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Abstract

This paper presents a method to robustly track planes
and estimate their 3D poses in a video. A weighted in-
cremental normal estimation method for planes (WINEP) is
presented using Bayesian inference. This estimation method
guarantees an optimal solution based on all the observa-
tions up to the current time, and the computational cost at
each time step does not increase with the growing number
of past frames. The tracking algorithm integrates boundary
information with point feature tracking, which avoids accu-
mulating errors due to intensity changes, image noise, and
inaccurate parameter estimation. The tracking algorithm
deals with low-textured as well as highly-textured planes.
The tracked boundary locations provide the input data for
3D plane pose estimation.

Experiments show that our hybrid tracking method using
both point and line features is better than using only point
features, and our pose estimation algorithm is more robust
and accurate than the conventional homography decompo-
sition method, especially under circumstances of noisy ob-
servations and low number of input features.

1. Introduction
Planar surfaces abound in man-made environments, such

as surfaces on buildings, walls, boxes, and many other man-

ufactured objects. Tracking these planar surfaces and esti-

mating their poses play an important role for an intelligent

agent building models of its environment. Robust plane

pose estimation algorithms can help build 3D models of ob-

jects that are composed of (approximately) planar surfaces.

In this paper we propose a method to robustly track planar

surfaces and estimate their poses.

We refer to a planar surface enclosed by a 2D boundary

as a component, and assume the component boundary is a

chain of line segments, i.e., a polygon. The goal of this

paper is to robustly estimate the 3D poses for components

in an image sequence through tracking.

Point feature tracking, such as the KLT method [19], is

widely used to track moving objects. However, it suffers

from the feature drift problem in a long sequence of im-

ages, and will accumulate errors due to intensity changes,

image noise and inaccurate parameter estimation. Instead,

boundary features are much more robust when the lighting

condition changes or significant noise exists. To avoid error

accumulation, we build a hybrid tracker by incorporating

boundary features into point feature tracking.

One of the highlights of our tracking method is that we

exploit the KLT algorithm to maintain only temporary cor-

respondence between each two adjacent frames based on

point features, while the permanent correspondence across

all the frames is maintained by boundary features. The

temporary correspondence from the KLT algorithm is only

used to predict the boundary location from one frame to the

next. Then, within the local areas of the predicted bound-

ary, a correction step is taken by selecting the best matched

line segment detected using the Hough transform [6]. Our

tracking method works for low-textured as well as highly-

textured components.

The tracker records a history of the component boundary

locations, which are provided as input data for estimating

3D component poses. A key step in component pose esti-

mation is estimating the component’s normal. Traditional

solutions include the analytical method through decompos-

ing a homography matrix, and the nonlinear optimization

(bundle adjustment) method. However, these methods suf-

fer from problems such as being too sensitive to noise, ex-

pensive computation, or local maxima. In addition, the non-

linear optimization method requires a good starting point

and there is no guarantee that it will converge, which makes

it hard to use in robotic applications.

We present a probabilistic method, WINEP (Weighted

Incremental Normal Estimation for Planes), which pro-

vides an optimal estimation of component normals based

on tracked features from all past frames. The method gives

a robust estimation result and also has a low computational

cost per frame that is independent of the number of observed

frames due to the recursive nature of the probabilistic for-

mulation. This estimation method works more robustly and

accurately than the conventional homography decomposi-

tion method when there are only a few input features and
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when the input features are noisy.

The rest of the paper is organized as follows. Section 2

reviews related work. Section 3 and 4 present our tracking

and pose estimation methods in detail respectively. Exper-

imental results are presented in Section 5. Section 6 dis-

cusses future work and concludes.

2. Related Work
Various kinds of representations can be used in object

tracking. Comaniciu et al. [5] proposed a kernel-based

tracking algorithm where an object is represented by an

ellipsoidal region in the image and the mean-shift tracker

maximizes the appearance similarity. Isard and Blake [13]

presented a particle filter based tracking algorithm where

object shape is represented by B-splines. Tran and Davis

presented a robust object tracking method using regional

affine invariant features [20].

Distinctive local point features have been widely used

for tracking, such as by the KLT method [19] or the SIFT

matching method [16, 10]. While point features have

many successful applications, maintaining feature tracks

over many frames may be quite difficult [20, 23], especially

when the input images are noisy. The KLT method is effi-

cient, but it may suffer from the feature drift problem over

a long sequence of images [23, 2, 9].

More robust tracking can be obtained by integrating

other features with point features. Gall et al. [9] exploited

region matching to avoid point feature drift. Pressigout

and Marchand [18] and Vacchetti et al. [21] incorporated

point and edge features for tracking by minimizing the re-

projection errors. Similar to [18, 21] our method integrates

boundary features and point features, but it differs in that

only boundary features are used for permanent correspon-

dence across the images and point features only maintain

temporary correspondence. This allows us to achieve good

tracking performance since the boundary features in general

are more robust to image noise.

Estimation of the normals of planar surfaces plays an im-

portant role in our work. Two images of the same 3D plane

are related by a homography matrix. The homography ma-

trix can be calculated given at least four pairs of match-

ing points/lines [11, 17]. Then the plane pose, rotation and

translation between the two camera spaces can be obtained

by decomposing the homography matrix [17, 4, 15]. This

method is fast, but it is sensitive to noise and may give

more than one physically possible solution. Zelnik-Manor

and Irani [22] derived constraints for multiple planes across

multiple views to improve homography estimation. A non-

linear optimization method using multiple images [12, 17]

can be used to improve the homography decomposition

method, but it has high computational cost because a rel-

atively large number of parameters need to be estimated at

the same time. Improvements were made in [7] to achieve

real-time performance for a few dozen frames. The nonlin-

ear optimization method also requires good initializations

which are hard to guarantee in practice. We have developed

a new probabilistic method for plane normal estimation to

overcome these problems.

3. Component Tracking
The boundary for a component is detected by searching

for contours that are closed and composed of a sequence

of line segments, within the moving region detected by

background subtraction. Once the boundary is detected, a

tracker is assigned to the component, and tracks the compo-

nent automatically over time.

A tracker can be very generically defined as a sym-

bolic pointer into the sensory stream that maintains the

correspondence between a higher-level, symbolically rep-

resented concept and the ever-changing image in the sen-

sory stream [14]. Specifically, in our system a tracker main-

tains the correspondence between the symbol “component”

and its time-varying boundary locations in the image se-

quence. The history of the boundary locations will provide

input data for component pose estimation in Section 4.

Sparse point feature tracking methods such as the KLT

method [19] and the SIFT matching method [16] have been

widely used to track moving objects. We use the KLT

method in our work due to its efficiency and effectiveness

in videos where only small motion takes place between con-

secutive frames.

One important difficulty with point features is that they

may drift slowly away from the correct positions from frame

to frame, especially in low-resolution images, due to inten-

sity changes, image noise and parameter estimation errors.

In general the drift between adjacent frames is very small,

but the accumulated error across a long sequence of frames

can be very problematic. To solve this problem, we inte-

grate boundary information into our tracking algorithm.

3.1. Point Feature Tracking

We track KLT point features only between each two ad-

jacent frames instead of across multiple frames due to the

possible feature drift problem. That is, features are re-

detected at each time step and different sets of features are

used between different adjacent frames.

Salient point features are first detected inside the compo-

nent boundary at time t − 1. Then the features are tracked

by the KLT tracker at time t. The RANSAC algorithm [8] is

used to remove incorrectly matched features. In our experi-

ments, the KLT tracker works very robustly since it only has

to maintain the feature correspondence between two con-

secutive frames. This feature correspondence will be used

to predict the component boundary location at time t, based

on the already-known boundary location at time t − 1.
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Figure 1. Tracking steps. The first figure is based on the image at

t − 1, and all the others are based on the image at t. (a) The red

solid contour is the component boundary sc
t−1 in frame t− 1, and

point features are detected inside the boundary shown as red cir-

cles. (b) The point features are tracked in frame t using the KLT

tracker. (c) The boundary in frame t is predicted as ŝc
t (shown as

a dashed contour) by a transformation of sc
t−1, where the transfor-

mation is obtained from feature correspondence between these two

adjacent frames. (d) Local interest regions (shown as green rect-

angles) are formed around each line segment on ŝc
t . (e) Within

each local interest region, lines are detected using Hough trans-

form and the best matched line is selected (shown as a red solid

line). (f) The final boundary sc
t in frame t is computed.

3.2. Boundary Prediction

The detected features at time t − 1 and the tracked fea-

tures at time t are related by a planar homography trans-

formation Hat. Given at least four pairs of matched point

features, Hat is calculated through the Direct Linear Trans-

formation (DLT) method [12, 17, 1].

Let the component boundary at time t − 1 be sc
t−1, then

we have

ŝc
t = Hats

c
t−1 (1)

where ŝc
t is the predicted boundary at time t.

3.3. Boundary Correction

In order to avoid accumulated error from point feature

tracking, we update the predicted boundary to fit the ob-

served data by matching line segments in their neighbor-

hood areas. Compared to point features, line features are

much more robust to intensity changes and image noise.

Also line features tend to give more accurate position es-

timation than point features.

Around each line segment on the predicted boundary ŝc
t ,

a local interest region is formed in the image at time t. The

interest region is a rectangle with a user-defined height and

width, where the rectangle’s centroid is the line segment’s

centroid, and two laterals of the rectangle are parallel to the

line segment. Within this rectangle, candidate line segments

are detected using the Hough transform [6] after the Canny

edge detection process [3], and the best matched line seg-

ment is used to correct the predicted line segment.

From at least four pairs of matched line features, another

homography matrix Hbt is obtained [11], and the compo-

nent boundary at time t is finally updated as

sc
t = Hbtŝ

c
t (2)

or alternatively

sc
t = HbtHats

c
t−1 (3)

The implementation of the hybrid tracker is demon-

strated in Fig. 1.

3.4. Discussion

In our hybrid tracker, point features maintain only tem-

porary correspondence between each two adjacent frames,

while line features maintain the permanent correspondence

across all the frames for the tracked component. Since

line features are more robust to image noise, this tracking

scheme can work well with low quality videos.

The Hough transform is applied only within the local in-

terest regions of the predicted boundary. In general the KLT

tracking is fairly accurate between adjacent frames, so the

interest regions are typically small such that the computa-

tional cost for boundary correction is low.

This hybrid tracking scheme doesn’t require the compo-

nent to be highly-textured. For low-textured components it

can also work well, because the estimation error in Hat will

not be propagated due to the boundary correction step. We

tested this case in our experiments where only 10 features

were used.

Although untextured components are not our focus in

this paper, the tracking scheme can potentially deal with

them by only using the boundary correction step. In this

case, the interest regions must be made larger.

4. Component Pose Estimation
Now that a component has been robustly tracked over

frames, we want to estimate its pose in each frame. To do

this we present a probabilistic method WINEP (Weighted



Incremental Normal Estimation for Planes), which provides

an optimal solution based on all observations up to the cur-

rent frame, and the computational cost at each time step

does not increase with the growing number of frames.

4.1. Background

Since a component is a planar surface, the coordinates

of points between two poses of the component are related

by a 2D (planar) homography H , and we have H = R +
TNT /d, where R and T are the rotation and translation

matrices relating the two poses, d and N are the distance

and unit normal of the plane in the reference camera space.

From at least four pairs of matching points/lines, H
can be determined up to a scaling factor using the Direct

Linear Transform method [12, 17, 11]. The computed H
can then be decomposed to give two sets of solutions for

{N,R, T/d} (Algorithm 5.2, [17]).

While this method is fast, it’s sensitive to noise, espe-

cially when the number of input features is small and the

observed features are noisy. Also the selection of the cor-

rect solution from the two candidate solutions can be diffi-

cult without prior knowledge.

One way to overcome the problem of noise and unstable

pose estimates is to minimize an error measure over sev-

eral images at the same time. This nonlinear optimization

method can improve on the results of the decomposition

method if the estimates of the rotations, translations, and

normal are good to begin with. But it is hard to converge

with poor initializations and the algorithm sometimes con-

verges to the wrong minima. Even with good initializations,

there is no guarantee for convergence. Furthermore, the

running time of the minimization process can be very ex-

pensive if the number of features and frames is high. These

issues make the method hard to use in robotic applications.

4.2. Geometric Constraints

The world space is chosen to be aligned with the camera

space. We define a component space, where the x-axis is

arbitrarily chosen on the component, the z-axis is along the

direction of the component normal, and the origin can be

any arbitrary point on the component. Note that every point

belonging to the component will have zero value on the z-

axis in this component space.

The frame sequence is numbered as 1, . . . , t. We also

denote a certain frame as frame 0 which is also called the

reference frame. Note that frames 1 through t are consec-

utive frames, but frames 0 and 1 are not necessarily so. At

any time t, the component normal is denoted as Nt, and its

distance to the origin of the camera space as dt.

Thus the 3D component at t = 0 can be represented as

N0P = d0 (4)

for any 3D point P = (Px, Py, Pz)T on the component.

Let p = (pu, pv)T be the calibrated image coordinates cor-

responding to P . Using a perspective camera model, we can

easily calculate P from Eq. 4 given N0, d0 and p. Thus a

component space can be built, and the corresponding point

of P is denoted as P c = (P c
x , P c

y , 0)T in the component

space.

At time t, let the translation and rotation from the

component space to the camera space be Tt and Rt =
(R1t R2t R3t), where Rkt(k = 1, 2, 3) are the column vec-

tors in Rt. The point P c on the component and the its image

coordinates pt = (put, pvt)T are related by

λP

⎛
⎝

put

pvt

1

⎞
⎠ = (R1t R2t R3t Tt)

⎛
⎜⎜⎝

P c
x

P c
y

0
1

⎞
⎟⎟⎠

= (R1t R2t Tt)

⎛
⎝

P c
x

P c
y

1

⎞
⎠ = Ht

⎛
⎝

P c
x

P c
y

1

⎞
⎠ (5)

where λP is the point depth in the camera space, and Ht is

a homography matrix that maps points from the component

plane to the image plane.

The transformation Ht can be determined up to a scaling

factor based on four or more pairs of matching points/lines.

Since Rt is a rotation matrix, it satisfies ‖R1t‖ = ‖R2t‖ =
1 and R1t⊥R2t. Equivalently we have the following con-

straints,

‖H1t‖ − ‖H2t‖ = 0 (6)

HT
1tH2t = 0 (7)

where H1t and H2t are the first two column vectors in Ht.

4.3. Bayesian Formulation for Normal Estimation

To estimate the component pose in an image sequence,

a key step is to estimate its normal N0 and its distance to

the origin d0 in the reference frame. In the case of a single

component, without loss of generality, d0 can be set to any

positive constant. We represent N0 in a spherical coordi-

nates as

N0 = (sinθN
0 cosφN

0 , sinθN
0 sinφN

0 , cosθN
0 )T (8)

where θN
0 ∈ [0, π/2] and φN

0 ∈ [0, 2π) are the normal pa-

rameters.

Our goal is to estimate the probability density function

Pr(θN
0 , φN

0 |z0:t), where z are the observations associated

with the component.

By applying Bayes’ theorem, we have

Pr(θN
0 , φN

0 |z0:t)
∝ Pr(θN

0 , φN
0 |z0)Pr(z1:t|θN

0 , φN
0 , z0) (9)



As discussed in Section 4.2 each zk (1 ≤ k ≤ t) has

to meet certain geometric constraints given {θN
0 , φN

0 , z0},

so we can estimate the normal parameters under the inde-

pendent observation assumption that zt is independent of

z1:(t−1). Then Eq. 9 rewrites as

Pr(θN
0 , φN

0 |z0:t)

∝ Pr(θN
0 , φN

0 |z0)
t∏

k=1

Pr(zk|θN
0 , φN

0 , z0) (10)

which enables us to obtain a recursive formulation as

Pr(θN
0 , φN

0 |z0:t)
∝ Pr(zt|θN

0 , φN
0 , z0)Pr(θN

0 , φN
0 |z0:(t−1)) (11)

Based on Eq. 11 the problem is reduced to choosing the

likelihood function Pr(zt|θN
0 , φN

0 , z0) (t > 0) and the prior

function Pr(θN
0 , φN

0 |z0).

Computing the Optimal Solution. The entire parameter

space for {θN
0 , φN

0 } is uniformly discretized, and the glob-

ally optimal solution for N0 is determined by choosing θN
0

and φN
0 that maximize Pr(θN

0 , φN
0 |z0:t) in Eq. 11. The dis-

cretiztion resolution in our experiments is π/64. The pa-

rameter states whose posterior probability is lower than 10

percent of the highest probability are discarded at each time

step.

4.4. Prior Information

When only a small number of frames are available and

only little motion exists, the prior information on the com-

ponent boundary will take the lead in determining the opti-

mal pose, because motion information is still very ambigu-

ous at this stage. The effect of prior information will grad-

ually be phased out with increasing number of frames and

increasing amount of motion.

If there is not much prior information available, we can

simply set Pr(θN
0 , φN

0 |z0) to be a uniform function. Other-

wise we can set the prior to be

Pr(θN
0 , φN

0 |z0) = eval(sc) (12)

where sc is the 2D component boundary shape in the com-

ponent space and can be obtained from {θN
0 , φN

0 , z0}, and

eval is a function that returns a score based on how well sc

satisfies certain prior geometric knowledge, such as centro-

symmetric, rectangular and circular.

4.5. Likelihood Function

Given θN
0 ,φN

0 ,z0 and zt we calculate the homography

matrix Ht in Eq. 5. Ht has to satisfy the geometric con-

straints shown in Eq. 6 and Eq. 7. So we can design the

likelihood function Pr(zt|θN
0 , φN

0 , z0) based on these con-

straints. Intuitively, the better the constraints are satisfied,

the higher the probability that is assigned to the likelihood

function.

So we design Pr(zt|θN
0 , φN

0 , z0) as

Pr(zt|θN
0 , φN

0 , z0)

= γ(1 + λe
− 2α1|‖H1t‖−‖H2t‖|

‖H1t‖+‖H2t‖ − α2|HT
1tH2t|

‖H1t‖‖H2t‖ ) (13)

where α1 and α2 are user-determined positive constants, λ
is the importance weight for the observation zt (in compari-

son with the other observations z1:(t−1)), and γ is a constant

normalizing term..

Let sc
0 and sc

t denote the component boundaries associ-

ated with z0 and zt respectively. We set the weight λ as

λ = e
−α3

Ar(sc
0)

Ar(sc
t ) (1 − e−α4‖H0t−I‖) (14)

where α3 and α4 are user-determined positive constants,

Ar is a function that returns the area of the corresponding

boundary shape, H0t is the normalized homography trans-

formation between sc
0 and sc

t , and I is a 3 × 3 identity ma-

trix. The normalization procedure for H0t can be found in

Lemma 5.18 in [17]. Intuitively the weight λ will be as-

signed to a high value with large observed boundary sc
t and

large motion between frame 0 and frame t.
Due to the recursive formulation in Eq. 11 and the im-

portance weight assignment in Eq. 13, we name our esti-

mation method as WINEP (Weighted Incremental Normal

Estimation for Planes). In the special case where λ is set to

a positive constant, each observation zk (1 ≤ k ≤ t) makes

the same contribution to the estimation result. We refer to

WINEP with a constant λ as INEP in our experiments.

4.6. Pose Estimation

Once we have N0, at any time t the homography matrix

Ht in Eq. 5 can be obtained between the component plane

and the image plane. Based on the constraints in Eq. 6 and

Eq. 7, we can approximate the rotation/translation matrices

from the component space to the world/camera space by

R1t = H1t/‖H1t‖
R2t = H2t/‖H2t‖
R3t = R1t × R2t

Tt = 2H3t/(‖H1t‖ + ‖H2t‖) (15)

The 3D pose for the component can then be obtained

though a transformation based on the computed Rt, Tt, and

the reference normal N0.

4.7. Discussion

The homography decomposition method takes two input

frames and provides two physically possible solutions, one



Figure 2. Tracking examples for a checker board, a rectangular letter board, a hexagonal letter board and a concave letter board. Tracked

components are shown with red contours. Tracking is based on both point features and line features.

Figure 3. Tracking failures when boundary correction (line features) is disabled. The failures are caused primarily by either accumulated

feature position error or accumulated parameter estimation error.

correct and the other incorrect. Using more pairs of frames,

the correct solution could potentially be selected by check-

ing the consistency among solution candidates [4]. But this

may be difficult in practice in that the incorrect solution

may also have good consistency, especially when there is

no significant motion between the frames. In comparison,

the WINEP method is based on all the observations up to the

current frame, and guarantees a unique optimal solution.

Since the WINEP estimation is recursive such that at

each time step only the current observation is used to up-

date the estimation, this method does not increase computa-

tion with increasing number of frames. Instead, the conven-

tional nonlinear optimization method will have to estimate

more parameters with more input frames, so usually it’s not

possible to get a globally optimal solution. In comparison

with the homography decomposition method, the computa-

tional cost for WINEP is higher because it needs to maintain

a distribution of the normal parameters.

The homography decomposition and nonlinear optimiza-

tion methods do not maintain a distribution of the normal

parameters as WINEP does, so it’s hard to impose prior

knowledge onto the two conventional methods.

The input features to WINEP can be any point/line fea-

tures either inside the component or on the component

boundary, as long as these features can be matched across

all the concerned images. We only use features on the

boundary in this paper because in our experiments bound-

ary features are more robust than point features inside the

component.

The WINEP method will also apply to a set of static im-

ages (as opposed to videos), as long as feature correspon-

dence can be obtained among the images.

5. Experiments

To evaluate our work, we collected 8 videos with each

containing a moving object. The moving objects in-

clude a checker board (Dataset1), a rectangular letter board

(Dataset2-Dataset6), a hexagonal letter board (Dataset7)

and a concave letter board (Dataset8).

5.1. Tracking Results

In the test videos, the boundary of the interest component

is tracked over time by our hybrid tracker. Some typical

tracked frames from the videos are shown in Fig. 2.

Our hybrid tracker incorporates boundary information

(line features) with point features. To demonstrate the im-

portance of integration of boundary information, we also

tested our tracking algorithm where the boundary correction

step is disabled. That is, only point features are used. This

test was done for two cases, (i) the same features are tracked

over time, and (ii) features are detected at each frame and

tracked only in the next frame. In case (i), the current

boundary can be mapped from the reference boundary, by

a homography transformation calculated based on the fea-

tures in the current frame and the reference frame. In case

(ii), the current boundary can be obtained the same way, ex-

cept that the homography transformation has to be accumu-

lated by transformations calculated from features between

each pair of adjacent frames.

In either case (i) or (ii), tracking only point features

worked fine for the checker board, because it is highly-

textured and the corner points are very salient. But for all

the other videos, tracking only point features was obviously

not sufficient. Some failed tracking frames are shown in



0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time

E
rr

o
r

HD

INEP

WINEP

WINEP (with prior)

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time

E
rr

o
r

HD

INEP

WINEP

WINEP (with prior)

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

E
rr

o
r

HD

INEP

WINEP

WINEP (with prior)

0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time

E
rr

o
r

HD

INEP

WINEP

WINEP (with prior)

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

E
rr

o
r

HD

INEP

WINEP

WINEP (with prior)

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

Time

E
rr

o
r

HD

INEP

WINEP

WINEP (with prior)

Figure 4. Normal estimation errors (best viewed in color). The error is computed as the 2-norm of the difference between the estimated

normal and the ground truth normal. Due to page limit, we only show the estimation errors for Dataset 2,3,5,6,7 and 8. Since the

observations in these low quality videos are noisy and the number of features used for pose estimation is low, the estimation results for

the HD method are very unstable. But our estimation methods give very robust results, because they maintain a distribution of the normal

parameters (INEP), assign importance weights to observations (WINEP), and incorporate prior knowledge (WINEP with prior). In the last

figure, the WINEP (with prior) method gives worse estimation in the beginning because the concave letter box is not centro-symmetric.

Fig. 3. The primary reason for failures in case (i) is that fea-

tures drifted slowly away from the correct positions. The

failures in case (ii) are caused primarily by accumulated pa-

rameter estimation errors. It’s also worth noticing in case

(i) some features may be lost in a long sequence of images.

5.2. Normal Estimation Results

The components are tracked by the hybrid tracker, and

the corner points on the component boundary are the input

features to the HD and WINEP methods.

We obtained the ground truth data of the component nor-

mals for the 8 datasets from two laser rangefinders (horizon-

tal and vertical). Because the camera was manually aligned

with the laser sensors, we expect a small error of the ground

truth data.

We compare the WINEP and HD methods by measur-

ing the estimation errors. The error is computed as the 2-

norm of the difference between the estimated normal and

the ground truth normal. In all our experiments, the param-

eters in Eq. 13 and Eq. 14 were set as α1 = 5, α2 = 5,

α3 = 0.5 and α4 = 1.

While WINEP always gives a unique solution, the HD

method in general provides up to two physically possible

solutions. This ambiguity can be resolved using multi-

ple frames by assuming consistent poses between adjacent

frames [4]. But in practice, when the motion between the

frames is small, or the observations are noisy, it is very hard

to choose the correct solution, either because the consis-

tency of the correct solution may not be guaranteed or be-

cause the incorrect solution gives consistency as good as the

correct one.

To show the robustness and accuracy of WINEP, we in-

tentionally chose the solutions that are closer to the ground

truth data for the HD method. Note that this is unfair to

WINEP, because in practice we generally don’t have knowl-

edge about the ground truth data. But even so, the WINEP

method demonstrated better performance. Fig. 4 shows the

comparisons of normal estimation errors of the HD and

WINEP methods. In these comparisons, we tested the spe-

cial case of WINEP with constant λ = 1 in Eq. 13, referred

as “INEP”. We also tested WINEP with centro-symmetry

priors of the component shapes, referred as “WINEP (with

prior)”. The quantitative estimation results are summarized

in Table 1, where on average the estimation error decreases

from HD, to INEP, to WINEP, to WINEP (with prior).

WINEP runs in near real-time in our experiments.

6. Conclusion and Future Work

We have presented a new method to robustly track 3D

planar objects and estimate their poses in an image se-

quence. The tracking algorithm incorporates boundary in-



Table 1. Normal Estimation Results

Error HD INEP WINEP WINEP(prior)

Error-1 0.2835 0.1315 0.1173 0.0279

Error-2 0.2402 0.1760 0.1643 0.1042

Error-3 0.3360 0.2651 0.2536 0.2176

Error-4 0.3245 0.3570 0.3519 0.2773

Error-5 0.2314 0.1623 0.1495 0.1096

Error-6 0.2316 0.2570 0.2466 0.1629

Error-7 0.2490 0.2507 0.2232 0.2090

Error-8 0.2899 0.1786 0.1741 0.2932

Average 0.2733 0.2223 0.2101 0.1752

formation (line features) into point feature tracking. Com-

pared with point features, line features are generally more

robust to image noise and can generally provide more accu-

rate position estimation, which allows our tracking method

to work better than using only point features.

The normals for the planar objects are estimated based

on the tracked boundary locations. We maintain a distribu-

tion over the normal parameters by dynamically updating

the distribution using the most recently observed boundary

features. This method provides an optimal solution based

on all the past observations. In the case where the observa-

tions are noisy or the number of available features is small,

this method gives more robust and accurate results than the

conventional homography decomposition method.

In future work, we will investigate how 3D models can

be constructed for objects composed of planar surfaces and

how the constructed model can in turn help tracking and

pose estimation.
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