
Convergence, Targeted Optimality, and Safety in Multiagent
Learning

Abstract

This paper introduces a novel multiagent
learning algorithm which achieves conver-
gence, targeted optimality against memory-
bounded adversaries, and safety, in arbitrary
repeated games. Called CMLeS, its most
novel aspect is the manner in which it guar-
antees (in a PAC sense) targeted optimality
against memory-bounded adversaries, via ef-
ficient exploration and exploitation. CMLeS

is fully implemented and we present empirical
results demonstrating its effectiveness.

1. Introduction

In recent years, great strides have been made towards
creating autonomous agents that can learn via inter-
action with their environment. When considering just
an individual agent, it is often appropriate to model
the world as being stationary, meaning that the same
action from the same state will always yield the same
(possibly stochastic) effects. However, in the presence
of other independent agents, the environment is not
stationary: an action’s effects may depend on the ac-
tions of the other agents. This non-stationarity poses
the primary challenge of multiagent learning (MAL)
and comprises the main reason that it is best consid-
ered distinctly from single agent learning.

The simplest, and most often studied, MAL scenario
is the stateless scenario in which agents repeatedly in-
teract in the stylized setting of a matrix game (a.k.a.
normal form game). In the multiagent literature, var-
ious criteria have been proposed to evaluate MAL al-
gorithms, emphasizing what behavior they will con-
verge to against various types of opponents,1 in such
settings. The contribution of this paper is that it
proposes a novel MAL algorithm, CMLeS, that for a

1Although we refer to other agents as opponents, we
mean any agent (cooperative, adversarial, or neither)

Preliminary work. Under review by the International Con-
ference on Machine Learning (ICML). Do not distribute.

multi-player multi-action (arbitrary) repeated game,
achieves the following three goals:

1. Convergence : converges to playing a Nash equi-
librium in self-play (other agents are also CMLeS);
2. Targeted Optimality : for any arbitrary ǫ > 0
and δ > 0, with probability at least 1-δ, achieves at
least within ǫ + L(δ) of the expected value of the best
response against any memory-bounded, or adaptive,2

opponent of memory size K, in time polynomial in 1
ǫ
,

ln(1
δ
) and λ−Size(K+1). L(δ) ∈ [0, 1], is a decreasing

function w.r.t. 1-δ and assumes a very small value for
small values of δ. λ is the minimum non-zero proba-
bility that the opponent assigns to an action, in any
history and Size(K + 1) denotes number of feasible
joint histories of size K+1. The same guarantee also
holds for opponents which eventually become memory-
bounded, with the time complexity claim now holding
from the point that the opponent becomes memory-
bounded. The main advance of MLeS lies in reducing
the exponential dependence on Size(Kmax) in time
complexity, that is achieved by the current state of
the art algorithm, to an exponential dependence on
Size(K + 1), where Kmax is an upper bound on the
opponent’s memory size, K.
3. Safety : converges to playing the maximin strategy
against any other opponent which cannot be approxi-
mated as a Kmax memory-bounded opponent.

1.1. Related work

Bowling et al. (Bowling & Veloso, 2001) were the first
to put forth a set of criterion for evaluating multia-
gent learning algorithms. In games with two players
and two actions per player, their algorithm WoLF-IGA
converges to playing best response against stationary,
or memoryless, opponents (rationality), and converges
to playing the Nash equilibrium in self-play (conver-
gence). Subsequent approaches extended the rational-
ity and convergence criteria to arbitrary (multi-player,
multi-action) repeated games (Banerjee & Peng, 2004;
Conitzer & Sandholm, 2006). Amongst them, Awe-

some (Conitzer & Sandholm, 2006) achieves conver-

2Consistent with the literature (Powers et al., 2005), we
call memory-bounded opponents as adaptive opponents.

Convergence, Targeted Optimality, and Safety in Multiagent Learning

gence and rationality in arbitrary repeated games
without requiring agents to observe each others’ mixed
strategies. However, none of the above algorithms
have any guarantee about the payoffs achieved when
they face arbitrary non-stationary opponents. More
recently, Powers et al. proposed a newer set of evalu-
ation criteria that emphasizes compatibility, targeted
optimality and safety (Powers & Shoham, 2005). Com-
patibility is a stricter criterion than convergence as it
requires the learner to converge within ǫ of the payoff
achieved by a Pareto optimal Nash equilibrium. Their
proposed algorithm, PCM(A) (Powers et al., 2007) is,
to the best of our knowledge, the only known MAL
algorithm to date that achieves compatibility, safety
and targeted optimality against adaptive opponents
in arbitrary repeated games.

1.2. Contributions

CMLeS improves on Awesome by guaranteeing both
safety and targeted optimality against adaptive oppo-
nents. It improves upon PCM(A) in five ways.

1. The only guarantees of optimality against adaptive
opponents that PCM(A) provides are against the ones
that are drawn from an initially chosen target set. In
contrast, CMLeS can model every adaptive opponent
whose memory is bounded by Kmax. Thus it does not
require a target set as input: its only input is Kmax,
an upper bound on the memory size of adaptive oppo-
nents that it is willing to model and exploit.
2. PCM(A) achieves targeted optimality against adap-
tive opponents by requiring all feasible joint histories
of size Kmax to be visited a sufficient number of times.
Kmax for PCM(A) is the maximum memory size of any
opponent from its target set. CMLeS significantly im-
proves this by requiring a sufficient number of visits to
all feasible joint histories only of size K+1. Thus CM-

LeS promises targeted optimality in number of steps
polynomial in λ−Size(K+1) in comparison to PCM(A)
which provides similar guarantees, but in steps poly-
nomial in λ−Size(Kmax). The above sample efficiency
property makes CMLeS a good candidate for online
learning.
3. Unlike PCM(A), CMLeS promises targeted op-
timality against opponents which eventually become
memory-bounded with K ≤ Kmax.
4. PCM(A) can only guarantee convergence to a pay-
off within ǫ of the desired Nash equilibrium payoff with
a probability δ. In contrast, CMLeS guarantees con-
vergence in self-play with probability 1.
5. CMLeS is relatively simple in its design. It tackles
the entire problem of targeted optimality and safety
by running an algorithm that implicitly achieves ei-
ther of the two, without having to reason separately

about adaptive and arbitrary opponents.

The remainder of the paper is organized as follows.
Section 2 presents background and definitions, Sec-
tion 3 and 4 presents our algorithm, Section 5 presents
empirical results and Section 6 concludes.

2. Background and Concepts

This section reviews the definitions and concepts nec-
essary for fully specifying CMLeS.

A matrix game is defined as an interaction between
n agents. Without loss of generality, we assume that
the set of actions available to all the agents are same,
i.e., A1 = . . . = An = A. The payoff received by
agent i during each step of interaction is determined
by a utility function over the agents’ joint action,
ui : An 7→ ℜ. Without loss of generality, we assume
that the payoffs are bounded in the range [0,1]. A
repeated game is a setting in which the agents play
the same matrix game repeatedly and infinitely of-
ten. A single stage Nash equilibrium is a stationary
strategy profile {π∗

i , . . . , π∗
n} such that for every agent

i and for every other possible stationary strategy πi,
the following inequality holds: E(π∗

1
,...,π∗

i
,...,π∗

n
)ui(·) ≥

E(π∗

1
,...,πi,...,π∗

n
)ui(·). It is a strategy profile in which no

agent has an incentive to unilaterally deviate from its
own share of the strategy. A maximin strategy for an
agent is a strategy which maximizes its own minimum
payoff. It is often called the safety strategy, because
resorting to it guarantees the agent a minimum payoff.

An adaptive opponent strategy looks back at the most
recent K joint actions played in the current history of
play to determine its next stochastic action profile. K

is referred to as the memory size of the opponent.3

The strategy of such an opponent is then a mapping,
π : AnK 7→ ∆A. If we consider opponents whose fu-
ture behavior depends on the entire history, we lose
the ability to (provably) learn anything about them
in a single repeated game, since we see a given history
only once. The concept of memory-boundedness limits
the opponent’s ability to condition on history, thereby
giving us a chance to learning its policy.

We now specify what we mean by playing optimally
against adaptive opponents. For notational clarity, we
denote the other agents as a single agent o. It has
been shown previously (Chakraborty & Stone, 2008)
that the dynamics of playing against such an o can be
modeled as a Markov Decision Process (MDP) whose
transition probability function and reward function are

3K is the minimum memory size that fully characterizes
the opponent strategy.

Convergence, Targeted Optimality, and Safety in Multiagent Learning

determined by the opponents’ (joint) strategy π. As
the MDP is induced by an adversary, this setting is
called an Adversary Induced MDP, or AIM in short.

An AIM is characterized by the K of the opponent
which induces it: the AIM’s state space is the set of
all feasible joint action sequences of length K. By way
of example, consider the game of Roshambo or rock-
paper-scissors (Figure 1) and assume that o is a single
agent and has K = 1, meaning that it acts entirely
based on the immediately previous joint action. Let
the current state be (R, P), meaning that on the pre-
vious action, i selected R, and o selected P . Assume
that from that state, o plays actions R, P and S with
probability 0.25, 0.25, and 0.5 respectively. When i

chooses to take action S in state (R, P), the probabil-
ities of transitioning to states (S, R), (S, P) and (S, S)
are then 0.25, 0.25 and 0.5 respectively. Transitions to
states that have a different action for i, such as (R, R),
have probability 0. The reward obtained by i when it
transitions to state (S, R) is -1 and so on.

The optimal policy of the MDP associated with the
AIM is the optimal policy for playing against o. A
policy that achieves an expected return within ǫ of
the expected return achieved by the optimal policy is
called an ǫ-optimal policy (the corresponding return
is called ǫ-optimal return). If π is known, then we
can have computed the optimal policy (and hence ǫ-
optimal policy) by doing dynamic programming (Sut-
ton & Barto, 1998). However, we do not assume that
π or even K are known in advance: they need to be
learned in online play. We use the discounted payoff
criterion in our computation of an ǫ-optimal policy,
with γ denoting the discount factor.

Finally, it is important to note that there exist oppo-
nents in the literature which do not allow convergence
to the optimal policy once a certain set of moves have
been played. For example, the grim-trigger opponent
in the well-known Prisoner’s Dilemma (PD) game, an
opponent with memory size 1, plays cooperate at first,
but then plays defect forever once the other agent has
played defect once. Thus, there is no way of detecting
its strategy without defecting, after which it is im-
possible to recover to the optimal strategy of mutual
cooperation. In our analysis, we constrain the class
of adaptive opponents to include only those which do
not negate the possibility of convergence to optimal
exploitation, given any arbitrary initial sequence of ex-
ploratory moves (Powers & Shoham, 2005).

Equipped with the required concepts, we are now
ready to specify our algorithms. First, in Section 3,
we present an algorithm that only guarantees safety
and targeted optimality against adaptive opponents.

R

P

S

R P S

R − Rock, P − Paper, S − Scissor

0,0 1,−1

1,−1 −1,1

−1,1 0,01,−1

0,0

−1,1

Roshambo Opponent Strategy

(R,P)

0.25

0.5

0.25

R

P

S

Transition Function

(R,P)
0.25

0.25

0.5

(S,R) (S,P) (S,S)

Figure 1. Example of AIM

Then, in Section 4, we introduce the full-blown CMLeS

algorithm that incorporates convergence additionally.

3. Model learning with Safety (MLeS)

In this section, we introduce a novel algorithm, Model
Learning with Safety (MLeS), that ensures safety and
targeted optimality against adaptive opponents.

3.1. Overview

MLeS begins with the hypothesis that the opponent is
an adaptive opponent (denoted as o) with an unknown
memory size, K, that is bounded above by a known
value, Kmax. MLeS maintains a model for each pos-
sible value of o’s memory size, from k = 0 to Kmax,
plus one additional model for memory size Kmax+1.
Each model π̂k is a mapping Ank 7→ ∆A representing
a possible o strategy. π̂k is the maximum likelihood
distribution based on the observed actions played by o

for each joint history of size k encountered. Henceforth
we will refer to a joint history of size k as sk and the
empirical distribution captured by π̂k for sk as π̂k(sk).
π̂k(sk, ao) will denote the probability assigned to ac-
tion ao, by π̂k(sk). When a particular sk is encoun-
tered and the respective o’s action in the next step is
observed, the empirical distribution π̂k(sk) is updated.
Such updates happen for every π̂k, on every step. For
every sk, MLeS maintains a count value v(sk), which
is the number of times sk has been encountered. We
call an opponent model an ǫ approximation of π, when
for any history of size K, it predicts the true opponent
action distribution with error at most ǫ.

On each step, MLeS selects π̂best (and correspondingly
kbest) as the one from among the Kmax+1 (from 0 to
Kmax) models that currently appears to best describe
o’s behavior. The mechanism for selecting π̂best en-
sures that, with high probability, it is either π̂K (the
most compact representation of π) or a model with a
smaller k which is a good approximation of π. Once
such a π̂best is picked, MLeS takes a step towards learn-
ing an ǫ-optimal policy for the underlying AIM in-
duced by kbest. If it cannot determine such a π̂best, it
defaults to playing the maximin strategy for safety.

Thus, the operations performed by MLeS on each step

Convergence, Targeted Optimality, and Safety in Multiagent Learning

can be summarized as follows:
1. Update all models based on the past step.
2. Determine π̂best (and hence kbest). If a π̂best cannot
be determined, then return null.
3. If π̂best 6= null, take a step towards solving the rein-
forcement learning (RL) problem for the AIM induced
by kbest. Otherwise, play the maximin strategy.
Of these three steps, step 2 is by far the most complex.
We present how MLeS addresses it next.

3.2. Model selection

The objective of MLeS is to find a kbest which is ei-
ther K (the true memory size) or a suboptimal k s.t.
π̂k is a good approximation of π (o’s true policy). It
does so by comparing models of increasing size to de-
termine at which point the larger models cease to be-
come more predictive of o’s behavior. We start by
proposing a metric called ∆k, which is an estimate
of how much models π̂k and π̂k+1 differ from each
other. But, first, we introduce two notations that
will be instrumental in explaining the metric. We de-
note (ai, ao) · sk to be a joint history of size k+1, that
has sk as its last k joint actions and (ai, ao) as the
last k+1’th joint action. For any sk, we define a set
Aug(sk) = ∪∀ai,ao∈A2((ai, ao) · sk|v((ai, ao) · sk) > 0).
In other words Aug(sk) contains all joint histories
of size k+1 which have sk as their last k joint ac-
tions and have been visited at least once. ∆k is
then defined as maxsk,sk+1∈Aug(sk),ao∈A|π̂k(sk, ao) −
π̂k+1(sk+1, ao)|. We say that π̂k and π̂k+1 are ∆k dis-
tant from one another.

Based, on the concept of ∆k, we make two observations
that will come in handy for our theoretical claims made
later in this subsection.

Observation 1. For all, k ∈ [K, Kmax]|k ∈
N, and for any k sized joint history sk and any

sk+1 ∈ Aug(sk), E(π̂k(sk)) = E(π̂k+1(sk+1)). Hence

E(∆k) = 0.

Let, sK be the last K joint actions in sk and sk+1.
π̂k(sk) and π̂k+1(sk+1) represent draws from the same
fixed distribution π(sK). So, their expectations will
always be equal to π(sK). This is because o just looks
at the most recent K joint actions in its history, to
decide on its next step action.

Observation 2. For k < K|k ∈ N, ∆k is a random

variable with 0 ≤ E(∆k) ≤ 1.

In this case, in the computation of π̂k(sk), the draws
can come from different distributions. This is because,
k < K and there is no guarantee of stationarity of
π̂k(sk). Thus, ∆k can be any arbitrary random vari-
able with an expected value within 0 and 1.

High-level idea: Alg. 1 presents how MLeS selects
kbest. We denote the current values of π̂k and ∆k at
time t, as π̂t

k and ∆t
k respectively.

Definition 1. {σt
k}t∈1,2,... is a sequence of real num-

bers, unique to each k, s.t. it satisfies the following:

1. it is a positive monotonically decreasing sequence,

tending to 0 as t → ∞;

2. for a fixed high probability ρ > 0 and for k ∈
[K, Kmax], Pr(∆t

k < σt
k) > ρ;

The reason for choosing such a {σt
k}t∈1,2,... sequence

for each k will be clear from the next two paragraphs.
Later, we will show, how we compute the σt

k’s. MLeS

iterates over values of k starting from 0 to Kmax and
picks the minimum k s.t for all k ≤ k′ ≤ Kmax, the
condition ∆t

k′ < σt
k′ is satisfied (steps 3-11).

For k < K, there is no guarantee that ∆k will tend
to 0, as t → ∞ (Observation 2). More often than not,
∆k will tend to a positive value quickly. On the other
hand, σt

k → 0 as t → ∞ (condition 1 of Definition 1).
This leads to one of the following two cases:
1) σt

k becomes ≤ ∆t
k and step 6 of Alg. 1 holds, thus

rejecting k as a possible candidate for selection.
2) k gets selected. However, then we are sure that
π̂t

k is no more than
∑

k≤k′<K σt
k′ distant from π̂t

K (the
best model of π we have at present). With increasingly
many time steps, π̂t

k needs to be an increasingly better
approximation of πt

K , to keep getting selected.

For k ≥ K, all ∆t
k’s → 0, as t → ∞ (Observation 1).

Since for all k ≥ K : Pr(∆t
k < σt

k) > ρ (condition 2 of
Definition 1), K gets selected with a high probability
ρKmax−K+1. A model with memory size more than K

is selected with probability at most (1− ρKmax−K+1),
which is a small value.

We now address the final part of Alg. 1 that we have
yet to specify: setting the σt

k’s (step 2).
Choosing σt

k: In the computation of ∆t
k, MLeS

chooses a specific st
k from the set of all possible joint

histories of size k, a specific st
k+1 from Aug(st

k) and
an action at

o, for which the models π̂t
k and π̂t

k+1 differ
maximally on that particular time step. So,

∆t
k < σt

k ≡ |π̂t
k(st

k, at
o) − π̂t

k+1(s
t
k+1, a

t
o)| < σt

k (1)

The goal will be to select a value for σt
k s.t. condition

2 of Definition 1 is always satisfied. Condition 1 will
implicitly follow from the above. For k ∈ [K, Kmax],
we can rewrite Inequality 1 as,

≡ |(|π̂t
k(st

k, at
o) − E(π̂t

k(st
k, at

o)|) − (|π̂t
k+1(s

t
k+1, a

t
o)

−E(π̂t
k+1(s

t
k+1, a

t
o)|)| < σt

k (2)

The above step follows from using E(π̂t
k(st

k, at
o)) =

Convergence, Targeted Optimality, and Safety in Multiagent Learning

Algorithm 1: Find-Model

output : kbest, π̂best,
kbest ← −1, π̂best ← null1

for all 0 ≤ k ≤ Kmax, compute ∆t
k and σt

k2

for 0 ≤ k ≤ Kmax do3

flag ← true4

for k ≤ k′ ≤ Kmax do5

if ∆t
k′ ≥ σt

k′ then6

flag ← false7

break8

if flag then9

kbest ← k; π̂best ← π̂t
k10

break11

return kbest and π̂best12

E(π̂t
k+1(s

t
k+1, a

t
o)) ≥ 0 (Observation 1). One

way to satisfy Inequality 2 is to have both
|π̂t

k(st
k, at

o) − E(π̂t
k(st

k, at
o))| and |π̂t

k+1(s
t
k+1, a

t
o) −

E(π̂t
k+1(s

t
k+1, a

t
o))| be < σt

k. Thus, to ensure [k ∈
[K, Kmax] : Pr(∆t

k < σt
k) > ρ], we need a lower bound

of
√

ρ, on the probabilities of the above 2 inequalities.

Also, we observe that the following holds :

Pr(|π̂t
k+1(s

t
k+1, a

t
o) − E(π̂t

k+1(s
t
k+1, a

t
o))| < σt

k) >
√

ρ (3)

=⇒ Pr(|π̂t
k(st

k, at
o) − E(π̂t

k(st
k, at

o))| < σt
k) >

√
ρ (4)

This can be derived by applying Hoeffding’s inequal-
ity (Hoeffding, 1963) and using v(st

k) ≥ v(st
k+1).

v(st
k) ≥ v(st

k+1) because the number of visits to a joint
history sk must be at least the number of visits to any
member from Aug(sk). So,

Pr(|π̂t
k+1(s

t
k+1, a

t
o) − E(π̂t

k+1(s
t
k+1, a

t
o))| < σt

k) >
√

ρ (5)

=⇒ Pr(∆t
k < σt

k) > ρ

The problem now boils down to selecting a suitable
σt

k s.t. Inequality 5 is satisfied. Hoeffding’s inequal-
ity gives us an upper bound for σt

k in Inequality 5.
Using that upper bound and solving for σt

k, we get,

σt
k =

√

(1
2v(st

k+1
)
ln(2

1−√
ρ
)). So in general, for each

k ∈ [0, Kmax], the σt
k value is set as above. Note that,

v(st
k+1) is the number of visits to the specific st

k+1 cho-
sen for the computation of ∆t

k. Setting σt
k as above

satisfies both the conditions specified in Definition 1.
Condition 1 follows implicitly since in infinite play, the
action selection mechanism ensures infinite visits to all
joint histories of a finite length.

Theoretical underpinnings: Now, we state our
main theoretical result regarding model selection.

Lemma 3.1. After all feasible joint histories of size

K + 1 have been visited
(K+1)2

2ǫ2
ln(2

1−√
ρ
) times, then

with probability at least ρKmax+2, the π̂best returned by

Alg. 1 is an ǫ approximation of π. ρ is the fixed high

probability value from Condition 2 of Definition 1.

Proof. When all k < K have been rejected, Alg. 1
selects K with probability at least ρKmax−K+1. If p

is the probability of selecting any k < K as kbest, the
probability of selecting any k ≤ K as kbest, is then at
least p+(1− p)ρKmax−K+1 > ρKmax−K+1 > ρKmax+1.
If kbest = K, then we know that ∆t

K < σt
K . So from

Inequality 4,

Pr(|π̂t
K(st

K , at
o) − π(st

K , at
o))| < σt

K) >
√

ρ

=⇒ Pr(|π̂t
K(st

K , at
o) − π(st

K , at
o)| < σt

K) > ρ

st
K and at

o are the respective joint history of size K

and action, for which models π̂t
K and π̂t

K+1 maximally
differ at t. So in this case, with probability ρ, π̂best is
a σt

K approximation of π. In similar fashion it can be
shown that if kbest < K, then with probability ρ, π̂best

is a
∑

k≤k′≤K σt
k′ approximation of π.

If an ǫ approximation of π is desired, a sufficient con-
dition is to ensure that for all 0 ≤ k ≤ K, σt

k gets
assigned a value ≤ ǫ

K+1 . If all feasible joint histo-

ries of size K+1 are visited (K+1)2

2ǫ2
ln(2

1−√
ρ
) times,

then σt
K must be less than ǫ

K+1 (from Inequality 5
and Hoeffding’s inequality). Also every feasible his-
tory of smaller sizes, must also have been visited at

least (K+1)2

2ǫ2
ln(2

1−√
ρ
) times. Hence σt

k for all k < K

also must have values less than ǫ
K+1 .

For Alg. 1 to return an ǫ approximation of π,
MLeS does not need to know the number of visits
(Lemma 3.1) required beforehand; it just needs to en-
sure that every feasible K + 1 history gets visited so
many times. Finally, what remains to be addressed
is the action-selection mechanism (step 3, main algo-
rithm).

3.3. Action selection

On each time step, the action selection mechanism
decides on what action to take for the ensuing time
step. If the π̂best returned is null, it plays the maximin
strategy. If π̂best 6= null, the action selection strategy
picks the AIM associated with opponent memory kbest

and takes the next step in the reinforcement learning
problem of computing a near-optimal policy for that
AIM. In order to solve this RL problem, MLeS uses
the variant of the R-Max algorithm that does not as-
sume that the mixing time of the underlying MDP
is known (Brafman & Tennenholtz, 2003). R-Max is
a model based RL algorithm that converges to play-
ing an ǫ-optimal policy for an MDP with probability

Convergence, Targeted Optimality, and Safety in Multiagent Learning

1-δ, in time complexity polynomial in 1
ǫ
, ln(1

δ
) and

certain parameters of the MDP. A separate instantia-
tion of the R-Max algorithm is maintained for each of
the possible Kmax+1 AIMs pertaining to the possible
memory sizes of o, i.e, M0,M1, . . . ,MKmax

. On each
step, based on the kbest returned, the R-Max instance
for the AIM Mkbest

is selected to take an action.

The steps that ensure targeted optimality against
adaptive opponents are then as follows:
1. First, ensure that Alg. 1 keeps returning a kbest ≤
K with a high probability

√
1 − δ s.t. π̂best is an

ǫ(1−γ)
2Size(K) approximation of π. The conditions for that

to happen are given by Lemma 3.1. Playing optimally
against such an approximation of π, guarantees an ǫ

2 -
optimal payoff against o (Lemma 4 of (Brafman & Ten-
nenholtz, 2003)). Thus an ǫ

2 -optimal policy for such a
model will guarantee an ǫ-optimal payoff against o.
2. Once such a kbest ≤ K is selected by Alg. 1 with
a high probability

√
1 − δ on every step, then with a

probability
√

1 − δ, converge to playing an ǫ
2 -optimal

policy for Mkbest
. In order to achieve that, the R-Max

instantiation for Mkbest
will require a certain fixed

number of visits to every joint history of size kbest.
Since the kbest selected by Alg. 1 is at most K with a
high probability , a sufficient number of visits to every
joint history of size K will suffice convergence to an
ǫ
2 -optimal policy.

It can be shown that our R-Max-based action selec-
tion strategy implicitly achieves both of above steps
in number of time steps polynomial in 1

ǫ
, ln(1

δ
) and

λ−Size(K+1). Note, we do not have the ability to take
samples at will from different histories, but may need
to follow a chain of different histories to get a sam-
ple pertaining to one history. In the worst case, the
chain can be the full set of all histories, with each
transition occurring with λ. Hence the unavoidable
dependence on λ−Size(K+1), in time complexity. The
bounds we provide are extremely pessimistic and likely
to be tractable against most opponents. For example
against opponents which only condition on MLeS’s re-
cent history of actions, λ−Size(K+1) dependency gets
replaced by a dependency over just |A|K+1.

So far what we have shown is that MLeS, with a high
probability 1-δ on each step, converges to playing an
ǫ-optimal policy. It is important to note that, acting in
this fashion does not guarantee it a return that is 1-δ
times the ǫ-optimal return. However, we can compute
an upper bound on the loss and show that the loss is
extremely small for small values of δ. Let rt be the ran-
dom variable that denotes the reward obtained on time
step t by following the ǫ-optimal policy. The maximum
loss incurred is : |(1 − δ)

∑∞
t=0 γtE(rt) −

∑∞
t=0 γt(1 −

δ)tE(rt)| < |∑∞
t=0 γtE(rt) −

∑∞
t=0 γt(1 − δ)tE(rt)| ≤

|∑∞
t=0 γt − ∑∞

t=0 γt(1 − δ)t| ≤ γδ
(1−γ)(1−γ(1−δ)) . In the

above computation, we assume that whenever MLeS

does not play the ǫ-optimal policy, it gets the mini-
mum reward of 0. We denote this loss as L(δ), since it
is a function of δ (γ being fixed). Note that L(δ) can
be made extremely small by selecting a very small δ.

This brings us to our main theorem regarding MLeS.

Theorem 3.2. For any arbitrary ǫ > 0 and δ > 0,
MLeS with probability at least 1-δ, achieves at least

within ǫ+L(δ) of the expected value of the best response

against any adaptive opponent, in number of time steps

polynomial in 1
ǫ
, ln(1

δ
) and λ−Size(K+1).

Against an arbitrary o, our claims rely on o not behav-
ing as a Kmax adaptive opponent in the limit. This
means ∆Kmax

tends to a positive value, as t → ∞.
Alg. 1 returns π̂best as null in the limit, with probabil-
ity 1. MLeS will then subsequently converge to playing
the maximin strategy, thus ensuring safety.

4. Convergence and Model learning
with Safety (CMLeS)

In this section we build on MLeS to introduce a
novel MAL algorithm for an arbitrary repeated game
which achieves safety, targeted optimality, and conver-
gence, as defined in Section 1. We call our algorithm,
Convergence with Model Learning and Safety: (CM-

LeS). CMLeS begins by testing the opponents to see if
they are also running CMLeS (self-play); when not, it
uses MLeS as a subroutine.

4.1. Overview

CMLeS (Alg. 2) can be tuned to converge to any Nash
equilibrium of the repeated game in self-play. Here,
for the sake of clarity, we present a variant which con-
verges to the single stage Nash equilibrium. This equi-
librium also has the advantage of being the easiest of
all Nash equilibria to compute and hence has histor-
ically been the preferred solution concept in multia-
gent learning (Bowling & Veloso, 2001; Conitzer &
Sandholm, 2006). The extension of CMLeS to allow
for convergence to other Nash equilibria is straightfor-
ward, only requiring keeping track of the probability
distribution for every conditional strategy present in
the specification of the equilibrium.

Steps 1 - 2: Like Awesome, we assume that all
agents have access to a Nash equilibrium solver and
they compute the same Nash equilibrium profile. If
there are finitely many equilibria, then this assump-
tion can be lifted with each agent choosing randomly
an equilibrium profile, so that there is a non-zero prob-

Convergence, Targeted Optimality, and Safety in Multiagent Learning

Algorithm 2: CMLeS

input : n, τ = 0
for ∀j ∈ {1, 2, . . . , n} do1

π∗

j ← ComputeNashEquilibriumStrategy()2

AAPE ← true3

while AAPE do4

for Nτ rounds do5

Play π∗

self6

for each agent j update φτ
j7

recompute AAPE using the φτ
j ’s and π∗

j ’s8

if AAPE is false then9

if τ = 0 then10

Play ao, Kmax+1 times11

else if τ = 1 then12

Play ao, Kmax times followed by a13

random action other than ao14

else15

Play ao, Kmax+1 times16

if any other agent plays differently then17

AAPE ← false18

else19

AAPE ← true20

τ ← τ + 121

Play MLeS22

ability that the computed equilibrium coincides.
Steps 3 - 4: The algorithm maintains a null hypoth-
esis that all agents are playing equilibrium (AAPE).
The hypothesis is not rejected unless the algorithm is
certain with probability 1 that the other agents are
not playing CMLeS. τ keeps count of the number of
times the algorithm reaches step 4.
Steps 5 - 8 (Same as Awesome): Whenever the algo-
rithm reaches step 5, it plays the equilibrium strategy
for a fixed number of episodes, Nτ . It keeps a running
estimate of the empirical distribution of actions played
by all agents, including itself, during this run. At step
8, if for any agent j, the empirical distribution φτ

j dif-
fers from π∗

j by at least ǫτ
e , AAPE is set to false. The

CMLeS agent has reason to believe that j may not be
playing the same algorithm. The ǫτ

e and Nτ values for
each τ are assigned in a similar fashion to Awesome

(Definition 4 of (Conitzer & Sandholm, 2006)).
Steps 10 - 20: Once AAPE is set to false, the algo-
rithm goes through a series of steps in which it checks
whether the other agents are really CMLeS agents.
The details are explained below when we describe the
convergence properties of CMLeS (Theorem 4.1).
Step 22: When the algorithm reaches here, it is sure
(probability 1) that the other agents are not CMLeS

agents. Hence it switches to playing MLeS.

4.2. Theoretical underpinnings

We now state our main convergence theorems.

Theorem 4.1. CMLeS satisfies both the criteria of

targeted optimality and safety.

Proof. To prove the theorem, we need to prove:
1. For opponents not themselves playing CMLeS, CM-

LeS always reaches step 22 with some probability;
2. There exists a value of τ , for and above which, the
above probability is at least δ.
Proof of 1. We utilize the property that a K adap-
tive opponent is also a Kmax adaptive opponent (see
Observation 1). The first time AAPE is set to false, it
selects a random action ao and then plays it Kmax+1
times in a row. The second time when AAPE is set to
false, it plays ao, Kmax times followed by a different
action. If the other agents have behaved identically
in both of the above situations, then CMLeS knows
: 1) either the rest of the agents are playing CMLeS,
or, 2) they are adaptive and plays stochastically for a
Kmax bounded memory where all agents play ao. The
latter observation comes in handy below. Henceforth,
whenever AAPE is set to false, CMLeS always plays
ao, Kmax+1 times in a row. Since a non-CMLeS oppo-
nent must be stochastic (from the above observation),
at some point of time, it will play a different action
on the Kmax+1’th step with a non-zero probability.
CMLeS then rejects the null hypothesis that all other
agents are CMLeS agents and jumps to step 22.
Proof of 2. This part of the proof follows from Ho-
effding’s inequality. CMLeS reaches step 22 with a
probability at least δ in τ polynomial in 1

κ
and ln(1

δ
),

where κ is the maximum probability that any agent
assigns to any action other than ao for a recent Kmax

joint history of all agents playing ao.

Theorem 4.2. In self-play, CMLeS converges to play-

ing the Nash equilibrium of the repeated game, with

probability 1.

The proof follows from the corresponding proof for
Awesome (Theorem 3 of (Conitzer et al., 2006)).

5. Results

We now present empirical results that supplement the
theoretical claims. We focus on how efficiently CMLeS

models adaptive opponents in comparison to existing
algorithms, PCM(A) and Awesome. For CMLeS, we
set ǫ = 0.1, δ = 0.01 and Kmax = 10. To make the
comparison fair with PCM(A), we use the same values
of ǫ and δ and always include the respective opponent
in the target set of PCM(A). We also add an adaptive
strategy with K = 10 to the target set of PCM(A), so
that it needs to explore joint histories of size 10.

Convergence, Targeted Optimality, and Safety in Multiagent Learning

We use the 3-player Prisoner’s Dilemma (PD) game
as our representative matrix game. The game is a 3
player version of the N-player PD present in GAMUT.4

The adaptive opponent strategies we test against are :
1. Type 1: every other player plays defect if in the
last 5 steps CMLeS played defect even once. Other-
wise, they play cooperate. The opponents are thus de-
terministic adaptive strategies with K = 5.
2. Type 2: every other player behaves as type-1 with
0.5 probability, or else plays completely randomly. In
this case, the opponents are stochastic with K = 5.
The total number of joint histories of size 10 in this
case is 810, which makes PCM(A) highly inefficient.
However, CMLeS quickly figures out the true K and
converges to optimal behavior in tractable number of
steps. Figure 2 shows our results against these two
types of opponents. The Y-axis shows the payoff of
each algorithm as a fraction of the optimal payoff
achievable against the respective opponent. Also plot-
ted in the same graph, is the fraction of times CMLeS

chooses the right memory size (denoted as convg in
the plot). Each plot has been averaged over 30 runs to
increase robustness. Against type-1 opponents (Fig-
ure 2(i)), CMLeS figures out the true memory size
in about 2000 steps and converges to playing opti-
mally by 16000 episodes. Against type-2 opponents
(Figure 2(ii)), it takes a little longer to figure out the
correct memory size (about 35000 episodes) because
in this case, the number of feasible joint histories of
size 6 are much more. Both Awesome and PCM(A)
perform much worse. PCM(A) plays a random explo-
ration strategy until it has visited every possible joint
history of size Kmax, hence it keeps getting a constant
payoff during this whole exploration phase.

Due to space constraints we skip the results for con-
vergence and safety. However, it will be worthwhile
to mention, that when Kmax was set to 4, MLeS con-
verged to playing the maximin strategy in about 10000
episodes, against both of the above opponents. The
convergence part of MLeS uses the framework of Awe-

some and the results are exactly similar to it.

6. Conclusion and Future Work

In this paper, we introduced a novel MAL algorithm,
CMLeS, which in an arbitrary repeated game, achieves
convergence, targeted-optimality against adaptive op-
ponents, and safety. One key contribution of CMLeS

is in the manner it handles adaptive opponents: it
requires only a loose upper bound on the opponent’s
memory size. In contrast, the existing state of the
art algorithm, PCM(A), requires a complete specifica-

4http://gamut.stanford.edu/userdoc.pdf

 0

 0.25

 0.5

 0.75

 1

 0 5000 10000 15000 20000

R
at

io

Episode (Against Trigger Strategy)

 0

 0.25

 0.5

 0.75

 1

 0 20000 40000 60000 80000

R
at

io

Episode (Against 50 % Random and 50 % Trigger Strategy)

CMLeS convg PCM(A) AWESOME

Figure 2. Against adaptive opponents

tion of the adaptive opponents at the beginning, which
it calls a target set. Second, and more importantly,
CMLeS improves on PCM(A), by promising targeted
optimality against adaptive opponents in time steps
polynomial in λ−Size(K+1) where Size(K + 1) is the
number of feasible histories of size K+1, and λ is the
minimum non-zero probability that the opponent as-
signs to an action, in any history. PCM(A) guarantees
the same, but in steps polynomial in λ−Size(Kmax).

Right now, the guarantees of CMLeS are only in self-
play or when all other agents are adaptive. Any
other distribution of agents is considered arbitrary,
and MLeS converges to playing the maximin strategy.
Our ongoing research agenda includes improving CM-

LeS to have better performance guarantees against ar-
bitrary mixes of agents, i.e., some adaptive, some self-
play, and the rest arbitrary.

References

Banerjee, B and Peng, J. Performance bounded reinforce-
ment learning in strategic interactions. In AAAI’04

Bowling, M and Veloso, M. Convergence of gradient dy-
namics with a variable learning rate. In ICML’01

Brafman, R and Tennenholtz, M. R-max - a general poly-
nomial time algorithm for near-optimal reinforcement
learning. In J. Mach. Learn. Res.’03

Chakraborty, D and Stone, P. Online multiagent learning
against memory bounded adversaries. In ECML’08

Conitzer, V and Sandholm, T. Awesome: A general multi-
agent learning algorithm that converges in self-play and
learns a best response against stationary opponents. In
J. Mach. Learn. Res.’06

Hoeffding, W. Probability inequalities for sums of bounded
random variables. Journal of the American Statistical
Association’1963

Powers, R and Shoham, Y. Learning against opponents
with bounded memory. In IJCAI’05

Powers, R, Shoham, Y, and Vu, T. A general criterion
and an algorithmic framework for learning in multi-agent
systems. Mach. Learn.’07

Sutton, R and Barto, A. Reinforcement Learning: An In-
troduction’ 98

