Learning Search-Control Heuristics for Logic Programs: Applications to Speedup Learning and Language Acquisition (1993)
This paper presents a general framework, learning search-control heuristics for logic programs, which can be used to improve both the efficiency and accuracy of knowledge-based systems expressed as definite-clause logic programs. The approach combines techniques of explanation-based learning and recent advances in inductive logic programming to learn clause-selection heuristics that guide program execution. Two specific applications of this framework are detailed: dynamic optimization of Prolog programs (improving efficiency) and natural language acquisition (improving accuracy). In the area of program optimization, a prototype system, DOLPHIN, is able to transform some intractable specifications into polynomial-time algorithms, and outperforms competing approaches in several benchmark speedup domains. A prototype language acquisition system, CHILL, is also described. It is capable of automatically acquiring semantic grammars, which uniformly incorprate syntactic and semantic constraints to parse sentences into case-role representations. Initial experiments show that this approach is able to construct accurate parsers which generalize well to novel sentences and significantly outperform previous approaches to learning case-role mapping based on connectionist techniques. Planned extensions of the general framework and the specific applications as well as plans for further evaluation are also discussed.
unpublished. Ph.D. proposal, Department of Computer Sciences, University of Texas at Austin.

John M. Zelle Ph.D. Alumni john zelle [at] wartburg edu