Retrieval

Answer Candidate Generation. In order to use answer candidates to inform knowledge

retrieval, we use ViLBERT (Lu et al., 2019), a state-of-the-art VQA model, to generate

answer candidates. Note that any VQA model can be used for this purpose. As discussed

in the experiments section, we found ViLBERT to be particularly effective at generating a

small set of promising candidates.

Given a question q about an image I and an answer candidate a from a set of possible

answers, we retrieve external knowledge in support of a in three main steps. Figure 3.9

shows the entire process for an example question and a candidate answer.

S1: Answer-Agnostic Search Word Extraction. We first generate short phrases in q and

concepts represented in I as a starting point for retrieving external information. This involves

the following sub-steps:

Extract Noun Chunks from q: We parse the question using a constituency parser to
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compute the parse tree. Then, we extract all the nouns on the leaves of the parse tree together

with the words that describe the nouns and belong to one of the types from ‘ADJP’, ‘ADVP’,

‘PP’, ‘SBAR’, ‘DT’ or ‘JJ’. Those words help us to link the mentioned objects to the images.

We use AllenNLP (Gardner et al., 2018) constituency parser. See Figure 3.9 (S1-a).

Link Nouns to Objects: As images usually contain plenty of question-irrelevant

contents, making the retrieval process hard to operate, we propose to narrow down the search

field to the objects referred to by the question. In particular, we use ViLBERT-multi-task

(Lu et al., 2020b) as the object linker, where it outputs scores given the noun phrases from

the questions. We approve the linking when the linker’s score is higher than 0.5 and extract

the linked objects.

Annotate Objects: We automatically provide the category labels, OCR readings and

logo information for the linked objects using Google APIs to enrich the retrieved knowledge.

See Figure 3.9 (S1-c).

The set of answer-agnostic search words, Wqv, consists of all of noun chunks and

verbs in q, OCR, tagging (detection), and logo annotation of the referred objects, if any.

S2: Conversion to a Natural Language Statement. In order to use the answer candidate

a to inform the retrieval step, we convert q and a into a natural language statement Sqa

using a rule-based approach (Demszky et al., 2018). Such conversion has been found to be

effective as statements occur much more frequently than questions in textual knowledge

sources (Khot et al., 2017).

S3: Answer Candidate Guided Retrieval. We now use the search words Wqv from step

S1, along with the answer candidate a and the statement Sqa from step S2, to retrieve relevant

information as follows:

Retrieval of textual facts: We query each search word w ∈ Wqv and collect all

sentences from the retrieved Wikipedia articles.4 For each answer candidate a, we first

collect answer-specific sentences that contain a (ignoring stop words and yes/no). Then we
4We use the python API https://github.com/goldsmith/Wikipedia.
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rank those sentences based on the BERTScore (Zhang et al., 2020) between the statement

Sqa and the sentences. We then encode each of the top kwsp sentences using a pre-trained

BERT (Devlin et al., 2019) model and extract the final layer representation of the [CLS]

token. This results in an answer-specific (denoted sp) feature matrix Kw
sp(a) ∈ Rkwsp×768 for

each question-answer pair. We also store the retrieved sentences and their corresponding

BERTScores for all answer candidates. We then choose the top kwag non-repeated sentences

according to the stored scores as the answer-agnostic knowledge. Those sentences are also

encoded using pre-trained BERT, resulting in an answer-agnostic (denoted ag) feature matrix

Kw
ag ∈ Rkwag×768 for each question.

Retrieval of concepts: While Wikipedia articles provide factual knowledge that

people need to look up when they answer a question, ConceptNet offers structured knowledge

of concepts. Similar to Wikipedia article retrieval, we also query each search word in Wqv

and collect all retrieved concepts. For each answer candidate a, we extract the concepts

whose subject, relation, or object contains the candidate a, and push all retrieved concepts to

the answer-agnostic concept pool. We rank those extracted concepts based on the maximum

cosine similarity between the Glove embedding (Pennington et al., 2014) of the words in

Wqv and those in the concept, and select the top kcsp concepts as answer-specific knowledge.

We also select the top kcag concepts similarly from the answer-agnostic concept pool. The

subjects, relations, and objects in the selected concepts are first converted into a sentence by

handcrafted rules, and then encoded using pre-trained BERT model. Finally, the last layers’

representation vectors are concatenated, resulting in a feature matrix Kc
sp(a) ∈ Rkcsp×768 for

each question-answer pair, and a feature matrix Kc
ag ∈ Rkcag×768 for each question.

Retrieval of visual knowledge: Pure textual knowledge is often insufficient due to

two main reasons: (1) textual knowledge might be too general and not specific to the question

image, (2) it might be hard to describe some concepts using text, and an image might be

more informative. Hence, visual knowledge can complement textual information, further

enriching the outside knowledge feature space. We use Google image search to retrieve
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the top ki images using the statement Sqa as the query. The images are then fed into a

MaskRCNN (He et al., 2017) finetuned on the Visual Genome dataset (Zhu et al., 2016)

to extract at most 100 object features. We average the object features of visual detection

results as the answer-specific visual knowledge representation, resulting in a feature matrix

Ki
sp(a) ∈ Rkisp×768 for each question-answer pair. For answer-agnostic knowledge, we

simply use the zero vector.

3.4.2 VQA Module

We use cross-modal attention (Yu et al., 2019b) in the knowledge embedding module, which

treats the question-image embedding as a query to mine supportive knowledge from each

source.

We first briefly introduce the Self-Attention (SA) and Guided-Attention (GA)

units5 as the building blocks. The SA unit takes as input a group of feature vectors

X = [x1; ...;xm] ∈ Rm×d and learns the pairwise relationship between each sample pair

within X using a multi-head attention layer by treating all possible combinations of xi and

xj as queries and keys. Different from SA, the GA unit uses another group of features

Y = [y1; ...; yn] ∈ Rn×d to guide the attention learning in X. In particular, the GA unit

learns the pairwise relationship between each pair across X and Y and treats each yi as query

and each xi as keys. The values of the keys are weighted summed to produce an attended

output features T ∈ Rm×d for both SA and GA. Finally, a feed-forward layer with residual

links is built upon T to transform the output features to a new features space.

Given an image and the corresponding question, we first use ViLBERT to extract

visual features v ∈ R1024 and question features q ∈ R1024 from the last layer of ViLBERT’s

[IMG] and [CLS] tokens, respectively. We then compute a joint feature U by element-wise

multiplication of q and v. U is used as a query to mine answer-agnostic features zjag. U and

the BERT embeddings of the answer candidates are used to mine answer-specific features
5Please refer to (Yu et al., 2019b) for detailed model architectures.
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Figure 3.10: Model overview for validating two candidate answers. We explore three sources
of external knowledge, i.e. Wikipedia, ConceptNet, and Google Images presented by the
three parallel knowledge embedding modules. The grey blocks denote answer-agnostic
features shared by all answer candidates and the green blocks denote answer-specific features.

zjsp(a, a′) for the answer candidate a from each one of the three knowledge sources j as

described in Eqs. (3.17) and (3.18):

zjag = GA(SA(U),SA(Kj
ag)) (3.17)

zjsp(a, a
′) = zjag � GA(SA(BERT(a)),SA(Kj

sp(a
′))) (3.18)

where a and a′ are two answer candidates and the index j denotes one of the knowledge

sources (Wikipedia w, ConceptNet c, or Google images i). Specifically, the answer-specific

features zjsp(a, a′) encode the joint features of a and the knowledge retrieved using a′, and

are further used to predict how well the knowledge retrieved by a′ supports a.

3.4.3 Answer Validation Module

The validation module uses the attended knowledge features zjsp and zjag from the three

sources to validate the answer candidates. Our approach lets each knowledge source predict

its own supportiveness score. The goal of this setting is to prevent misleading knowledge
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Method Knowledge Resources Performance
ArticleNet (AN) (Marino et al., 2019) Wikipedia 5.3
Q-only (Marino et al., 2019) — 14.9
MLP (Marino et al., 2019) — 20.7
BAN (Kim et al., 2018) — 25.2

+ AN (Marino et al., 2019) Wikipedia 25.6
+ KG-AUG (Li et al., 2020b) Wikipedia + ConceptNet 26.7

MUTAN (Ben-Younes et al., 2017) — 26.4
+ AN (Marino et al., 2019) Wikipedia 27.8

Mucko (Zhu et al., 2020) Dense Caption 29.2
KRISP (Marino et al., 2021) Wikipedia + ConceptNet 32.3
ConceptBert (Gardères et al., 2020) ConceptNet 33.7
ViLBERT (Lu et al., 2019) — 35.2
MAVEx (ours) – w/o answer validation Wikipedia + ConceptNet + Google Images 37.6
MAVEx (ours) Wikipedia + ConceptNet + Google Images 38.7
MAVEx (ours) (Ensemble 5) Wikipedia + ConceptNet + Google Images 39.4

Table 3.4: MAVEx outperforms current state-of-the-art approaches on the OK-VQA dataset.
The middle column lists the external knowledge sources, if any, used in each VQA system.

from contaminating valid knowledge from other sources. In particular, we compute the

supportiveness score J j for each source as J j(a, a′) = FFN(zjsp(a, a′)), where FFN denotes

a feed-forward layer. Then, the final score is computed by taking the maximum support score

across the three sources as J(a, a′) = maxj {J j(a, a′)}, where j ∈ {w, c, i} denotes the

source index. We use the answer-agnostic features to predict single source VQA scores P j

for all answers in the set as P j = FFN(zjag), and the final VQA score P is computed as

P = maxj{P j}. The overall architecture of the model is shown in Figure 3.10.

3.4.4 Experimental Evaluation

We present results on OK-VQA dataset (Marino et al., 2019) that contains 14055 questions

manually selected that require knowledge beyond the image. Table 3.4 shows that MAVEx

consistently outperforms prior approaches by a clear margin. For example, MAVEx outper-

forms recent state-of-the-art models Mucko (Zhu et al., 2020), KRISP (Marino et al., 2021),

and ConceptBert (Gardères et al., 2020) by 9.5, 6.4, 5.0 points, respectively. Our approach

also outperforms ViLBERT (Lu et al., 2019) base system by 3.5 points. We consider a
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MAVEx baseline model that uses the retrieved knowledge (Kj
ag) as additional inputs without

answer validation. This model achieves 37.6 overall scores, 2.4% higher than the ViLBERT

model and 1.1% lower than the late fusion model, indicating that using answer-guided

retrieved knowledge is helpful and answer validation further improves the performance. An

ensemble of 5 MAVEx late fusion models with different initializations improves the results

to 39.4.
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Chapter 4

Proposed Work

We present the proposed work for both short-term research that will be completed for the

final thesis and long-term research that aims at more ambitious goals and may not be included

in the dissertation.

4.1 Short Term Proposals

The short-term goals involve breaking down visual questions and generating a customized

set of answer candidates for visual questions.

4.1.1 Breaking Down Visual Questions

Solving real-world visual questions that cover a wide range of real-world topics could

require multiple steps of reasoning. Therefore, the ability of VQA systems to understand

each step in the question and link them to relevant knowledge sources is crucial. Our

completed work mainly focuses on the visual and knowledge representation side, aiming

to train the VQA systems to focus on the right objects and provide sufficient outside

knowledge to answer the questions. However, since VQA systems take as inputs from

multiple modalities, the information across more modalities has to be properly utilized
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General VQA:
Q: What color is the bowl?
A: White

KB-VQA:
Q: the vegetable that garnishes this dish 
is nutritious for what human body part?
A: Eye

General VQA
Q:What sport is being played??
A:  Tennis

KB-VQA
Q: What other surfaces might this sport 
be played on?
A: Clay

Figure 4.1: Examples of general and knowledge-based (KB) visual questions. The question
and answer segments that focus on visual content within the image are highlighted in red,
and the segments that requires external knowledge are highlighted in blue.

jointly by VQA systems to achieve good performance. This introduces significant challenges

that knowledge representations can vary significantly across different knowledge sources,

including factual sentences (Wu et al., 2021; Marino et al., 2019), knowledge triples (Wang

et al., 2017), concepts (Gardères et al., 2020) and images (Wu et al., 2021). More importantly,

a system needs to understand which knowledge is useful for different semantic segments of

the question.

As shown in Fig. 4.1, KB-VQA systems need to link the segment “the vegetable that

garnishes this dish” to the carrot on the plate and then query knowledge bases to find out

which “human body part” particularly benefits from the nutrients in carrots. Simply encoding

the entire question for either retrieving or filtering the knowledge, as most KB-VQA systems

(Wang et al., 2017; Marino et al., 2019; Zhu et al., 2020; Li et al., 2020b; Marino et al., 2021;

Wu et al., 2021) do, can be confusing since different parts of the question focus on different

aspects that can be either outside or inside the image. As depicted in Fig. 4.1, searching for

“human body part” and “other surfaces” within the image may cause VQA systems to focus

on irrelevant aspects of the image.

We propose to segment visual questions into several semantic chunks to address

this issue, assuming that each chunk focuses on a single aspect. Those segments serve as

semantic units and are used to retrieve knowledge from various sources. Then, a Graph

Neural Network (Veličković et al., 2018) is constructed, which assembles the retrieved

knowledge to predict the answer.
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What us island is this activity 
most associated with?

Top-5 predictions: beach, 
surfboard, surf, california,
 usa.

What terrorist group is linked to
 9 11 attacks using this vehicle?

Top-5 predictions: bear, ww2, 
wright, friend, wright brother

Is that a panda or a cat?

Top-5 predictions: domestic, 
domestic shorthair, calico, 
feline, bombay

Figure 4.2: Examples where the correct answer is not in the top-5 predictions from a
ViLBERT model.

4.1.2 Learning-based Answer Candidate Generator

Most high-performing systems frame the VQA task as an answer classification problem,

where the answers are collected from all possible candidates in the training set. For general

visual questions, with a tremendous amount of training data, those answers cover most of

the cases in the test set as most answers are relatively simple and common.

However, this framework has a few drawbacks. First, using all the potential answers

fails to explore the ontology of the key queried objects sufficiently. For example, as shown

in the left of Figure 4.2, the questions asked about “US islands”; however, none of the top

predictions is an actual US island. Second, using the same set of answer candidates for all

visual questions leads to ignorance of the questions’ linguistic features. As shown in the

middle example in Figure 4.2, if the question is an alternative question, the answer should

be in the question. Though the top predictions indicate that the VQA system understands

the content of the question and does reasonable visual recognition, the linguistic features

are ignored. Third, VQA systems should read and comprehend the retrieved knowledge

to infer the answer that might have never been seen before. For example, as shown in the

right of Figure 4.2, “Al-Qaeda” never appears in the training set; however, knowledge-based
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VQA systems can infer the answer from the retrieved Wikipedia sentence “The September

11 attacks, often referred to as 9/11, were a series of four coordinated terrorist attacks by

the Wahhabi Islamist terrorist group al-Qaeda against the United States on the morning of

Tuesday, September 11, 2001.”. Besides, as the answer candidates are fixed, it is hard for

the systems to absorb more training data in an online learning fashion. For each batch of

new data, the systems do not know whether the new answers should be kept or not. This

prevents VQA systems from serving as continuously improving tools that are essential for

lots of daily applications. The issue becomes more problematic for the knowledge-based

visual questions that require different domain expertise.

There is a recent trend to verify the potential answer candidates(Wu et al., 2020; Si

et al., 2021; Wu et al., 2021). During verification, the model can utilize more answer-specific

knowledge, such as explanations and retrieved Wikipedia sentences. As the verification

process is computationally costly, it is not possible to verify every answer. Instead, most

papers choose the top-K answers from a baseline model for simplification. Building a better

answer candidate set would be helpful for all of these types of VQA systems.

We propose to use a learning-based approach to generate a set of answer candidates.

We will explore the idea of first converting visual questions to a set of possible textual

questions and then using a textual QA or reading comprehension module to generate the

answer candidate set according to the converted questions. While collecting multi-modal

annotations is hard, there are more data available in textual QA domains (Yang et al., 2015),

potentially leading to a better set of generated answer candidates. Technically, we first break

down the visual question and extract a set of noun chunks; then, we define a possible set

of replacements for each noun chunk, including the nucleus noun and the common object

labels with attributes of the top referenced objects. The set of possible textual questions

P are formed by traversing all of the combinations of the replacements for those extracted

noun chunks. Then, we train a model to rank those converted questions based on whether

the conversion would help generate the correct answer given the document. In particular,
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Q: How is this form of 
transportation powered?

Q: On what type of fuel source do 
these vehicles run on?

Sample Knowledge for electricity:
In parallel to the development of the bus 
was the invention of the electric trolleybus, 
typically fed through trolley poles by 
overhead wires

Sample Knowledge for diesel :
The most common power source for bus 
since the 1920s has been the diesel engine.

Figure 4.3: Examples of different factual knowledge retrieved for different answers for
visually similar objects.

a binary classifier, taking as inputs the converted question and the visual representation of

the image, will be used to output the score. We will employ a triplet loss to train the model

where the positive examples are the conversion that leads to correct answers, and the negative

examples are constructed by randomly replacing the noun chunks with objects in the image.

We also finetune the textual QA system that takes the positive conversion as inputs. As the

goal is to generate candidates instead of directly predicting the correct answer, we sample

multiple conversions and merged the generated answers during inference.

4.2 Long Term Proposals

4.2.1 Verifying Retrieved Knowledge

Our completed work explores various textual resources to improve VQA performance,

including image captions, justifications, factual statements, concept sentences, etc. However,

most of those resources are not guaranteed to provide supportive evidence for solving the

visual questions. Though human justifications reveal the desired underlying reasoning

process, they are much more expensive to collect, especially when the questions are domain-

specific and require human expertise. Image captioning suffers from object hallucination

(Rohrbach et al., 2018) issues that could involve objects that do not appear in the image.
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General knowledge retrieved from the Internet may contain fake information. Though

factual statements and concepts from certified resources are valid in their respects, they

may not be relevant to solving the visual questions due to the two-step retrieval-prediction

process. In some worse cases, they can also mislead the VQA systems because the tiny

visual difference often ignored in the retrieval process can lead to a significant difference in

the factual statement, as shown in Figure 4.3.

While it is important for the VQA systems to access various types of resources

for knowledge acquisition, the appropriateness of the retrieved knowledge for the specific

visual question plays a crucial role in how likely the knowledge could help improve the

performance. Therefore, we propose to ground the knowledge sentences in the image to

verify the existence of the prerequisites of utilizing them in the VQA system. We would

like first to chunk each sentence to a set of attribute phrases (Hendricks et al., 2018) as a

checklist. Then, we compute a score for each item from the checklist to represent how likely

the required feature is in the given image. Finally, this score is fed to the VQA system so

that the system could decide whether use the knowledge sentence or not.

4.2.2 Explainable VQA systems

VQA systems’ ability to explain their reasoning is critical to their utility. The opacity nature

of recent high-performing learning-based VQA models hinders the users from trusting the

model predictions as a final decision.

Texts not only provide additional information to answer visual questions better, but

they also reveal a more interpretable nature than visual features, providing us opportunities

to better understand the underlying reasoning process (Rajani et al., 2019). Previous work

explored generating single sentence explanations (Wu and Mooney, 2019a) to mimic human

justifications for commonsense question answering. Instead, we aim to build an explainable

VQA system for knowledge-based visual questions that utilize external textual information

and provide explanations using the supporting facts. The goal is more ambitious because
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it requires the explanation system to combine each reasoning step in the question that may

utilize different textual resources.

Besides, as more modalities of knowledge sources are involved, the format of the

explanation can be different for different visual questions. For example, we could provide

single sentence textual explanations for simple commonsense questions(Park et al., 2018; Wu

and Mooney, 2019a); while referencing a Wikipedia’s link is a good solution for explaining

some knowledge-based questions. Finding similar visual content from other web images

with richer annotations also helps convince users to trust the model predictions.
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Chapter 5

Conclusion

This proposal explores utilizing various textual resources to improve visual question answer-

ing in terms of performance, robustness to distribution shift, and interpretability.

We presented the approach that generates image captions to serve as textual inputs

for better VQA scores to complement visual inputs.

We observe that VQA systems are easy to take short-cuts and focus on superficial

statistics when predicting the answer. The problem becomes more severe as the distribution

of the training and test set are different. We present a self-critical training approach that

first encourages the model to focus on the proper object when predicting the correct answer

and then discourage focusing on that object when predicting a wrong answer. The right

set of objects is parsed from human textual explanations. Our approach prevents the VQA

systems from simply relying on superficial statistics, and therefore helps them be robust to

distribution shift. Besides, we also use competing explanations to improve VQA performance.

We present two sets of competing explanations, generated and retrieved explanations.

We presented MAVEx, a novel approach for knowledge-based visual question an-

swering. The goal is to retrieve answer-specific textual and visual knowledge from different

knowledge sources and learn what sources contain the most relevant information. We for-

mulate the problem as answer validation, where the goal is to learn to verify the validity
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of a set of candidate answers according to the retrieved knowledge. MAVEx demonstrates

the clear advantages of answer-guided knowledge retrieval, achieving new state-of-the-art

performance on the OK-VQA dataset, the largest knowledge-based dataset to date.

Finally, we proposed some short and long-term future extensions to our work. In the

short term, we focus on breaking down visual questions into multiple semantic segments

such that they can drive the retrieval of relevant knowledge from multiple external sources.

This would be especially helpful when the visual questions cover multiple aspects inside and

outside the image. Also, as another short-term goal, we would like to generate a customized

set of answer candidates based on the ontology and the retrieved knowledge.

Previous works mainly focusing on exploring different types of textual resources;

however, the appropriateness of using the resources requires further investigates. Therefore,

our first long-term focus is on verifying the properness of the retrieved knowledge for a

better trustworthy system. Secondly, we plan on work on building an interpretable VQA

system.
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