Using Multi-Strategy Learning to Improve Planning Efficiency and Quality (1998)
Artificial intelligence planning systems have become an important tool for automating a wide variety of tasks. However, even the most current planning algorithms suffer from two major problems. First, they often require infeasible amounts of computation time to solve problems in most domains. And second, they are not guaranteed to return the best solution to a planning problem, and in fact can sometimes return very low-quality solutions. One way to address these problems is to provide a planning system with domain-specific control knowledge, which helps guide the planner towards more promising search paths. Machine learning techniques enable a planning system to automatically acquire search-control knowledge for different applications. A considerable amount of planning and learning research has been devoted to acquiring rules that improve planning efficiency, also known as speedup learning. Much less work has been down in learning knowledge to improve the quality of plans, even though this is an essential feature for many real-world planning systems. Furthermore, even less research has been done in acquiring control knowledge to improve both these metrics.

The learning system presented in this dissertation, called SCOPE, is a unique approach to learning control knowledge for planning. SCOPE learns domain-specific control rules for a planner that improve both planning efficiency and plan quality, and it is one of the few systems that can learn control knowledge for partial-order planning. SCOPE's architecture integrates explanation-based learning (EBL) with techniques from inductive logic programming. Specifically, EBL is used to constrain an inductive search for control heuristics that help a planner choose between competing plan refinements. Since SCOPE uses a very flexible training approach, its learning algorithm can be easily focused to prefer search paths that are better for particular evaluation metrics. SCOPE is extensively tested on several planning domains, including a logistics transportation domain and a production manufacturing domain. In these tests, it is shown to significantly improve both planning efficiency and quality and is shown to be more robust than a competing approach.

View:
PDF, PS
Citation:
PhD Thesis, Department of Computer Sciences, The University of Texas at Austin.
Bibtex:

Tara Estlin Ph.D. Alumni Tara Estlin [at] jpl nasa gov