
In The Eleventh International Conference on Development and Learning (ICDL) (ICDL 2012),
San Diego, CA, Nov 2012.

Intrinsically Motivated Model Learning for a Developing Curious Agent

Todd Hester and Peter Stone

Department of Computer Science

The University of Texas at Austin

{todd,pstone}@cs.utexas.edu

Abstract—Reinforcement Learning (RL) agents are typically
deployed to learn a specific, concrete task based on a pre-defined
reward function. However, in some cases an agent may be able
to gain experience in the domain prior to being given a task.
In such cases, intrinsic motivation can be used to enable the
agent to learn a useful model of the environment that is likely
to help it learn its eventual tasks more efficiently. This paper
presents the TEXPLORE with Variance-And-Novelty-Intrinsic-
Rewards algorithm (TEXPLORE-VANIR), an intrinsically moti-
vated model-based RL algorithm. The algorithm learns models
of the transition dynamics of a domain using random forests. It
calculates two different intrinsic motivations from this model:
one to explore where the model is uncertain, and one to
acquire novel experiences that the model has not yet been
trained on. This paper presents experiments demonstrating
that the combination of these two intrinsic rewards enables
the algorithm to learn an accurate model of a domain with
no external rewards and that the learned model can be used
afterward to perform tasks in the domain. While learning
the model, the agent explores the domain in a developing
and curious way, progressively learning more complex skills.
In addition, the experiments show that combining the agent’s
intrinsic rewards with external task rewards enables the agent
to learn faster than using external rewards alone.

I. INTRODUCTION

Reinforcement Learning (RL) agents could be useful in

society because of their ability to learn and adapt to new

environments and tasks. Traditionally, RL agents learn to

accomplish a specific, concrete task based on a pre-defined

reward function. However, in some cases an agent may be

able to gain experience in the domain prior to being given

this task. For example, a future domestic robot may be placed

in a home and only later given various tasks to accomplish.

In such cases, intrinsic motivation can be used to enable the

agent to learn a useful model of the environment that can

help it learn its eventual tasks more efficiently.

Past work on intrinsically motivated agents arises from

two different goals [1]. The first goal comes from the

active learning community, which uses intrinsic motivation

to improve the sample efficiency of RL. Their goal is to

help the agent to maximize its knowledge about the world

and its ability to control it. The second goal comes from

the developmental learning community, and is to enable

cumulative, open-ended learning on robots. Our goal is to

use intrinsic motivation towards both goals: 1) to improve

the sample efficiency of learning, particularly in tasks with

little or no external rewards; and 2) to enable the agent to

perform open-ended learning without external rewards.

This paper presents an intrinsically motivated model-

based RL algorithm, called TEXPLORE with Variance-And-

Novelty-Intrinsic-Rewards (TEXPLORE-VANIR), that uses in-

trinsic motivation both for improved sample efficiency and

to give the agent a curiosity drive. The agent is based on

a model-based RL framework and is motivated to learn

models of domains without external rewards as efficiently

as possible. TEXPLORE-VANIR combines model learning

through the use of random forests with two unique intrinsic

rewards calculated from this model. The first reward is based

on variance in its models’ predictions to drive the agent to

explore where its model is uncertain. The second reward

drives the agent to novel states which are the most different

from what its models have been trained on. The combination

of these two rewards enables the agent to explore in a

developing curious way, learn progressively more complex

skills, and learn a useful model of the domain very efficiently.

This paper presents two main contributions:

1) Novel methods for obtaining intrinsic rewards from a

random-forest-based model of the world.

2) The TEXPLORE-VANIR algorithm for intrinsically mo-

tivated model learning, which has been released open-

source as a ROS package: http://www.ros.org/

wiki/rl-texplore-ros-pkg.

Section IV presents experiments showing that TEXPLORE-

VANIR: 1) learns a model more efficiently than other meth-

ods; 2) explores in a developing, curious way; and 3) can

use its learned model later to perform tasks specified by a

reward function. In addition, it shows that the agent can use

the intrinsic rewards in conjunction with external rewards to

learn a task faster than if using external rewards alone.

II. BACKGROUND

This section presents background on Reinforcement

Learning (RL). We adopt the standard Markov Decision

Process (MDP) formalism for this work [2]. An MDP is

defined by a tuple 〈S,A,R, T 〉, which consists of a set of

states S, a set of actions A, a reward function R(s, a), and a

transition function T (s, a, s′) = P (s′|s, a). In each state s ∈
S, the agent takes an action a ∈ A. Upon taking this action,

the agent receives a reward R(s, a) and reaches a new state

s′, determined from the probability distribution P (s′|s, a).
Many domains utilize a factored state representation, where

the state s is represented by a vector of n state variables:

s = 〈x1, x2, ..., xn〉. A policy π specifies for each state which

action the agent will take.

The goal of the agent is to find the policy π mapping

states to actions that maximizes the expected discounted

total reward over the agent’s lifetime. The value Qπ(s, a)
of a given state-action pair (s, a) is an estimate of the

expected future reward that can be obtained from (s, a) when
following policy π. The optimal value function Q∗(s, a)
provides maximal values in all states and is determined by

solving the Bellman equation:

Q∗(s, a) = R(s, a) + γ
∑

s′

P (s′|s, a)max
a′

Q∗(s′, a′), (1)

where 0 < γ < 1 is the discount factor. The optimal policy

π is then:

π(s) = argmaxaQ
∗(s, a). (2)

RL methods fall into two general classes: model-based and

model-free methods. Model-based RL methods learn a model

of the domain by approximating R(s, a) and P (s′|s, a) for

each state and action. The agent can then calculate a policy

(i.e. plan) using this model. Model-free methods update the

values of actions only when taking them in the real task. One

of the advantages of model-based methods is their ability to

plan multi-step exploration trajectories. The agent can plan

a policy to reach intrinsic rewards added into its model to

drive exploration to interesting state-actions.

This work takes the approach of using a model-based

RL algorithm in a domain with no external rewards. This

approach can be thought of as a pure exploration problem,

where the agent’s goal is simply to learn as much about

the world as possible. TEXPLORE-VANIR extends a model-

based RL algorithm called TEXPLORE [3] to use intrinsic

motivation to quickly learn an accurate model in domains

with no external rewards.

III. TEXPLORE-VANIR

Our goal is to develop an intrinsically motivated curious

agent using RL. This agent should use intrinsic rewards to

1) efficiently learn a useful model of the domain’s transition

dynamics; and 2) explore in a developing curious way. To this

end, we have the following desiderata for such an algorithm:

1) The algorithm should be model-based, both to enable

multi-step exploration trajectories and to allow the

agent to use the learned model later to perform tasks.

2) It should incorporate generalization into its model

learning so as to learn the model quickly.

3) It should not be required to visit every state-action,

because doing so is intractable in large domains.

This paper presents the TEXPLORE-VANIR algorithm,

which has all of these properties. TEXPLORE-VANIR follows

the typical approach of a model-based RL agent. It plans a

policy using its learned model (including intrinsic rewards),

takes actions following that policy, acquiring new experi-

ences which are used to improve its model, and repeats. In

order to be applicable to robots, TEXPLORE-VANIR uses the

Real-Time Model Based Architecture [4]. This architecture

uses approximate planning with UCT [5] and parallelizes the

model learning, planning, and acting such that the agent can

take actions in real-time at a specified frequency.

A. Model Learning

Making the intrinsically motivated agent model-based en-

ables it to: 1) plan multi-step exploration trajectories; 2) learn

faster than model-free approaches; and 3) use the learned

model to solve tasks given to it after its learning. It is

desirable for the model to generalize the learned transition

and reward dynamics across state-actions. This generaliza-

tion enables the model to make predictions about unseen

or infrequently visited state-actions, and therefore the agent

does not have to visit every state-action. Thus, TEXPLORE-

VANIR approaches the model learning task as a supervised

learning problem, with the current state and action as the

input, and the next state as the output to be predicted.

TEXPLORE-VANIR is built upon the TEXPLORE algo-

rithm [3], which uses random forests to learn separate

predictions of each of the n state features in the domain.

A random forest [6] is a collection of m decision trees, each

of which differs because it is trained on a random subset

of experiences and has some randomness when choosing

splits at the decision nodes. The agent then plans over the

average of the predictions made by each tree in the forest.

The decision trees work well because they generalize broadly

at first, but can be refined with training to make accurate

predictions for individual state-actions. Each tree in the forest

represents a different hypothesis of the true model of the

domain. The variance of the different trees’ predictions can

be used as a measure of the uncertainty in the model.

B. Intrinsic Motivation

The main contribution of this paper is a method for

extending the model-based TEXPLORE algorithm for learning

specific RL tasks to the intrinsically motivated TEXPLORE-

VANIR algorithm. The best intrinsic rewards to use to im-

prove the efficiency of model-learning are highly dependent

on the type of model being learned. With the random forest

models TEXPLORE uses, we hypothesize that the following

two intrinsic motivations will perform the best: 1) preferring

to explore areas of the state space where there is a large

degree of uncertainty in the model, and 2) preferring regions

of the state space that are far from previously explored areas

(regardless of how certain the model is).

The variance of the predictions of each of the trees in

the forest can be used to motivate the agent towards the

state-actions where its models disagree. These state-actions

are the ones where there are still multiple hypotheses of

the true model of the domain. TEXPLORE-VANIR calculates

a measure of the variance in the predictions of each state

feature for a given state-action:

D(s, a) =

n∑

i=1

m∑

j=1

m∑

k=1

DKL(Pj(xi|s, a)||Pk(xi|s, a)), (3)

where for every pair of models (j and k) in the forest, it

sums the KL-divergences between the predicted probability

distributions for each feature i. D(s, a) measures how much

the predictions of the different models disagree. This measure

is different than just measuring where the predictions are

noisy, as D(s, a) will be 0 if all the tree models predict

the same stochastic outcome distribution. An intrinsic re-

ward proportional to this variance measure, the VARIANCE-

REWARD, is incorporated into the agent’s model for planning:

R(s, a) = vD(s, a), (4)

where v is a coefficient determining how big this reward

should be.

This reward will drive the agent to the state-actions where

its models have not yet converged to a single hypothesis

of the world’s dynamics. However, there will still be cases

where all of the agent’s models make incorrect predictions.

For the random forest model that TEXPLORE-VANIR uses, the

model is more likely to be incorrect when it has to generalize

its predictions farther from the experiences it is trained on.

Therefore, TEXPLORE-VANIR uses a second intrinsic reward

based on the L1 distance in feature space from a given state-

action and the nearest one that the model has been trained

on. This distance is calculated separately for each action. For

an action a, Xa is the set of all the states where this action

was taken. Then, δ(s, a) is the L1 distance from the given

state s to the nearest state where action a has been taken:

δ(s, a) = min
sx∈Xa

||s− sx||1, (5)

where each feature is normalized to range from 0 to 1. A

reward proportional to this distance, the NOVELTY-REWARD,

drives the agent to explore the state-actions that are the most

novel compared to the previously seen state-actions:

R(s, a) = nδ(s, a), (6)

where n is a coefficient determining how big this reward

should be. One nice property of this reward is that given

enough time, it will drive the agent to explore all the

state-actions in the domain, as any unvisited state-action is

different in some feature from the visited ones. However, it

will start out driving the agent to explore the state-actions

that are the most different from ones it has seen.

The TEXPLORE with Variance-And-Novelty-Intrinsic-

Rewards algorithm (TEXPLORE-VANIR) is completed by

combining these two intrinsic rewards. They can be com-

bined with different weightings of their coefficients (v and

n), or with an external reward defining a task. A combination

of the two intrinsic rewards should drive the agent to learn a

model more efficiently, as well as explore in a developing and

curious way: seeking out novel and interesting state-actions,

while exploring increasingly complex parts of the domain.

IV. EMPIRICAL RESULTS

Evaluating the benefits of intrinsic motivation is not as

straightforward as evaluating a standard RL agent on a

specific task. Rather than attempting to accrue reward on a

given task, a curious agent’s goal is better stated as preparing

itself for any task. We therefore evaluate TEXPLORE-VANIR

in four ways on a complex domain with no external rewards.

First, we measure the accuracy of the agent’s learned model

in predicting the domain’s transition dynamics. Second, we

Fig. 1. The Light World domain. In each room, the agent must navigate to
the key, PICKUP they key, navigate to the lock, PRESS it, and then navigate
to and exit through the door to the next room.

test whether the learned model can be used to perform tasks

in the domain when given a reward function. Third, we

examine the agent’s exploration to see if it is exploring

in a developing, curious way. Finally, we demonstrate that

TEXPLORE-VANIR can combine its intrinsic rewards with

external rewards to learn faster than if it was given only

external rewards. These results demonstrate that the intrinsic

rewards and model learning approach TEXPLORE-VANIR

uses are sufficient for the agent to explore in a developing

curious way and to efficiently learn a transition model that

is useful for performing tasks in the domain.

The agent is tested on the Light World domain [7], shown

in Figure 1. In this domain, the agent goes through a series

of rooms. Each room has a door, a lock, and possibly a

key. The agent must go to the lock and press it to open the

door, at which point it can then leave the room. It cannot

go back through the door in the opposite direction. If a key

is present, it must pickup the key before pressing the lock.

Open doors, locks, and keys each emit a different color light

that the agent can see. The agent has sensors that detect

each color light in each cardinal direction. The agent’s state

is made up of 17 different features: its X and Y location in

the room, the ID of the room it is in, whether it has the KEY,

whether the door is LOCKED, as well as the values of the 12

light sensors, which detect each of the three color lights in

the four cardinal directions. The agent can take six possible

actions: it can move in each of the four cardinal directions,

PRESS the lock, or PICKUP the key. The first four actions

are stochastic; they move the agent in the intended direction

with probability 0.9 and to either side with probability 0.05
each. The PRESS and PICKUP actions are only effective when

the agent is on top of the lock and the key, respectively, and

then only with probability 0.9. The agent starts in a random

state in the top left room in the domain, and can proceed

through the rooms indefinitely.

This domain is well-suited for this task because the domain

has a rich feature space and complex dynamics. There are

simple actions that move the agent, as well as more complex

actions (PICKUP and PRESS) that interact with objects in

different ways. There is a progression of the complexity of

the uses of these two actions. Picking up the key is easier

than pressing the lock, as the lock requires the agent to have

already picked up the key and not yet unlocked the door.

Based on informal testing, we set TEXPLORE-VANIR’s

parameters to v = 1 and n = 3. TEXPLORE-VANIR is tested

against the following agents:

1) Agent which selects actions randomly

2) Agent which is given an intrinsic motivation for re-

gions with more competence progress (based on R-

IAC [8])

3) Agent which is given an intrinsic motivation for re-

gions with more prediction errors

4) Agent which uses R-MAX style rewards (terminal

reward of Rmax for state-actions with fewer than m

visits)

5) Agent which acts randomly with a tabular model

6) R-MAX algorithm [9]

These six algorithms provide four different ways to explore

using TEXPLORE-VANIR’s random forest model, as well two

approaches using a tabular model. The tabular model is

initialized to predict self-transitions for state-actions that

have not been visited.

One of the more well-known intrinsic motivation algo-

rithms is Robust Intelligent Adaptive Curiosity (R-IAC) [8].

R-IAC does not adopt the RL framework, but is similar in

many respects. R-IAC splits the state space into regions and

learns a model of the transition dynamics in each region. It

maintains an error curve for each region and uses the slope

of this curve as the intrinsic reward for the agent, driving

the agent to explore the areas where its model is improving

the most (rewarding competence progress). This approach

is intended for very large multi-dimensional continuous

domains where learning may take many thousands of steps.

We have created a method based on this idea to compare

with our approach (the Competence Progress method). This

method splits the state space into random regions at the

start, maintains error curves in each region, and provides

intrinsic rewards based on competence progress within a

region. These intrinsic rewards are combined with the same

TEXPLORE model learning approach as the other methods.

As another comparison, the Prediction Error method uses the

same regions, but rewards areas with high prediction error.

All the algorithms are run in the Light World domain for

1000 steps without any external reward. During this phase,

the agent is free to play and explore in the domain, all the

while learning a model of the dynamics of this world. All of

the algorithms use the RTMBA parallel architecture [4] and

take 2.5 actions per second.

First, we examine the accuracy of the agent’s learned

model. After every 25 steps, 5000 state-actions from the

domain are randomly sampled and the variational distance

between the model’s predicted next state probabilities are

compared with the true next state probabilities. Figure 2

shows the variational distance between these distributions,

averaged over the 5000 sampled state-actions. This figure

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

A
v
e

ra
g

e
 V

a
ri
a

ti
o

n
a

l
D

is
ta

n
c
e

Play Steps

LightWorld Model Accuracy

TEXPLORE-VANIR
Random
Competence Progress
Prediction Error
R-Max Reward
Tabular
R-Max

Fig. 2. Accuracy of each algorithm’s model plotted versus number of steps
the agent has taken, averaged over 30 trials and 5000 randomly sampled
state-actions. TEXPLORE-VANIR learns the most accurate models.

shows that TEXPLORE-VANIR learns significantly more ac-

curate models than the other methods (p < 0.025). The

next best algorithm is R-MAX. However, using R-MAX style

reward with the TEXPLORE model strategy is worse than

acting randomly. This result illustrates our point that the best

intrinsic reward is dependent on the particular model learning

approach that is used. The method rewarding visiting regions

with high prediction error performs poorly, possibly because

it is not visiting the right state-actions within these regions.

While TEXPLORE-VANIR and R-MAX appear to learn

fairly accurate models, it is more important for the algorithms

to be accurate in the interesting and useful parts of the

domain than for them to be accurate about every state-action.

Therefore, we next test if the learned models are useful to

perform a task. After the algorithms learned models without

rewards for 1000 steps, they are provided with a reward

function for a task. The task is for the agent to continue

moving through the rooms (requiring it to use the keys and

locks). The reward function is a reward of 10 for moving

from one room to the next, and a reward of 0 for all other

actions. In this second phase, the agents act greedily with

respect to their previously learned transition models and the

given external reward function with no intrinsic rewards for

3000 steps.

Figure 3 shows the cumulative external reward received

by each algorithm over the 3000 steps of the task. Again,

TEXPLORE-VANIR performs the best, slightly out-performing

R-MAX and significantly out-performing the other methods

(p < 0.001). Learning an accurate transition model appears

to lead to good performance on the task, as both TEXPLORE-

VANIR and R-MAX perform well on the task.

Next, the exploration of the TEXPLORE-VANIR agent is

examined. In addition to learning an accurate and useful

model, we desire the agent to exhibit a developing curiosity.

Precisely, the agent should progressively learn more complex

skills in the domain, rather than explore randomly or exhaus-

tively. Figures 4(a) and 4(b) show the cumulative number of

times that TEXPLORE-VANIR and the random agent select the

PRESS action in various states over 1000 steps in the task

with no external rewards, averaged over 30 trials. Comparing

 0

 2

 4

 6

 8

 10

 0 200 400 600 800 1000

C
u

m
u

la
ti
v
e

 N
u

m
b

e
r

o
f

O
c
c
u

re
n

c
e

s

Number of Steps

Exploration of Press Actions by TEXPLORE-VANIR

Press Lock Correct
Press Lock Incorrect
Press Key
Press Door
Press Other

(a) TEXPLORE-VANIR

 0

 2

 4

 6

 8

 10

 0 200 400 600 800 1000

C
u

m
u

la
ti
v
e

 N
u

m
b

e
r

o
f

O
c
c
u

re
n

c
e

s

Number of Steps

Exploration of Press Actions by Random Agent

Press Lock Correct
Press Lock Incorrect
Press Key
Press Door
Press Other

(b) Random Agent.

Fig. 4. This plot shows the cumulative number of times that TEXPLORE-VANIR and a Random Agent select the PRESS action in various states over 1000
steps in the task with no external rewards, averaged over 30 trials. Note that the random agent attempts the PRESS action much less than TEXPLORE-VANIR

does. TEXPLORE-VANIR starts out trying to PRESS the key, which is the easiest object to find, and eventually does learn to press the lock, but has difficulty
learning when to press the lock (it must be with the key but without the door already being open). The agent does not try calling the PRESS action on
random states very often. In contrast, the random agent calls PRESS action on random states more often than it calls it correctly on the lock.

 0

 10

 20

 30

 40

 50

 60

 0 500 1000 1500 2000 2500 3000

C
u

m
u

la
ti
v
e

 R
e

w
a

rd

Task Steps

Light World Task Performance

TEXPLORE-VANIR
Random
Competence Progress
Prediction Error
R-Max Reward
Tabular
R-Max

Fig. 3. Cumulative rewards received by each algorithm over the 3000 steps
of the task, averaged over 30 trials. Agents act greedily with respect to their
previously learned transition model and the given external reward function.
TEXPLORE-VANIR receives the most reward.

the two figures shows that TEXPLORE-VANIR calls the PRESS

action many more times than the random agent. Figure 4(a)

also shows that TEXPLORE-VANIR tries PRESS on objects

more often than on random states in the domain. In contrast,

Figure 4(b) shows that the random agent tries PRESS on

arbitrary states more often than it uses it correctly.

Analyzing the exploration of TEXPLORE-VANIR further,

Figure 4(a) shows that it initially tries PRESS on the key,

which is the easiest object to access, then tries it on the lock,

and then on the door. The figure also shows that TEXPLORE-

VANIR takes longer to learn the correct dynamics of the lock,

as it continues to PRESS the lock incorrectly, either without

the key or with the door already unlocked. These plots show

that TEXPLORE-VANIR is acting in an intelligent, curious

way, trying actions on the objects in order from the easiest

to hardest to access, and going back to the lock repeatedly

to learn its more complex dynamics.

Finally, not only should the agent’s intrinsic rewards be

useful when learning in task without external rewards, they

 0

 10

 20

 30

 40

 50

 60

 70

 0 500 1000 1500 2000 2500 3000

C
u

m
u

la
ti
v
e

 R
e

w
a

rd

Task Steps

Light World Task Performance

TEXPLORE-VANIR
External Rewards Only
Competence Progress
Prediction Error
R-Max Reward
Boltzmann
Tabular
R-Max

Fig. 5. Cumulative rewards received by each algorithm, using intrinsic
and external rewards combined, over the 3000 steps of the task, averaged
over 30 trials. TEXPLORE-VANIR receives the most reward, while the agent
using only external rewards performs very poorly.

should also make an agent in a domain with external rewards

learn more efficiently. For this experiment, the algorithms are

run for 3000 steps with their intrinsic rewards added to the

previously used external reward function that rewards mov-

ing between rooms. Instead of an agent acting randomly, we

instead have one agent acting using only the external rewards,

and one performing Boltzmann, or soft-max, exploration

with temperature τ = 0.2. Figure 5 shows the cumulative

external reward received by each agent over the 3000 steps

of the task. TEXPLORE-VANIR receives significantly more

reward than the other algorithms (p < 0.001), followed by

R-MAX. Now that exploration and exploitation are no longer

separated into separate phases, the exploration of R-MAX is

too aggressive and costs it external reward.

These results show that TEXPLORE-VANIR’s intrinsic re-

wards out-perform other exploration approaches and in-

trinsic motivations combined with the TEXPLORE model.

TEXPLORE-VANIR performs similarly to R-MAX when explo-

ration and exploitation are split into separate phases, but out-

performs R-MAX significantly when combining intrinsic and

external rewards together. TEXPLORE-VANIR explores the

domain in a curious manner progressing from state-actions

with easier dynamics to those that are more difficult. Finally,

in a task with external rewards, TEXPLORE-VANIR can use

its intrinsic rewards to speed up learning with respect to an

algorithm using only external rewards.

It is important to note that the best intrinsic rewards are

dependent on the learning algorithm and the domain. For

example, the competence progress rewards used by R-IAC are

intended to be used in complex high-dimensional domains

where learning is slow. It takes quite a few samples in one

region to get an reasonable estimate of the derivative of the

error. In the Light World domain, by the time the algorithm

has determined error is improving in a region, the agent has

already learned a model of that region and no longer needs

to explore there. When using other model learning methods,

the best intrinsic reward will vary as well, for example, the

R-MAX reward works well for a tabular model, but not for

a random forest model.

V. RELATED WORK

Many model-based RL algorithms use “exploration bonus”

intrinsic rewards to drive the agent to explore more effi-

ciently. As one example, R-MAX [9] uses intrinsic rewards

to guarantee that it will learn the optimal policy within a

bounded number of steps. The algorithm learns a maximum-

likelihood tabular model of the task and provides intrinsic

rewards to state-actions that have been visited less than m

times. These rewards drive the agent to visit each state-action

enough times to learn an accurate model.

A few methods provide intrinsic rewards to an agent to

drive it to where its model is improving the most. For

example, R-IAC [8] rewards regions where the model error

is improving the most. An alternative is to learn a separate

predictor of the change in model error and use its predicted

values as the intrinsic reward to drive exploration [10].

Simsek and Barto [11] present an approach for the pure ex-

ploration problem, where there is no concern with receiving

external rewards. They provide a Q-LEARNING agent [12]

with intrinsic rewards for where its value function is most

improving. This reward speeds up the agent’s learning of

the true task. However, such a reward is not necessary for

model-based agents, which perform value function updates

by planning on their model. This algorithm requires an

external reward, as the intrinsic reward is speeding up the

learning of the task defined by the external reward function.

Singh et al. [13] argue that in nature, intrinsic rewards

come from evolution and exist to help us perform any task.

Agents using intrinsic rewards combined with external re-

wards should perform better than those using solely external

rewards. For two different algorithms and tasks, they search

over a broad set of possible task and agent specific intrinsic

rewards and find rewards that make the agent learn faster

than if it solely used external rewards.

These different approaches demonstrate that the correct

intrinsic motivation is dependent on the type of algorithm.

For example, with a Q-LEARNING agent [12], it makes sense

to give intrinsic rewards for where the value backups will

have the largest effect, as done in [11]. When learning with

a tabular model, the agent must gain enough experiences in

each state-action to learn an accurate model of it. Thus it

makes sense to use intrinsic motivation to drive the agent

to acquire these experiences, as done by R-MAX [9]. With

a model learning approach that generalizes as TEXPLORE-

VANIR’s does, the best intrinsic rewards are different again.

VI. CONCLUSION

This paper presents the TEXPLORE-VANIR algorithm for

intrinsically motivated learning, available at http://www.

ros.org/wiki/rl-texplore-ros-pkg. This algorithm

combines random forest based model learning with two novel

intrinsic rewards. One reward drives the agent to where

the model is uncertain in its predictions, and the second

drives the agent to acquire novel experiences that its model

has not been trained on. Experiments show empirically that

TEXPLORE-VANIR can learn accurate and useful models in

a domain with no external rewards. In addition, TEXPLORE-

VANIR’s intrinsic rewards drive the agent to learn in a

developing and curious way, progressing from learning easier

to more difficult skills. TEXPLORE-VANIR can also combine

its intrinsic rewards with external task rewards to learn a

task faster than using external rewards alone. One goal for

future work is to extend TEXPLORE-VANIR to work in large

continuous state spaces, so that it can apply to some robotic

tasks.

REFERENCES

[1] M. Lopes and P.-Y. Oudeyer, “Guest editorial: Active learning and in-
trinsically motivated exploration in robots: Advances and challenges,”
IEEE Transactions on Autonomous Mental Development (TAMD),
vol. 2, no. 2, pp. 65–69, 2010.

[2] R. Sutton and A. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press, 1998.

[3] T. Hester and P. Stone, “Real time targeted exploration in large
domains,” in International Conference on Development and Learning

(ICDL), August 2010.
[4] T. Hester, M. Quinlan, and P. Stone, “RTMBA: A real-time model-

based reinforcement learning architecture for robot control,” in IEEE

International Conference on Robotics and Automation (ICRA), 2012.
[5] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo planning,”

in European Conference on Machine Learning (ECML), 2006.
[6] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.

5–32, 2001.
[7] G. Konidaris and A. G. Barto, “Building portable options: Skill

transfer in reinforcement learning,” in International Joint Conference

on Artificial Intelligence (IJCAI), 2007.
[8] A. Baranes and P. Y. Oudeyer, “R-IAC: Robust Intrinsically Motivated

Exploration and Active Learning,” IEEE Transactions on Autonomous

Mental Development (TAMD), vol. 1, no. 3, pp. 155–169, Oct. 2009.
[9] R. Brafman and M. Tennenholtz, “R-Max - a general polynomial time

algorithm for near-optimal reinforcement learning,” in International

Joint Conference on Artificial Intelligence (IJCAI), 2001.
[10] J. Schmidhuber, “Curious model-building control systems,” in Inter-

national Joint Conference on Neural Networks. IEEE, 1991.
[11] O. Şimşek and A. G. Barto, “An intrinsic reward mechanism for

efficient exploration,” in ICML, 2006, pp. 833–840.
[12] C. Watkins, “Learning from delayed rewards,” Ph.D. dissertation,

University of Cambridge, 1989.
[13] S. P. Singh, R. L. Lewis, A. G. Barto, and J. Sorg, “Intrinsically

motivated reinforcement learning: An evolutionary perspective,” IEEE
Transactions on Autonomous Mental Development (TAMD), vol. 2,
no. 2, pp. 70–82, 2010.

