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Abstract— Mobile robots have to detect and handle a variety
of potential hazards to navigate autonomously. We present a
real-time stereo vision based mapping algorithm for identifying
and modeling various hazards in urban environments – we
focus on inclines, drop-offs, and obstacles. In our algorithm,
stereo range data is used to construct a 3D model consisting
of a point cloud with a 3D grid overlaid on top. A novel
plane fitting algorithm is then used to segment the 3D model
into distinct potentially traversable ground regions and fit
planes to the regions. The planes and segments are analyzed
to identify safe and unsafe regions and the information is
captured in an annotated 2D grid map called a local safety
map. The safety map can be used by wheeled mobile robots for
planning safe paths in their local surroundings. We evaluate our
algorithm comprehensively by testing it in varied environments
and comparing the results to ground truth data.

I. INTRODUCTION

A wheeled mobile robot navigating in an urban environ-
ment has to deal with many potential hazards (Table I). The
robot must be able to avoid obstacles and, critically, detect
catastrophic hazards like drop-offs. It is also important that
the robot is able to detect inclined surfaces and estimate their
slopes so as to avoid rolling over or slipping.

Potential Hazards Examples
Obstacles: Static Walls, furniture
Dynamic People, doors
Invisible Glass doors and glass walls
Drop offs Sidewalk curbs, downward stairs
Inclines Wheelchair ramps, curb cuts, sloped sidewalks
Overhangs Table tops, railings, tree branches
Rough surfaces Gravel paths, grass beds
Narrow regions Doorways, elevators

TABLE I: Potential hazards that a mobile robot must deal with in
urban environments.

Research in mobile robotics has primarily focused on
detecting obstacles [1]. Methods for detecting drop-offs [2],
[3], inclines and other hazards have featured less prominently
even though detecting them is just as important. Furthermore,
laser range-finders have been used as the primary sensors
on most robots because they provide reliable and high
quality range information. Cameras have also been used
extensively, but on almost all practical navigation systems
they are accompanied with lasers [1]. Reasons for cameras
not taking a central role include the sensitivity of cameras
to environmental conditions and the difficulty in reliably
interpreting images.

However, we focus on the use of cameras as the primary
sensors, instead of lasers, because cameras are cheaper and
smaller and an image provides a lot more information than

a laser scan. For the price of a single laser scanner, it
is possible to have several cameras on a robot providing
a greater field-of-view and information. Furthermore, in
addition to being useful for navigation, cameras are useful
for a variety of other tasks such as detecting objects and
recognizing places.

Therefore, in this paper we present a stereo vision based
mapping algorithm for detecting inclines, drop-offs, and
static obstacles for enabling wheeled mobile robots to nav-
igate safely in urban environments. Our stereo mapping
algorithm identifies safe and unsafe regions in the robot’s
local surroundings and represents this information using an
annotated 2D grid map called a local safety map. The 2D
local safety map can be used by the robot to plan safe local
paths using standard planning algorithms [19]. In addition,
we also present an evaluation framework that allows for the
comprehensive evaluation of mapping systems, such as ours.
An overview is provided in the following section.

A. OVERVIEW OF SYSTEM

As the robot explores its local surroundings it gets a
constant stream of stereo images. Each new stereo image
pair (or frame) is processed as outlined in the following
steps (corresponding to Sections III through VI), to update
the robot’s current knowledge of the world:

A. A depth (or disparity) map is computed from the stereo
image pair (Fig. 1). The depth readings are transformed into
global coordinates (i.e., map coordinates).

B. A 3D model consisting of a 3D grid and 3D point cloud
is updated with the new depth readings using an occupancy
grid algorithm (Fig. 2).

C. Planes are fit to potentially traversable ground segments
in the 3D model. The process consists of segmenting the 3D
grid followed by fitting planes to points corresponding to the
segments using linear least squares (Fig. 3).

D. Finally, the segments and planes are analyzed for safety
to yield the local safety map (Fig. 4).

Cells in the local safety map are annotated with one of
the following labels: Level: implying the region in the cell
is level and free of obstacles; Inclined: the cell region is
inclined; Non-ground: the cell has an obstacle or overhang
or is lower in height than nearby ground regions; Unknown:
there is insufficient information about the region. Level
and Inclined cells are considered safe and whereas Non-
ground cells are considered unsafe. Safe cells can be further
annotated as being Potential Drop-off Edges, if a drop-off is



expected to be present in the vicinity of the cell. Additionally,
Inclined cells are annotated with their surface normals.

To transform the depth readings into global coordinates
in step A, we need to know the robot’s pose in the global
frame. Since the focus of this work is on building models of
the environment, we assume that the robot is able to localize.
For our experiments we use a laser based 3-DOF localization
algorithm [4] for providing the robot’s pose to our mapping
algorithm (the 3-DOF method can be replaced by a camera
based 6-DOF SLAM algorithm [5]). Since we use a 3-
DOF localization module, our robot is restricted to travelling
only on level surfaces for the experiments reported in this
paper. However, our reconstruction algorithm is general and
applicable without modification to the case when the robot’s
motion has 6-DOF.

We evaluate our system quantitatively by constructing
safety maps for five different datasets and measuring error
rates by comparing the constructed maps against ground truth
maps. We also measure latencies present in the system and
the accuracy of the plane fitting process. The evaluation
framework is very general and we believe it to be a compre-
hensive way of evaluating and comparing the performance
of a variety of mapping systems. Towards this goal we have
made our video datasets and associated ground truth data
publicly available [6].

Our contributions in this work are as follows: (i) A real-
time stereo vision based system for detecting inclines, drop-
offs, and obstacles. (ii) A comprehensive evaluation frame-
work for measuring the performance of various mapping
systems. As part of the system, our contributions are: (a)
A novel method for fitting planes to traversable ground seg-
ments in 3D point clouds. (b) A novel method for analyzing
the segments and planes to build 2D annotated safety maps.

II. RELATED WORK

Here we discuss related prior work on hazard detection
using vision and other sensors. We begin with two systems
that are closely related to our own. Gutmann et al. [7] present
a real-time stereo based navigation system for humanoid
robots. To get accurate floor heights, the raw range data is
first segmented into planes. They then build a 3D model
consisting of an occupancy grid and floor height maps and
use labels similar to ours. However, their system only works
for level surfaces and does not handle inclines. Rusu et
al. [8] present a real-time stereo algorithm that creates a
3D model consisting of polygonal patches. Each patch is
analyzed locally to determine semantic labels similar to our
labels. Since the analysis is very local we believe it can
lead to incorrect labels unlike our work where we first
segment surfaces into larger regions and then assign labels.
Furthermore, they do not detect drop-off edges in their
system.

Other stereo algorithms include work by Iocchi et al. [9]
who present a stereo vision based system for building planar
3D models. However, they only consider vertical planes
and a level ground. Singh et al. [10] fit planes to stereo
data to construct 2D local grid maps and to estimate the

(a) (b)

Fig. 1: (a) Left image from the stereo camera showing a scene from
dataset 1, with a drop-off to the left, and a ramp to the right, of the
center rail. (b) Computed disparity map (brighter areas closer).

traversability of cells. Again the analysis is local in nature
meaning that it can lead to incorrect estimates of slopes. In
addition no semantic labels, like ours, are determined.

Two vision-based methods for the detection of drop-offs
are evaluated in [11]. One method looks for gaps in stereo
range data, while another looks at height differences and
gaps in local terrain/height maps of the environment. The
results from both methods are combined to identify drop-
offs. Ramps are not considered. Rankin et al. [12] merge
stereo vision and thermal signatures to detect drop-offs at
night, requiring the use of special infrared cameras.

There exist various methods for fitting planes to point
cloud data [13], [14]. Of these, Expectation Maximization
(EM) based methods are very popular [14]. However, EM
based methods require that the number of planes be estimated
in some manner beforehand and are subject to local minima
that can be difficult to avoid. Recently, Gaussian Processes
(GP) [15] have become popular for analyzing laser range data
for traversability. However, GPs require heavy computation
and it is unlikely that GPs can handle the sort of false read-
ings produced by stereo unless coupled with other methods.

Laser range-finders are used extensively for detecting ob-
stacles and other hazards. In their DARPA Grand Challenge
vehicle, Thrun et al. [1] use lasers mounted on top of the car
to detect obstacles by measuring height differences of regions
in front of the car. Heckman et al. [3] find drop-offs using
3D laser data. They ray-trace to find occlusions in the laser
grid and determine the cause of the occlusions. Wellington
et al. [16] use lasers and cameras to find the true ground
height and traversability of vegetation covered regions. These
systems differ significantly from ours in the algorithms used
and require the use of expensive laser sensors.

In the following sections we describe in detail the main
steps in our system.

III. COMPUTING STEREO DEPTH MAPS

In the first step a disparity map is computed from the
image pair returned by the stereo camera. We use a standard
off-the-shelf multi-scale correlation stereo method [17] to
compute the disparity maps (Fig. 1). In post-processing,
we remove range readings that are significantly different
from neighboring range readings. Such readings have a high
likelihood of being incorrect and their removal noticeably
improves our system’s performance.

The disparity map provides distances to points in the
world relative to the camera (and hence relative to the robot



assuming the camera’s coordinates are known in the robot’s
frame). Since localization gives the robot’s pose in the global
coordinate frame, a point’s 3D position in the global frame
(denoted (x,y,z)T ) can be computed. Since we are only
interested in safe local motion the localization method does
not have to be globally consistent, only locally consistent.

The output of this step is a set of 3D range points in the
global (or map) coordinate frame.

IV. UPDATING THE 3D MODEL

In the second step, the 3D range points are used to update
a 3D model, consisting of a point cloud and an occupancy
grid, of the robot’s surroundings. The grid is of a fixed size
since we are interested in local reconstruction. We can have
the grid move while centered on the robot thereby always
providing the robot with a model of its local surroundings.
However, in our experiments the distance moved by the robot
is typically small, so a non-scrolling grid suffices. A fixed
size grid has the benefit of bounded computation irrespective
of the distance travelled.

The occupancy grid is updated probabilistically [18]. For
each 3D range point, a ray is cast from the camera to
the 3D point and voxels along the ray have their log odds
probability (LOP) of occupancy updated. Updates are done
by incrementing or decrementing the LOP by the log odds
likelihood of the voxel having produced the range point [18]
(the sensor model). In our work, the LOP of the voxel in
which the point falls is incremented by incrH ; this voxel’s
fore and aft neighbors have their LOP incremented by a lower
amount, incrL; and all other voxels between the fore neighbor
and camera have their LOPs decremented by a fixed amount
decr. A voxel starts off with a LOP of zero. Finding the
correct sensor model amounts to tuning the relative values
of the increment and decrement parameters. In Section VII-
A we examine the effect of different decr values (for fixed
values of incrH = 10 and incrL = 4) on mapping accuracy.

For occupancy grid algorithms to work properly, range
readings should be independent [18]. Unfortunately, this is
not true of stereo range readings. Stereo range points that fall
in a particular voxel are produced by neighboring pixels and
hence are usually highly correlated. We reduce the effect of
correlation by updating the grid for only one point per voxel
per timestep – we use the first point that falls in a voxel and
discard all other points (a side effect of this is an increase
in computational efficiency). We also discard entire stereo
frames when the robot is stationary, since range readings
across such frames are highly correlated.

A point cloud database is also updated in this step. For
each voxel a list of the points that fall in the voxel over time
is maintained. The indices of the voxel in which a point
(x,y,z)T falls are given by,

(u,v,w) = ([x/lv], [y/lv], [z/lv]) (1)
where [·] is the rounding operator and lv is the length of a
voxel’s side (in our experiments we found lv = 0.1m to give a
good balance between mapping accuracy and computational
efficiency). The list is of a fixed size and at each frame the
list is updated with the current point that falls in the voxel.

(a) (b)

Fig. 2: 3D model of dataset 1 (rendered from a viewpoint different
from the image in Fig. 1(a)), built after processing 459 stereo
frames. The 3D model consists of (a) a 3D grid and (b) the cor-
responding 3D point cloud model. Note the discretization imposed
on the ramp by the 3D grid (figure better viewed in color).

Each voxel’s list is ordered according to the distance of the
camera from the point, when the point was seen. Thus, when
the list is pruned, points seen from closer distances are given
preference since such points have lower error.

Once the updates are done, voxels that have a high
probability of occupancy (we use a threshold of occt = 100
on LOP to determine when a voxel is occupied) are identified
in the 3D occupancy grid. Thus, the output of this step is a
3D grid of occupied voxels plus the list of points (the 3D
point cloud) associated with the occupied voxels (Fig. 2).

V. SEGMENTING & FITTING PLANES TO THE 3D MODEL

In this step, the 3D model is first segmented into po-
tentially traversable ground regions (Section V-A) and then
planes are fit to points corresponding to the segments using
linear least squares (Section V-B).

A. Segmenting the 3D grid

The segmentation of the 3D grid is achieved as explained
in Algorithm 1. The segments found for a 3D grid are shown
in Fig. 3(a). Each segment is a collection of voxel columns
that have the same height where a voxel column consists of
voxels that have the same (u,v) indices (Eq. (1)). The index
w is along the vertical direction and is called the indexed
height of a voxel (u,v,w). The height of a voxel column is the
indexed height of the highest occupied voxel in the column
that is below the robot’s height (the robot can travel under
occupied voxels higher than it). The segments represent
distinct level and inclined ground regions that might be
potentially traversable. All remaining voxel columns that
are not part of any segments either represent obstacles or
unreachable areas and are considered non-traversable.

An important detail in the algorithm is that we only con-
sider voxel columns within a given planning radius Rmax of
the robot’s current pose. This is because stereo returns good
range data only within a limited distance and considering
cells far away results in many errors. Section VII-B provides
an experimental justification for the choice of Rmax.

Finding the segments utilizes the fact that robot can travel
only on horizontal or slightly inclined surfaces such as
ramps. Since we are interested in wheeled mobile robots,
surfaces with high inclines are considered non-traversable.
Therefore in the segmentation process we look for regions
of the same height, that are potentially reachable from where
the robot currently is. The segmentation algorithm is very fast



Algorithm 1 Find Traversable Ground Segments in a 3D
Grid
Require: 3D grid and the robot’s pose in the grid.

1: Build a height map: a 2D grid with each (u,v) cell
containing the height w of the corresponding (u,v) voxel
column in the 3D grid.

2: Initialize c = (ur,vr) – the cell in the height map where
the robot is currently located.

3: Mark all cells that are greater than a planning radius
Rmax (= 4m) away from the robot as “not to be exam-
ined”.

4: Create an empty list LU . The list will contain cells that
have to be examined. Let k← 1.

5: Create a new segment Sk and add to it the voxel column
corresponding to cell c.

6: while A cell ci ∈ Sk can be found whose height has not
yet been compared to that of its neighbors do

7: Let wi be cell ci’s height.
8: Find the list of cells, Nc, neighboring ci (do not include

cells marked as “not to be examined”).
9: for each cn ∈ Nc do

10: Let wn be cell cn’s height.
11: if wn = wi then
12: Add the voxel column corresponding to cn to

segment Sk.
13: else if |wn−wi| ≤ wT (= 1) then
14: Add cn to LU . cn’s height is not that different

from ci’s and hence it can lead to the creation
of a new segment. Cells whose height is very
different are probably unsafe.

15: end if
16: end for
17: Mark ci as a cell whose height has been compared to

that of its neighbors.
18: end while
19: if LU 6= φ then
20: Pop LU until a cell c not yet part of any segment is

found. If no such cell is found, Return the list of
segments Sk, ∀k found.

21: k← k +1. Goto step 5.
22: end if
23: Return the list of segments Sk, ∀k found.

(see Section VII-D) and finds appropriate ground segments.
It over-segments, in that a single incline can get broken into
two or more segments, but this allows our algorithm to find
small changes in slope.

B. Least Squares Fit

Once we obtain a segmentation of the 3D grid, for each
segment S we find the 3D points associated with all voxels
in the segment (using the 3D point cloud). We then fit a
plane of the form z = ps1x + ps2y + ps3 to the points using
a standard linear least squares formulation to find the best
fitting plane parameters ps = (ps1 , ps2 , ps3). Fig. 3(b), 3(c)
show the planes obtained for the segmentation in Fig. 3(a).

(a) (b)

(c)
Fig. 3: (a) Segments obtained for the 3D grid in Fig. 2(a) (shown
using different colors). (b) Corresponding planes obtained for each
of the ground segments after the least squares fit. (c) Cross-sectional
view of the planes showing the level ground, the ramp, and the
below ground region (figure better viewed in color).

The output from this step is the list of ground segments,
their associated plane parameters, and also the list of non-
traversable voxel columns.

VI. BUILDING THE LOCAL SAFETY MAP

In this step we analyze the segments and plane parameters
for safety. We assume that the segment on which the robot is
located, is safe. We then find all segments that are reachable
by the robot from the first segment and label those as Safe.
All unreachable segments are labeled as Non-ground, i.e.,
unsafe.

We begin by finding interior and boundary cells of all
segments (we can think of the segments in 2D terms as
each voxel column corresponds to a cell in a 2D grid).
Interior cells are those that have 8 neighbors, with all of
those neighbors belonging to the segment itself. Cells for
which this does not hold are boundary cells. Next we find
neighboring segments: 2 segments are neighbors if any of
their boundary cells are neighbors.

The segments are then analyzed for connectivity and
labeled for safety as described in Algorithm 2. The local
safety map is then obtained by creating a 2D grid (with the
same (u,v) dimensions as the 3D grid) and assigning the
same labels to the cells as the labels of their corresponding
segments. Cells corresponding to the list of non-traversable
voxel columns found above (previous section) are marked
Non-ground. Cells that fall outside the planning radius, Rmax
are labeled as Unexamined. Cells with no labels are marked
Unknown.

If desired, boundary cells of segments labeled Level or
Inclined, can be further annotated as Potential Drop-off
Edges. We consider a boundary cell as possibly being a drop-
off edge if it is next to an Unknown cell and is close to
cells that are lower in height than it. This condition finds
cells that are drop-off edges but also find cells that are not.
As a result, in a practical navigation system cells marked
as Potential Drop-off Edges should be treated as requiring
further observation (it is possible to find confirmed drop-off
edges in front of the robot using the method described in [2]).

The parameters θmax, hT , and numT in Algorithm 2 are
determined using the motion capabilities and dimensions of



Algorithm 2 Labeling Segments and their Planes for Con-
nectivity and Safety
Require: Segment and plane list with neighborhood infor-

mation.
1: Initialize by labeling all segments in the segment list as

Unexamined.
2: Label segments with planes with a slope greater than

θmax (= 10o) as Non-ground.
3: Label small segments with less than nsmall (= 6) cells

as Unknown.
4: Label thin segments as Unknown. Thin segments are

those for which: #interior cells < rthin×#boundary cells
where rthin = 0.1. Small and thin segments are usually
poorly observed and hence not considered.

5: Create an empty list LS. LS will contain segments to be
examined further for safety.

6: Label the segment on which the robot is located as Safe
and add it to LS.

7: while LS 6= φ do
8: Pop LS until a segment S is obtained that has not had

its neighbors examined.
9: Find neighboring segments, NS, of S.

10: for each R ∈ NS do
11: Find neighboring boundary cells cRS of S and R.
12: numRS← 0
13: for each cell c ∈ cRS do
14: Compute the xy-coordinates (xc,yc) of the center

of cell c = (u,v) as follows: xc = u · lv and yc =
v · lv (From Eq. (1)).

15: Compute the expected ground height at cell c’s
center using the plane parameters of both seg-
ments R and S: hS

c = ps1xc + ps2yc + ps3 and
hR

c = pr1xc + pr2yc + pr3 .
16: Compute the difference, hc(S,R) = |hS

c −hR
c |.

17: if hc(S,R) < hT (where hT = 0.05m) then
18: numRS← numRS +1
19: end if
20: end for
21: if numRS ≥ numT (= 5) then
22: Segment R is reachable from S. Label R as Safe

and add R to LS.
23: end if
24: end for
25: Mark S as having had all its neighbors examined.
26: end while
27: Re-label all remaining segments still labeled Unexam-

ined as Non-ground as they are unreachable from the
robot’s current position.

28: Re-classify all segments labeled Safe into Level or In-
clined segments depending on the slope of their planes. If
the slope is greater than θT = 3 degrees label the segment
as Inclined else label it as Level.

29: Return all segments with their labels.

(a) (b)

Fig. 4: (a) The safety map obtained after analyzing the segments
and fitted planes in Fig. 3 for safety. Color scheme: Non-ground
regions in black; Level regions in white; Inclined regions in yellow;
Unknown regions in light grey; Unexamined regions in dark grey;
and Potential Drop-off Edges in blue. (b) Corresponding hybrid 3D
model obtained. Non-ground regions are represented using voxels
(grey) and safe ground regions are represented using planes: green
denotes Level planes and yellow denotes Inclined planes (figure
better viewed in color).

the robot for which the safety maps are being created. θmax
is determined by the maximum incline that the robot can
navigate. hT is the maximum height difference between two
adjoining surfaces that the robot can navigate and numT is
the number of cells that make up the robot’s width.

Thus, the safety map as created, is weakly dependent
on the robot’s dimensions and navigation capabilities but
independent of the trajectories that the mobile robot may
take when navigating. We believe that it is the task of the
path planner to generate and test the feasibility of different
trajectories based on the safety map annotations. This clearly
demarcates the goals of the mapping and path planning
modules.

The output from this step of processing is a 2D local
safety map (Fig. 4(a)) with various annotations for safety.
In addition to the safety map, we can also construct a hybrid
3D model (Fig. 4(b)) that might be useful for other robot
applications. This model is a hybrid of a 3D grid and 3D
planes: the grid is used to represent Non-ground regions
and the planes are used to represent safe ground regions.
However, we believe that for most navigation applications
the 2D local safety map should suffice.

VII. EVALUATION FRAMEWORK AND RESULTS
Our evaluation framework consists of three different parts.

First, we measure the accuracy of the safety maps created
by the system on five stereo datasets by comparing them to
ground truth (GT) safety maps. Second, we measure latencies
in the system that arise due to noise filtering, and third we
measure the system’s plane fitting accuracy. The datasets
were collected using the robot shown in Fig. 5. Laser data
was collected along with video data and used to provide
ground truth for our evaluation. Laser based maps of the
environment were created and then manually annotated and
cleaned to give GT safety maps used in the first part of
the evaluation (the laser maps provided excellent starting
points). We manually fit planes to laser range points to give
GT planes used in the third part of the evaluation.



Fig. 5: The wheelchair robot used for collecting the video datasets.
The robot has a stereo camera and one horizontal and one vertical
laser-rangefinder. The lasers are only used for localization and
providing ground truth data.

A. Error Rates

The first part of the evaluation measures the classification
accuracy of the system by comparing the stereo safety maps
against ground truth safety maps. We do this for five stereo
video data sets (between 350-500 stereo image pairs in each
dataset) collected in a wide variety of environments. Two of
the datasets have both ramps and drop-offs, one dataset has
two ramps, and the remaining two datasets have drop-offs
only. Most environments have large poorly textured regions,
and both indoor and outdoor areas are represented. Lighting
varies from good to fair.

For each constructed safety map we identify the following
cells: (i) False Positives (FP): cells marked unsafe in the
constructed stereo map but labeled safe in the GT map. (ii)
False Negatives (FN): cells marked safe in the constructed
map but marked unsafe in the GT map. (iii) True Positives
(TP): cells marked unsafe that are unsafe. (iv) True Negatives
(TN): cells marked safe that are safe. For purposes of
evaluation, cells marked Level or Inclined are considered safe
and only cells marked Non-ground are considered unsafe.
Cells marked Unknown or Unexamined are considered to be
unclassified. For each safety map we find the number of FP,
FN, TP, and TN cells. Also, of all classified cells in a safety
map we find the number of true safe and unsafe cells present
(the cells have to be classified by the GT map as well).

The errors are computed for all stereo image pairs for
which a safety map is created - frames that capture exactly
the same scene as previous images (this happens when the
robot is stationary, see Section IV on why we do this)
are discarded. Discarded frames only account for 10 to 20
percent of all images. For a given dataset we compute an
overall false negative rate by summing the number of false
negatives in all safety maps created and dividing by the sum
of the number of unsafe cells in those safety maps. Other
error rates are computed in a similar manner. Once error
rates have been computed for each data set, they are averaged
across all datasets and the standard deviations are computed.

Table II shows these averaged error rates for our system
for three different values of the decrement parameter decr
mentioned in Section IV. We deemed our system to be
sensitive to this parameter and hence measured its effect
on the error rates - Fig. 6(a) shows an ROC curve of the
average FP and TP values in Table II. These results along
with Fig. 7 and 8 demonstrate the good performance of our

Decrement Parameter Value 1 3 5
False Negative Rate (FN) 3.0 ± 1.8 8.5 ± 5.3 11.2 ± 7.3
False Positive Rate (FP) 9.3 ± 4.7 6.2 ± 3.7 5.2 ± 2.4
True Positive Rate (TP) 97.0 ± 1.8 91.5 ± 5.3 88.8 ± 7.3
True Negative Rate (TN) 90.7 ± 4.7 93.8 ± 3.7 94.8 ± 2.4

TABLE II: Safety map error rates for the system, averaged across
all datasets, shown for three values of the decrement parameter decr
(Section IV). Standard deviation values are also given.

(a) (b)

Fig. 6: (a) ROC curve showing TP rate vs FP rate for the decr
parameter (Section IV). Increasing the parameter increases the
effect of negative evidence in the occupancy grid. As expected as
decr increases both the FP and TP rates decrease (the FN rate
increases). Depending on what is a minimum acceptable TP rate
the parameter can be adjusted to get closer to a desired FP rate.
(b) Frame Latency: Plot showing number of frames that go by,
before 50% and 90% of the width of a board is visible in the
robot’s occupancy grid, as a function of the initial distance to the
board and the board’s texture. Both textured (Tex) and untextured
(Untex) boards are detected in about the same number of frames
for the 50% case whereas for the 90% case the robot reaches the
untextured board before it is detected (we plot the maximum value
of frame latency for this case).

system. All figures and the movie associated with this paper
are for decr=1.

The most important error metric is the FN rate which turns
out to be very low for our system. It should be noted that a
particular FN rate does not translate directly into the chances
of an accident (e.g., a 3 percent FN rate does not mean
the robot has a 3 percent chance of having an accident).
The movie associated with this paper shows the nature and
distribution of the FN errors the robot experiences. They are
few and usually at some distance from the robot thereby not
putting the robot in immediate danger. Furthermore robots
usually have a margin of safety and so in general the effect
of a particular FN rate is expected to be far less than what
the numbers suggest - this is a direction of future study [19].
Nevertheless the FN rate is a very useful metric.

The FP rate of our system is higher. A high FP rate seems
like a hindrance to navigation because the robot might see
objects where there are none. This would indeed be the case
if false positives were distributed randomly across the safety
map. However, as the movie shows, almost all of the FPs
occur adjacent to existing obstacles - that is most FPs are
caused by obstacles “bleeding” into nearby regions - and
that most false positives disappear as the robot comes closer
to the obstacles. The high FP rate also indicates the noisy
nature of stereo range data.

As the ROC curve shows (Fig. 6(a)) we can reduce the FP
rate by changing the decrement parameter but at the expense



(a) (b) (c)

(d) (e) (f)

Fig. 7: Figures (a) and (d) show sample images from datasets 2 and 3. Figures (b) and (e) show stereo safety maps in the process of
being constructed by the robot (i.e., after the robot has processed only a fraction of the images in the datasets). The robot is shown as a
red triangle. Figures (c) and (f) show the ground truth safety maps for comparison - areas that are in common with the stereo safety maps
on the left are highlighted using circles. The annotations used are the same as those in Fig. 4(a) except that Potential Drop-off Edges are
not marked (figure better viewed in color).

of increasing FN rates. Additional ways to overcome such
errors would be to fit surfaces to all the point cloud data much
like the way we have fit planes to ground points. Another
method would be to use active sensing - as we see in the
movie, false positives disappear as the robot moves closer
and more data is obtained.

B. Detection Latency and Distance

The use of the occupancy grid for noise filtering leads
to latencies in hazard detection. However, such filtering
is necessary because in its absence the robot may be too
“paralyzed with fear” to move. To evaluate the effect of
filtering we measure Frame Latency, defined as the number
of camera frames between the appearance of an object in
a video sequence and its detection by the robot. To make
the notion of detection concrete, we defined it to be the
event when N% of the width of the board is visible in the
occupancy grid.

The Frame Latency depends on object texture and the
initial distance of the object from the robot. To measure
latency as a function of these quantities we drive the robot
towards two boards, one textured and one without texture,
placed at various initial distances from the robot. The results
are plotted in Fig. 6(b).

As the figure shows, when the board is at an initial distance
of 5 meters or less, the robot is able to detect N = 50%
of both textured and untextured boards within 8 frames.
However, for N = 90%, it takes significantly more time for
the untextured board to be detected as expected. In fact,
the robot reaches the board before 90% of it is detected.
This appears like it can be a bit dangerous for the robot, but

what happens is that different parts of the untextured board
are detected, making it appear as an impassable obstacle
nevertheless.

It is worth noting that as the initial distance to the object
increases from 4 to 5 meters, the number of frames taken to
detect the board jumps for N = 90%. This means that it can
take a long time before objects at a distance of more than 4
meters are seen properly with our camera. This provides an
experimental justification for the use of a restricted planning
radius in Section V-A as analysis of objects far away is going
to be unreliable.

C. Plane Fitting Accuracy
We evaluate the accuracy of the plane fitting process by

comparing the detected planes against ground truth planes
obtained using laser range data. We compute: (i) the angle
between the normal of a detected plane and the GT plane,
and, (ii) the average distance between the detected and the
GT plane. From each of the five data sets, we randomly
choose 5 frames and compute the above measures for all
safe planes detected in those frames. We average across all
planes and all data sets. The mean and standard deviation
for the angle are found to be: 1.2 ± 0.5 degrees. The mean
and standard deviation for the distance are found to be: 1.9
± 0.8 centimeters. This shows that plane fitting works very
well and that we are able to accurately estimate the normal
and location of ground surfaces. Fig. 8 shows examples of
planes found using stereo compared to laser data.

D. Computation Time
We implemented a real-time version of our algorithms on

the wheelchair robot. The average computation times per
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Fig. 8: (a) Hybrid 3D model of the environment in Fig. 7(d) (dataset 3). Green represents safe Level planes and yellow represents Inclined
planes. (c) Cross sectional view of the planes in the model compared to laser range data shown as black dots. (b) Hybrid 3D model of
dataset 4 with long low steps each about 15 cm high. The planes in red are found to be unsafe and marked as such - this demonstrates
the system’s ability to detect even small drop-offs. (d) Cross-sectional view of the planes. As can be seen from (c) and (d) the system
does very well at finding Level and Inclined planes and distinguishing Inclined planes from steps (figure better viewed in color).

stereo frame of the algorithms for the real-time version for
a 10× 10× 3 m3 map size are as follows: (i) Updating 3D
model: 92ms. (ii) Grid segmentation: 4ms. (iii) Least squares
fit: 61ms. (iv) Safety analysis: 71ms. This corresponds to an
average cycle rate of 4.4Hz. The algorithms were run on
a laptop with a 1.83 GHz dual core processor which was
simultaneously running a laser-based SLAM algorithm and
the GUI. The stereo depth computation algorithm was run
on a 1.2 GHz machine on the robot at an average cycle rate
of 9Hz.

VIII. CONCLUSION AND FUTURE WORK
We have presented a stereo vision based system for finding

inclines, drop-offs, and static obstacles. Finding such hazards
is very important if robots are to navigate autonomously.
We have comprehensively evaluated our system on five
different datasets and demonstrated good performance. We
have made these datasets and the corresponding ground truth
data publicly available so as to provide a common testing
ground for other robot mapping systems [6].

Our results suggest several avenues for further research.
We plan to estimate the true chances of failure that false
negative error rates translate to. We would also like to
explore the use of active sensing to further reduce error rates
and the effect of stereo noise. Another possible method for
reducing the effect of noise is by fitting surfaces to the entire
point cloud data not just to points representing the ground.
However, that is a much harder problem as obstacles and
other objects can have complex topologies, e.g., due to the
presence of holes.
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