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Abstract— Development requires learning skills using previ-
ously learned skills as building blocks. For maximum flexibility,
the developing agent should be able to learn these skills without
being provided an explicit task or subtasks. We have developed
a method that allows an agent to simultaneously learn hierar-
chical actions and important distinctions autonomously without
being specified a task. This ability to learn new distinctions
allows it to work in continuous environments, and allows an
agent to learn its first actions from motor primitives.

In this paper we demonstrate that our method can use
experience from one set of variables to more quickly learn
a task that requires additional new variables. It does this by
learning actions in a developmental progression. In addition,
we demonstrate this developmental progression by showing that
actions that are mainly used for exploration when first learned
are later used as subactions for other actions.

I. INTRODUCTION

Learning reusable skills is an important part of au-
tonomous mental development [1]. For the skills to be most
useful for development, they should form a hierarchy so that
skills learned earlier can be used later as building blocks
for more complex skills. Additionally, from the perspective
of autonomous mental development, it is important that
this hierarchy of skills be learned without the agent being
given a specified task. This is because we desire that the
agent develop a broad competency and be able to handle
unforeseen circumstances. Autonomous skill learning also
frees the designer from having to predict ahead of time all
of the things that the robot might need to do and the subskills
it will need to perform the task. The robot should therefore
learn a set of skills (or affordances [2]) that are presented to
it by the environment.

Bonarini et al. [3] and Vigorito and Barto [4] present
methods for autonomously learning skills in discrete environ-
ments. In [5] we presented a method for learning hierarchical
skills in a continuous environment. We believe that working
in a continuous environment is important because it requires
the agent to learn both its first primitive actions and a state
abstraction appropriate for the environment.

The contribution of this paper is a demonstration of skill
reuse in a continuous environment where the agent is not
specified a task and learns actions autonomously. In this
paper we evaluate how the method presented in [5] allows the
agent to apply (transfer) skills learned early in development
to a task later in development. We demonstrate this transfer
learning using the Qualitative Learner of Perception and

Abstraction, QLAP. QLAP is a constructivist algorithm that
simultaneously learns a qualitative state representation and
a model. The model takes the form of a set of dynamic
Bayesian networks (DBNs) [6]. When a DBN sufficiently
predicts the dynamics of the environment, it is used to
create a qualitative action. The goal of each qualitative action
qa(v, q) is to set a variable v to a desired value q [5], [7].

We evaluate our algorithm using a simulation with realistic
physics. The simulation consists of a robot sitting at a table
with a block. We compare two agents and evaluate how well
each agent can learn to hit the block off the table. The first
agent initially has access to all of the variables and learns
to hit the block off the table as part of its developmental
progression. The second agent begins with experience with
a subset of the variables and then performs developmental
learning with access to all of the variables. We show that
the second agent learns the task faster by using its previous
experience with the limited number of variables. This is a
small but important step to lifelong learning.

II. THE QUALITATIVE LEARNER OF ACTION AND
PERCEPTION, QLAP

QLAP assumes that the agent can individuate and track
objects and measure the distance between objects. QLAP
also assumes that the agent has motor variables that can be
set to cause movement. The result of this assumption is that
QLAP interacts with the world using a set of continuous
variables (a factored state representation). An overview of
QLAP is shown in Fig. 1.

A. Qualitative Representation

QLAP learns a qualitative state abstraction appropriate
to its environment [7]. A qualitative representation allows
the agent to focus on important distinctions while ignoring
others [8]. QLAP converts continuous variables to qualitative
variables using landmarks. A landmark is a symbolic name
for a point on a number line. Using landmarks we can
convert a continuous variable ṽ with an infinite number
of values into a qualitative variable v with a finite set
of qualitative values Q(v) called a quantity space [8].
A quantity space Q(v) = L(v) ∪ I(v), where L(v) =
{v∗1 , · · · , v∗n} is a totally ordered set of landmark values,
and I(v) = {(−∞, v∗1), (v∗1 , v

∗
2), · · · , (v∗n,+∞)} is the set of

mutually disjoint open intervals that L(v) defines in the real
number line. A quantity space with two landmarks might be



1

discretization

model
, ,j j j jo I  

action


( , )qa v q

, ,i i i io I  

(a) (b)

(c)

(d)

Fig. 1. (a) QLAP simultaneously learns a model and a discretization of the environment. (b) The model takes the form of many small dynamic Bayesian
networks (DBNs). (c) When a DBN makes a sufficiently deterministic prediction, it is converted into a plan in the form of an option. (d) A plan (option)
serves as one way to perform an action.

described by (v∗1 , v
∗
2), which implies five distinct qualitative

values, Q(v) = {(−∞, v∗1), v∗1 , (v
∗
1 , v

∗
2), v∗2 , (v

∗
2 ,+∞)}.

QLAP receives a set of continuous and nominal (discrete)
input variables from the world and uses a set of continuous
motor variables as output. Two qualitative variables are
created for each continuous input variable ṽ, a discrete
variable v(t) that represents the magnitude of ṽ(t), and a
discrete variable v̇(t) that represents the direction of change
of ṽ(t). Also, a qualitative variable v(t) is created for each
continuous motor variable ṽ. For ease of discussion, we will
consider nominal variables to be qualitative variables, and we
will consider the discrete values of nominal variables to be
qualitative values. The result of these transformations is four
types of qualitative variables that the agent can use to affect
and reason about the world: motor variables, magnitude vari-
ables, direction of change variables, and nominal variables.
The properties of these variables are shown in Table I.

TABLE I
TYPES OF QUALITATIVE VARIABLES

Type of Variable Initial Landmarks Learn Landmarks?
motor {0} yes
magnitude {} yes
direction of change {0} no
nominal not applicable not applicable

Each direction of change variable v̇ has a single in-
trinsic landmark at 0, so its quantity space is Q(v̇) =
{(−∞, 0), 0, (0,+∞)}. Motor variables are also given an
initial landmark at 0. Magnitude variables initially have no
landmarks because zero is just another point on the number
line. Initially, when the agent knows of no meaningful
qualitative distinctions among values for ṽ(t), we describe
the quantity space as the empty list of landmarks, {}.
However, the agent can learn new landmarks for magnitude
and motor variables. Each additional landmark allows the
agent to perceive or affect the world at a finer level of
granularity.

B. Events

If a is a qualitative value of a qualitative variable A,
meaning a ∈ Q(A), then the event At→ a is defined by
A(t − 1) 6= a and A(t) = a. That is, an event takes place
when a discrete variable A changes to value a at time t, from

some other value. We will often drop the t and describe this
simply as A→a. We will also refer to an event as E when
the variable and qualitative value involved are not important,
and we use the notation E(t) to indicate that event E occurs
at time t.

C. Dynamic Bayesian Networks

QLAP learns DBNs to represent the dynamics of the
environment [5]. The notation we use for these DBNs is
r = 〈C : E1 ⇒ E2〉 where C is a set of qualitative variables
that serves as a context, event E1 = X→x is the antecedent
event, and event E2 = Y→y is the consequent event. This
DBN r can be written as

r = 〈C : X→x⇒ Y→y〉 (1)

DBN r gives the probability that event Y → y will soon
follow event X→x for each qualitative value in C. Focusing
only on timesteps in which event X→ x occurs helps to
focus the agent’s attention to make learning more tractable.
And using a time window for event Y → y allows the
DBN to account for influences that may take more than one
timestep to manifest. Notice that these DBNs differ from the
typical DBN formulation, e.g. [9], in that there is no action
associated with the DBN. This is because QLAP does not
begin with a set of primitive actions, it only assumes that the
agent has motor variables. The DBNs in QLAP are tied to
the agent’s motors because the antecedent event of the DBN
can be on a motor variable.

To learn each DBN, QLAP finds a pair of events E1 and
E2, such that E2 is more likely to occur soon given that E1

has occurred than otherwise. It then creates a DBN with an
empty context. As the agent explores, QLAP then iteratively
adds context variables that improve the predictive ability of
the DBN (cf. marginal attribution [10]). When there is a
context for which the CPT of the DBN states that event E2

will soon follow event E1 with a probability that exceeds
0.75, the DBN is labeled sufficiently deterministic.

Predicting when the consequent event will follow the
antecedent event is a supervised learning problem. This
formulation allows the agent to learn new landmarks (dis-
tinctions) that improve the predictive ability of the DBN (see
[7], [11] for details.)



D. Actions

In QLAP, the agent learns qualitative actions to achieve
the qualitative values of variables [5]. Each qualitative action
(“action” for short) sets the qualitative value of a variable
to a desired value. In QLAP, actions may be achieved in
more than one way. Each way to achieve the action is called
a plan. Each plan is represented as an option [12]. Once
a DBN is sufficiently deterministic, it is converted into a
plan. These plans are learned using reinforcement learning
[13], see [5] for details. (Although, to reduce memory use,
in this paper the state space of the option consists only of
the context variables and does not include the antecedent and
consequence variables, as was done in [11].)

III. DEVELOPMENTAL LEARNING IN QLAP

QLAP is not given a learning objective; instead, QLAP
learns in a developmental progression. This developmental
progression comes from incrementally learning DBNs, ac-
tions, and landmarks. As described in [14], the developmen-
tal progression also comes from restrictions that take three
forms

1) Restrictions on Learning DBNs In QLAP, a DBN can
only be learned if its antecedent event can be reliably
predicted by a previously learned DBN.

2) Restrictions on Learning Plans A DBN can only be
converted to a plan if the antecedent event can be
reliably achieved using an existing action.

3) Restrictions on Cognitive Load An agent has limited
cognitive resources and an important part of devel-
opment is freeing up resources. QLAP designates an
action as open, full or closed. An action is closed if
its goal can be achieved at least 75% of the time;
otherwise, it is full if it has 5 plans; and it is open
otherwise. Actions that are closed or full do not accept
additional plans. When an action is closed it also
affects the learning of DBNs. QLAP does not add a
DBN if the action to bring about the consequent event
is closed. If an action is closed, all DBNs that predict
that event that are not converted to plans for that action
are deleted. A DBN is also deleted if it does not
become a plan after 100,000 timesteps. Additionally, a
plan (and its associated DBN) is deleted if the action
is not closed and its reliability in no situation is above
(or equal to) 5%.

A. Choices Made During Exploration

The agent continually makes three types of choices during
its exploration. These choices vary in time scale from coarse
to fine.

1) The agent chooses which of its learned actions to
practice. This can be done randomly or by using a
version of Intelligent Adaptive Curiosity (IAC) [15]
which first measures the change in the agent’s ability to
perform the action over time and then chooses actions
where that ability is increasing. In this paper, these
actions are chosen randomly.

2) The agent chooses the best plan for performing the
action. This is done by probabilistically choosing a
plan where the probability of choosing each plan is
based on its estimated probability of success.

3) The agent chooses the subaction within the plan.
This is done using the standard reinforcement learn-
ing technique ε-greedy that balances exploration with
exploitation [13].

B. Execution

An outline of the execution of QLAP is shown in Algo-
rithm 1. Note that for the first 20,000 timesteps the agent
chooses random motor babbling exploration actions. After
that point it chooses a motor babbling action with probability
0.1, otherwise it chooses an exploration action randomly and
chooses an action plan according to [5].

Algorithm 1 The Qualitative Learning of Action and Per-
ception (QLAP)

1: for t = 1 :∞ do
2: Sense environment
3: Convert input to qualitative values using current land-

marks
4: Update statistics to learn new DBNs
5: Update statistics for each DBN
6: if mod(t, 2000) == 0 then
7: Learn new DBNs
8: Delete unneeded DBNs and plans (options)
9: Learn new landmarks to change qualitative repre-

sentation
10: Learn new actions
11: end if
12: if current exploration action is completed then
13: Choose new exploration action and action plan
14: end if
15: Get low-level motor command based on plan of cur-

rent exploration action
16: Pass motor command to robot
17: end for

IV. EVALUATION

A. Experimental Methodology

We run experiments using the environment shown in
Fig. 2. The environment is implemented in Breve [16] and
has realistic physics. The simulation consists of a robot at a
table with a block. The robot has an orthogonal arm that
can move in the x and y directions. The agent explores
autonomously. Each time the agent knocks the block out of
reach the block is replaced with a different block and put on
the table. The block size varies randomly in length from 1.0
to 3.0 units.

B. Evaluation Task

The task is to hit the block to the floor. QLAP learns
autonomously to build task-general skills. During learning,
QLAP does not know that it will be evaluated on this task.



Fig. 2. The robot is implemented in Breve; a simulator with realistic
physics. The robot has a torso with a 2-dof orthogonal arm and is sitting in
front of a table with a block. The robot has two motor variables ũx and ũy

that move the hand in the x and y directions, respectively. The location of
the hand is given by two time-varying continuous variables h̃x and h̃y that
represent the location of the hand in the x and y directions, respectively. The
relationship between the hand and the block is represented by the continuous
variables x̃rl, x̃lr , and ỹtb. The variable x̃rl is the x value of the location
of the right side of the hand in a coordinate system whose origin is centered
on the left side of the block (variable x̃lr is analogous). The variable ỹtb is
the y value of the location of the far (top) side of the hand in a coordinate
system whose origin is centered on the bottom (near) side of the block.
The variable z̃f represents the distance to the floor. There is also a Boolean
variable bang that is true when the block touches the floor (z̃f < 0.05).
There are also three variables ẽl, ẽr , and ẽt that give the closest part of the
block and the left, right, and top edge of the table, respectively. Including
the direction of change variables, there are 21 variables total.

We can be confident that it will learn the specified task
because the environment is small. In larger environments,
more care would have to be taken to ensure that the agent
saw the evaluation task as sufficiently ”interesting” to learn.

Every 10,000 timesteps (about every 8 minutes of physical
experience) we saved the state of the agent. We then tested
how well it could do that task starting from this stored
learned state. Each evaluation consisted of 100 episodes.
Each episode lasted for 300 timesteps or until the block
was moved. The agent received a penalty of −0.01 for each
timestep, and it received a reward of 10.0 if it completed the
task.

C. Experimental Conditions

There are two experimental conditions. For each experi-
mental condition we trained 20 agents.

1) non-transfer The agent explores for 150,000 timesteps
and has access to all of the variables.

2) transfer The agent learns for 150,000 timesteps with-
out the variables relevant to the task (bang and zf in
Fig. 2). It then learns for another 150,000 timesteps
using all of the variables.

We call the conditions transfer and non-transfer because
the transfer agent should use what it learned during the
first 150,000 to more quickly learn to perform the evaluation
task compared with the non-transfer agent that must begin
learning from scratch.

V. RESULTS

We see in Fig. 3 that the transfer agent can reuse the skills
learned during exploration with the limited set of variables
to learn to perform the task faster.

We see in Fig. 4 that the transfer agent makes more
exploratory calls to bang because it developmentally ready
to knock the block off the table to hear the bang noise.
By contrast, the non-transfer agent must reach that level
of development. We see that the non-transfer agent ends at
roughly the number of calls made by the transfer agent after
10,000 timesteps.

Fig. 5 shows subaction and exploration action calls to
moving the hand relative to the block for the non-transfer
case. The graph shows a typical developmental pattern for
the agent where initially this action is called as an exploration
action, and then later this action becomes a subaction of other
actions. (This graph is shown to 80,000 timesteps for clarity,
but the trend continues throughout learning.)

In Fig. 6 we see that the number of DBNs does not grow
without bound. In the non-transfer case, the first peak in
the number of DBNs comes from first deleting unnecessary
DBNs for actions that are closed. The second peak comes
from deleting DBNs that do not become plans after 100,000
timesteps. The transfer cases begins with some transferred
DBNs, but it too does not grow without bound.
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Fig. 3. The transfer agent using previously learned skills learns the task
faster. Error bars are standard error.

VI. RELATED WORK

One way to see how an agent can reuse skills is to look at
the transfer learning literature in reinforcement learning. One
common method of transfer learning involves transferring a
value function from one task to another [17]. If the state
and action spaces of the two methods do not match, then
a mapping needs to be specified (or learned) between the
two. Transfer learning can also be done by learning a model
and then reusing parts of the model for each new task as
was done in [18]. Our method is also model based, but the
model is built in a developmental context.
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Fig. 4. The transfer agent makes more calls to set the variable bang to
true because it is developmentally ready to learn that action.
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Fig. 5. The action of moving the hand relative to the block is first mostly
called as an exploration action. But later, it is mostly called as a subaction
for other actions. This graph is shown to 80,000 timesteps for clarity, but the
trend continues throughout learning. (Graph made using the non-transfer
agent.)
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Fig. 6. The number of DBNs does not grow without bound.

Recently, there has been much work on model-based
approaches that learn structure in the form of DBNs or
decision trees. Degris et al. [2006] proposed a method called
SDYNA that learns a structured representation and then uses
that structure to compute a value function. Similarly, Strehl
et al. [2007] learn a DBN to predict each component of a
factored state MDP. Both of these methods are evaluated
in discrete environments where transitions occur over one-
timestep intervals. Another method is learning probabilistic
planning rules [21]. In the domain of first-order logic they
learn rules that given a context and an action provide a
distribution over results. This algorithm also assumes a
discrete state space and that the agent already has basic
actions such as pick up.

Another approach is to learn subgoals to reach states.
McGovern and Barto [2001] proposed a method whereby
an agent autonomously finds subgoals based on bottleneck
states that are visited often during successful trials and rarely
during unsuccessful ones. Subgoals have also been found by
constructing a transition graph based on recent experience
and then searching for “access states” [23] that allow the
agent to go from one partition of the graph to another.
In Barto et al. [24] options are learned to achieve salient
events. However, these salient events are determined outside
the algorithm, and all of this work takes place in discrete
environments.

VII. DISCUSSION AND FUTURE WORK

A developmental robot must be able to learn continuously
throughout the long period of development. To do this, it
must manage the complexity of the environment without
overwhelming its resources. We can use the qualitative ab-
straction to reduce this complexity because we only pay the
cost of the abstraction. But it is important to balance the gain
and cost of the abstraction. This cost is increased by learning
DBNs, their contexts, and landmarks. But we gain from the
reduced complexity that comes from the hierarchical actions
that these constructions support. In future work we will
further investigate this balancing of abstractions.

A broader issue is that of learning a more sophisticated
representation. There is an important limitation in the repre-
sentation used by QLAP. In QLAP, events are represented as
changes in the values of single variables. This means that the
result of an action must already be represented in QLAP with
a single variable. QLAP represents states this way because
this enables it to do the initial learning.

To see an illustration of this limitation, consider the
example of one block sitting on top of another block. How
can this state be represented in QLAP? It must be represented
as a conjunction of variables. For example, for two blocks
b1 and b2, to represent the state that b1 is on top of b2 we
would need the cumbersome representation

b1x = b2x ∧ b1y = b2y ∧ b1z > b2z (2)

This formula abstracts many low-level states, and we would
like to refer to all of those states using a single symbol.
Using a single symbol, we can start to predict results of



being in this state or when this state will occur. We refer to
this problem of creating a symbol to represent an important
state as the state abstraction problem, and we call such states
high-level states.

There is another representational issue, the event abstrac-
tion problem is the problem of abstracting time-series data
into a single event. Consider the event of block b1 falling
off block b2. This event takes more than one timestep and
involves a change in multiple variables. We refer to such
events as high-level events.

If we can define high-level states, then we can define high-
level events as transitions between high-level states. If we do
this, the set of possible solutions to the state representation
problem is the set of ways to group variables (and variable
values) into high-level states.

To aggregate these states we can consider both bottom-
up and top-down approaches. One bottom-up method is to
identify high-level states as those that are stable. We define
states as stable as those that come up often and stay that
way for a relatively long period of time. One block on top
of another is stable, and two blocks sitting on a table is also
stable. Another example is a block sitting on the floor after
it has fallen off the table. Defining a high-level state as a
block sitting on the floor allows us to define the high-level
event of the block falling off the table without specifying
an additional variable. The high-level event is the transition
from the high-level state of the block being on the table to
the high-level state of the block being on the floor.

While bottom up approaches will be necessary, we may
also want to consider top-down approaches that consider the
agent’s current state. One top-down approach would be to
look for “important” states that are associated with positive
outcomes for the agent.

VIII. CONCLUSION
We present a demonstration of skill reuse in a continuous

environment where no task is specified. The agent simulta-
neously learns a state abstraction and a set of task-general
actions in a developmental progression. Because the agent
only pays the cost of the abstraction, this is a small step
towards being able to do continuous learning.
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