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Abstract. In the last issue of this journal Mitchell, Keller, and Kedar-Cabelli presented a unifying
framework for the explanation-based approach to machine learning. While it works well for a number
of systems, the framework does not adequately capture certain aspects of the systems under development
by the explanation-based learning group at Illinois. The primary inadequacies arise in the treatment of
concept operationality, organization of knowledge into schemata, and learning from observation. This
paper outlines six specific problems with the previously proposed framework and presents an alternative
generalization method to perform explanation-based learning of new concepts.

1. Introduction

The explanation-based approach to learning has recently enjoyed increased
attention in the literature (DeJong, 1983; Ellman, 1985; Minton, 1984; Mitchell,
1983; Mitchell et a/., 1985; Mooney & DeJong, 1985; Porter & Kibler, 1985;
Shavlik, 1985; Silver, 1983). Its roots can be traced back to the MACROPS learning
method in STRIPS (Fikes et al., 1972), but its recent revival, extension, and
refinement must be credited independently to Silver (1983), Mitchell (1983), and
DeJong (1981). Each of these researchers concurrently developed rather large
explanation-based learning computer systems: LEX2 (Mitchell), LP (Silver), and
ESA (DeJong).

Mitchell, Keller, and Kedar-Cabelli (1986) present a lucid description of
explanation-based generalization. Additionally, their formalization is shown to be
able to encompass significant aspects of several other explanation-based systems,
namely Winston et al.'s (1983) system which learns structural definitions from
functional knowledge and the authors' system (DeJong, 1981; Mooney & DeJong,
1985) which learns schemata for natural language processing.

Our research on explanation-based learning has followed a somewhat different
direction than that of Mitchell et al. Our approach is in some ways less general
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and in some ways more general than that of Mitchell et al. (1986). The domains we
have chosen have little in common with the domains of Mitchell's early work
(Mitchell, 1983), so it is hardly surprising that we have reached different conclusions
about explanation-based learning. As a result, we believe that Mitchell, Keller, and
Kedar-Cabelli have omitted a number of important points concerning explanation-
based learning.

We will argue that the following points should be taken into account by an
explanation-based method.

(1) The broader term Explanation-Based Learning better describes the approach
than does Explanation-Based Generalization. It seems both possible and
desirable to apply the approach to concept refinement (i.e., specialization) as well
as concept generalization.

(2) Mitchell et al.'s specification of explanation-based generalization does not
specify how the examples' explanation is constructed. There are two possibilities:
1) the explanation can be constructed by an internal theorem prover/problem
solver with no outside guidance or 2) the explanation can be constructed by ob-
serving and interpreting problem solving behavior of others. The two approaches
require different levels of problem solving abilities, place different constraints on
what concepts can be learned, and require different generalization steps.

(3) Mitchell et al.'s EBG generalization method is too weak. It often does not
generalize the new concept far enough from the particular training example. The
result is undergeneralizations that reflect many unimportant details of the exam-
ple problem. As we shall see, this is a particular problem in several of the domains
that we have been investigating.

(4) There are problems with the notion of an Operationally Criterion as advanced
by Mitchell et al. The criterion itself is not always operational and should be
dynamically computed rather than given as an input. We feel that the opera-
tionality criterion is only an approximation to an important, but much deeper,
concept relating the abilities of the system's performance element to the learning
process.

(5) Knowledge chunking or schematizing should play a central role in the generaliza-
tion process. By asserting a hierarchical relationship among schemata, an
explanation-based learning system can efficiently explore some alternative ex-
planations of an example. This reasoning about schemata during the generaliza-
tion process is not a part of the method advanced by Mitchell et al.

(6) Mitchell et al. have adopted a reduced version of goal regression to perform ob-
ject generalization. They argue, quite correctly, that full goal regression
(Waldinger, 1977; Nilsson, 1980) is inappropriate for explanation-based
generalization. Instead of reduced goal regression, we advocate a different
mechanism, equivalent in many ways to their reduced goal regression, but
capable of unification retraction which allows further generalization and altera-
tion of the explanation.
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In our discussion we prefer the terminology of problem solving. Mitchell, Keller,
and Kedar-Cabelli have cast their paper more in the terminology of theorem proving.
These are two sides of the same coin. In the problem solving, one speaks of states
of the world, the operators that transform one state to another, an initial state, the
goal states which are in general partial characterizations of states, and the plans to
achieve a goal from an initial state. In the theorem proving one speaks of the set of
propositions believed, the rules of inference that transform one set of believed pro-
positions to another (generally monotonically), the initial premises, a theorem to be
proved, and the proofs constructed of a theorem. By identifying these constituents
we can map any theorem proving problem into a problem solving task: given a
theorem the equivalent "goal" is a state in which the theorem is among the proposi-
tions believed to be true. It is derived from the premises (the initial state) by applying
rules of inference (operators) in a particular order. Thus, we will cast our comments
in problem solving terminology with no loss of generality.

2. A brief overview of Mitchell et al.'s EBG method

Mitchell, Keller, and Kedar-Cabelli (1986) present a general technique for learning
by generalizing explanations. The technique involves learning sufficient conditions
for being an example of a particular concept by generalizing an explanation of why
a particular example meets the definition of the concept. Explanations are
represented as proof trees composed of horn-clause inference rules which conclude
that the example is a member of the concept.

The generalization method they present (called EBG for Explanation-Based
Generalization) must be provided with the following information:
(1) Goal concept: A definition of the concept to be learned in terms of high-level or

functional properties which are not directly available in the representation of an
example. For example, the following is a goal concept for a cup as given in
Winston et al. (1983):

OPEN-VESSEL(x) n STABLE(x) l LIFTABLE(x) D CUP(x)

(2) Training example: A representation of a specific example of the concept in terms
of lower level features. For example, a training example of a cup might include
the following:

COLOR(OBJl.RED)
LIGHT(OBJ1)
PART-OF(OBJ1 .HANDLE 1)
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(3) Domain theory: A set of inference rules and facts sufficient for proving that a
training example meets the high-level definition of the concept. The domain
theory for the cup example might include the following inference rule:

IS(x,LIGHT) n PART-OF(x,y) D ISA(y.HANDLE) D LIFTABLE(x)

(4) Operationality criterion: A specification of how a definition of a concept must
be represented so that the concept can be efficiently recognized. This assures that
the learned definition of a concept is operational (Mostow, 1983) and can be
readily used to recognize examples of the concept. The operationality condition
for the cup example might be that the definition of an object be represented in
terms of observable features of the object such as its weight and a specification
of its physical parts.

Given this information, the first task in EBG is to construct an explanation of why
the training example satisfies the goal concept by using the inference rules in the do-
main theory. This explanation takes the form of a proof tree composed of horn-
clause inference rules which proves that the training example is a member of the con-
cept. Since this explanation must have features of the original object description as
its leaves, these leaves must satisfy the operationality condition. Next, this explana-
tion is generalized to obtain a set of sufficient conditions for which this explanation
structure holds in general. These conditions represent general operational conditions
for being a member of the concept. The generalization process used in EBG is a
specialization of goal-regression (Waldinger, 1977; Nilsson, 1980). By regressing the
goal concept through the explanation structure, the desired general preconditions are
obtained. The generalization process is not complete goal-regression as given by
Waldinger since the structure of the original explanation is retained. Only a set of
sufficient conditions, rather than necessary and sufficient conditions, are computed.
Alternative ways of matching the antecedents of the rules and alternative ways of
proving subgoals are not considered.

Mitchell et al. proceed to show how their EBG procedure can be used to generalize
examples in different domains. Detailed explanations and generalizations are shown
for three small examples. First is the SAFE-TO-STACK example in which a rule for
when something can be safely stacked on a endtable is learned. Second is the CUP
example (Winston et al., 1983), in which a rule for recognizing a cup is learned. Third
is a LEX2 example (Mitchell, 1983), in which a rule is learned for when it is useful
to apply a certain integration operator. A summary of how EBG might be used to
handle the authors' system which learns a schema for kidnapping (DeJong, 1981;
Mooney & DeJong, 1985) is given in the appendix of Mitchell et al. (1986).

The final part of the paper gives a summary of future research issues for
explanation-based generalization. These include the following:
(1) Imperfect theory problem: Methods are needed for building useful explanations

in domains which have incomplete, intractable, or inconsistent theories.
(2) Combining with similarity-based learning: Techniques are needed which com-
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bine explanation and similarity-based approaches to learning to achieve the
benefits of both approaches.

(3) Formulating generalization tasks: Methods are needed for automatically
generating generalization tasks by determining what needs to be learned to in-
crease the performance of a system.

3. Explanation-based learning vs. explanation-based generalization

Mitchell et al. specify how the explanation-based approach can be used to generalize.
Concept refinement is within the scope of the explanation-based approach as well.
Mitchell et al. (1986) do not rule out explanation-based concept refinement, but
neither do they discuss its possibility. We feel the term Explanation-Based Learning,
which encompasses a broader range of phenomena, is to be preferred to Explanation-
Based Generalization to describe the research.

Although we are not aware of any current systems which perform explanation-
based refinement1, it is an important research topic which we hope to address in the
future. There are several reasons to pursue explanation-based refinement. The most
important reason for us is that refinement can provide a partial solution to the dif-
ficult problem of generalizing non-independent conjunctive sub-goals.

Winston et al.'s (1983) cup program, discussed in Mitchell et al. (1986), represents
a real world domain. In fact, the notion of a cup is very complex and messy.
Winston's domain model, like all similar Al models, necessarily only approximates
the real world. It can be viewed as an abstraction space (Sacerdoti, 1974) of the real
world. There are, therefore, examples where Winston's system disagrees with our
real world concept of a cup. Consider a cup with a suitcase handle (much resembling
a small pail - see Figure 1). This is clearly an acceptable kind of handle for
Winston's system since in the original system the assertion of LIFTABLE is proved
by resorting to previous knowledge of suitcases being liftable because of their
handles. Yet this is clearly an overgeneralization since the pail-cup cannot easily be
grasped and drunk from at the same time (Hofstadter, 1983). One might argue that
this is not a failure in the proof of LIFTABLE but rather due to a poor initial func-
tional specification of the cup concept. After all, it neglects the cup's most important
function - enabling drinking. While this is perhaps a deficiency, it alone will not
remove the pail-cup problem. After amending the functional specification of "cup"
to include DRINKABLE-FROM, or some such predicate, a problem remains.

There is subtle and nasty interaction between the conjunctive sub-goals of LIFT-
ABLE and DRINKABLE-FROM. The fact that a certain kind of handle makes a
suitcase LIFTABLE without compromising the rest of its functionality does not

1 A possible candidate is the OCCAM system of Pazzani (1985) which constructs a specialization for
kidnapping infants after being given several examples in which infants are held for ransom.
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Figure 1. The pail-cup.

insure that it will do the same for cup. After all, the function of a suitcase is very
different from that of a cup.

A very powerful inferencer would be able to keep track of all of the subtle implica-
tions among LIFTABLE, DRINKABLE-FROM, STABLE, and all other sub-goals.
However, a powerful inferencer is not an appropriate solution to the "pail-cup" ex-
ample. Such an inference engine would be exceedingly slow. It would spend vast
amounts of time proving that many trivial and unlikely interactions do not occur and
would take eons to process an example as complex as a drinking cup.

Explanation-based refinement provides a solution. One can use an inference
engine that works in some abstraction space and is therefore quite efficient. In fact,
Mitchell et al. (1986) propose constructing explanations using abstract theories to
deal with the problem of intractable domains. However, abstract theories (like
Winston's) will sometimes lead to over-generalization. One might choose, for exam-
ple, to neglect conjunctive subgoal interactions. If one's planner never encounters
contradictory examples, the simplifying assumptions are fine. On the other hand, if
a failure is encountered when trying to use an incorrect concept, like the pail-cup,
the system can inspect its previous proof to determine the source of the problem. In
the case of the pail-cup, it will find that drinking is not possible because a hand is
in the way. Furthermore, a hand is in the way because the location of the handle
demands that location to satisfy LIFTABLE. Thus, the failure of an expected
positive example can be used to guide the system through the original explanation
proof, focusing attention at just those parts responsible for the offending interac-
tions in the observed failure.

Thus, the explanation-based approach can be used to specialize over-generalized
concepts. The example discussed illustrates how explanation-based specialization can
aid in processing interacting sub-goals. However, we believe explanation-based
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specialization will be useful in other areas as well. Since both specialization and
generalization are subsumed, the broader term "Explanation-Based Learning" is
more correctly used to describe the approach.

4. Explanation-based learning from observation

Learning from untutored observation is a very important type of learning
(Carbonell, Michalski & Mitchell, 1983). It involves learning through monitoring of
the world. A human "tutor" who presents and classifies examples for the system is
not needed. Rather, the system is simply permitted to watch the behavior of others.
It is the system's responsibility to decide which examples, and which features of those
examples, are important.

Learning from observation is particularly promising for acquiring knowledge from
human experts for knowledge-based systems. The expert is then unencumbered by
the system which unobtrusively observes. The human needs no knowledge of the in-
ternal workings of the system, and the human expert is never asked to articulate the
information or methods he uses - a step which has proven to be a bottleneck in cur-
rent knowledge-based system development. Consequently, there has been an in-
creasing amount of work in machine learning on learning apprentice systems
(Minton, 1985; Mitchell et al., 1985; O'Rorke, 1984; Wilkins et al., 1985) which learn
by observing expert problem solvers and generalizing the methods they use.

The generalization algorithm given by Mitchell et al. (1986) does not specify how
the explanation is constructed. Yet to derive maximum benefit from the resulting
generalization, the generalization algorithm should be sensitive to the explanation's
derivation. As we shall see in section 9 the generalization algorithm is somewhat
different for learning from observation than for learning from internal planning. The
distinction consists in whether or not the explanation is known to be, in some sense,
the "best" that can be supported by the domain theory. A system that learns by inter-
nal planning can be assured of generating an explanation that supports an optimal
solution if, for example, it uses an admissible problem solving algorithm. If, on the
other hand, the explanation is constructed by filling in the details of observed prob-
lem solving behavior of another, there is no guarantee that the resulting solution or
its explanation are in any sense optimal.

To make this point more concrete consider a fanciful example. Suppose we know
a fair amount about physics and electricity. Our domain theory consists of ohm's
law, conservation of energy, and many other such concepts. It may have occurred
to us that knowing how to convert electrical energy into light energy would be a useful
thing. Thus, we have a general goal of knowing how to convert electricity to light
and a domain model from which one can derive a number of explanations of how
to achieve that goal. The system's task is to find and generalize one such explanation.

The first type of explanation-based learning system, which learns from internal
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planning, requires a very powerful inferencer indeed. It is required to perform a
massive search a task similar to the process of Edison's original invention of the
lightbulb. The system might "invent" the neon or fluorescent light rather than the
incandescent variety. An important point to note is that the efficiency of the solution
(and the level of generality that the explanation will support) is determined entirely
by the generality of the domain theory and properties of the planner. The LEX2
system (Mitchell, 1983) is of this variety. It requires no externally supplied sugges-
tions as to how an integration problem is to be solved.

The second type of system forms explanations with the aid of external hints. In
our electric light example we might give the hint "try tungsten." Another form of
hint would be to specify all of the properties of a particular lightbulb: that its filament
is tungsten, that its bulb is glass and that oxygen is evacuated from the bulb, etc. In-
cidentally, some of the example systems in Mitchell et al. (1986) (e.g., the SAFE-TO-
STACK example) are of this type. However, they do not discuss the ramifications
of this position either for the explanation construction process or the generalization
process. A third type of hint might be the observed actions of an expert problem
solver. To construct an explanation from an action sequence the system must justify
that all preconditions are true (perhaps by tracing them to effects of previous ac-
tions). The system may also have to infer unobservable or unobserved actions and
states. An example of this second type of explanation-based learning system is our
natural language schema learning system (Mooney & DeJong, 1985). In an appendix,
Mitchell et al. (1986) outline how this system can be cast into their framework. While
the excercise clearly shows a deep grasp of our system, it is an unnatural fit. The goal
concept, for example, is much more complex than the goal concept in the other
systems mentioned. We believe the awkward fit is due to the lack of an observation
input to their generalization method that can be used as an explanation hint.

Such hints can greatly reduce the amount of searching performed by the planner.
Understanding complex problem-solving actions of someone else is a far easier task
than producing those actions (DeJong, 1986). A system that learns from observation
can possess a simpler planner and still acquire more difficult concepts than a system
that must construct its own explanation from scratch.

Hints not only simplify the explanation process, they also bias the system toward
certain explanations and away from others. For example, with the hint "try
tungsten" the invention of the incandescent light, while still difficult, becomes much
much easier. However, invention of the neon light becomes less likely. In the case
of observing problem solving actions of an expert, the system is strongly biased
towards an explanation of the particular solution used by the expert. The expert's
solution may have obvious inefficiencies that will be reflected in the solution's
explanation.

Note that in this case the efficiency of the solution (and also the level of generality
that the explanation will support) is determined in part by the system's properties and
in part by the hints it is given. It is important that the system's generalization process
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factor out inefficiencies wherever possible. For example, we may observe an expert
fashion the glass bulb for the incandescent light in a wasteful manner. If our domain
theory includes a glass-blowing schema that specifies a better way to construct the
bulb, the generalization process should substitute the efficient general schema for the
inefficient observed action sequence. This step need not be performed when general-
izing from an explanation constructed by a system of the first type: by constructing
our planner and domain theory appropriately we can insure that the resulting ex-
planations will have the desired properties.

There are two conclusions to be drawn from this section. First, the explanation-
based generalization method should have an optional argument to allow for learning
by untutored observation. This argument is a sequence of observed states and actions
performed by an observed expert. The sequence need not be complete. It is treated
as a hint at an underlying explanation for how to achieve the goal. Second, the
generalization method should be somewhat different depending on whether the ex-
planation was constructed from internal planning or observation.

5. Improving generalization

The generalization algorithm of Mitchell et al. seems to us to be very conservative.
It seems to be primarily concerned with generalizing constants that appear explicitly
in the training example into appropriately constrained variables. It appears from
their description that predicates and constants which are introduced by inference
rules are not subject to generalization. This view is born out by the examples in the
paper.

The mechanism used in goal regression. However, full goal regression is an un-
wieldy process and is not performed. Instead, EBG uses a modified version of goal
regression which ignores disjuncts. If there are several alternative variable identifica-
tions that allow a proof to be true, only the unification used in the explanation of
the training example is considered. Also, if there are several possible ways to com-
plete a subproof (which would result in regression through disjunctive subgoals) only
the subproof actually used in the training example's explanation is used.

The result of these design decisions is that the resulting concept description is not
as general as it might be. Indeed, specific and unimportant details of the example
observation can be reflected in the generalized concept.

As we shall see in section 8 many of these problems can be overcome through in-
tegrating the performance element into the generalization algorithm. It is instructive
to discuss two important types of generalization that goal regression alone cannot
perform.
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5.1. Generalizing predicates

The first problem we will discusses that of generalizing predicates. This problem does
not arise easily in the "SAFE-TO-STACK" example or other similar domains. How-
ever, it arises immediately in moderately complex problem-solving domains. Con-
sider our natural language system (Mooney & DeJong, 1985) which is given the
following kidnapping example and must learn a general kidnapping concept:

Fred is the father of Mary and is a millionaire. John approached Mary. She was wearing blue jeans. John
pointed a gun at her and told her he wanted her to get into his car. He drove her to his hotel and locked
her in his room. John called Fred and told him John was holding Mary captive. John told Fred if Fred
gave him $250,000 at Trenos then John would release Mary. Fred gave him the money and John released
Mary.

The story includes a description of the kidnapper telephoning the victim's father.
The telephone event might be represented as

TELEPHONE(human079, human077, cond003)

where human079 is John, the kidnapper, human077 is Fred, the millionaire, and
condOO3 represents the bargain conditions that John proposes.

An inference rule of the domain theory might be

TELEPHONE(x,y,z) D KNOWS(y.z)

That is, successfully telephoning someone results in a particular mental state of the
listener. The knowledge state is crucial to the success of the kidnapping. Thus, the
TELEPHONE action and resulting knowledge state are components of the explana-
tion. The millionaire must believe that giving money will free the victim. Otherwise
the action of John giving Fred the money is unmotivated.

EBG's goal regression method allows no possibility of altering the predicates that
compose the explanation. Using this generalization method on the example results
in the kidnapping concept which requires the use of a telephone to inform the
millionaire. This is clearly an extreme undergeneralization. There is nothing central
about telephoning. The important part of the explanation is the knowledge state that
the kidnapper achieves in the millionaire. Telephoning is just one of many ways to
achieve that state. He might as well have sent a ransom note, or a telegram, or a car-
rier pigeon. Indeed, any communication mechanism that achieves the required
knowledge state would work. The concept of kidnapping ought to reflect this
generalization. The TELEPHONE action predicate of the observed example ought
to be replaced by a more general COMMUNICATE action predicate in the general
concept of kidnapping. The COMMUNICATE action can then be instantiated at
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problem-solving time in one of many possible ways depending on the state of the
world at the time the problem-solver invokes KIDNAPPING. If a phone is handy,
it can be used; otherwise another method can be selected.

There are other eccentricities of the example that the generalization algorithm of
Mitchell et al. would preserve: only daughters of millionaires can be kidnapped, the
ransom payment must take place at a restaurant, etc. These inappropriate dependen-
cies on the details of the observed example must be eliminated by the generalization
process if the system is to have any chance of applying its new knowledge productive-
ly. These details are not entirely irrelevant; their effects are crucial to the success of
the observed concept. However, requiring the precise details that were observed
seems to narrow the concept unnecessarily.

5.2. Structural generalization

A related but separate issue involves the structure of the example explanation. The
EBG method does not permit generalization of the example explanation's structure.
Consider the "SAFE-TO-STACK" concept. In the observed example SAFE-TO-
STACK is true because the first object is proved to weigh less through a calculation
based on its volume and density. This is fine for this specific example. The problem
is that the resulting general concept "SAFE-TO-STACK" then requires the first ob-
ject's weight to be calculated by a volume times density computation. Suppose our
world knowledge specifies that the default weight of an ashtray is 1 (in the same units
as the default weight of an endtable), and that OBJ17 is an ashtray whose density
is unknown. The SAFE-TO-STACK concept acquired by the EBG method cannot
itself conclude that the ashtray can safely be stacked on the endtable.

The complete explanation must be present. No alternative achievement of subgoals
is allowed, no matter how easy it may be to construct such alternatives. This inability
to alter the example's explanation structure results in another kind of undergeneral-
ization. While related to the previous undergeneralization problem it cannot be
alleviated by a one-for-one substitution of a more general schema for a more specific
one.

To illustrate the inefficiency consider a robot manipulator system (Segre &
DeJong, 1985) that learns assembly concepts (i.e., how to assemble parts from an
explanation-based generalization of an observed example).

First it is necessary to develop some background on our manipulator model. There
are two low-level manipulator actions to change the position of a grasped piece:
TRANSLATE and MOVETO. TRANSLATE moves the grasped piece along a
straight line while maintaining the piece's orientation. It is an expensive and slow
operation since the kinematic equations must be solved at many points with inter-
polations in between to insure the proper orientation and straight line trajectory.
MOVETO changes the current position and orientation of the grasped piece to some
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desired position and orientation. MOVETO is faster and more efficient. It solves the
kinematic equations only once for the desired state and then sets all of the
manipulators joints accordingly. It is cheaper to use than TRANSLATE because it
does not enforce any specific intermediate values on the position or orientation of
the grasped piece.

Now we can examine how inefficiencies can arise in a task assembly concept ac-
quired by an explanation-based method similar to that of Mitchell et al. (1986). Sup-
pose our learning manipulator is shown how to build a miniature bench by placing
piece A in just the right spot on the top of piece B so that the pegs in A are inserted
into the holes in B (see Figure 2). Further, suppose that the assembly sequence
demonstrated to the system consists of grasping piece A, followed by a
TRANSLATE to lift piece A straight up off of the table, a TRANSLATE to position
piece A directly above piece B, a ROTATE to orient piece A to correctly match piece
B, and finally a TRANSLATE down to place piece A on piece B (see Figure 3A).

Figure 2. The miniature bench.

Figure 3A. Inefficient sequence.
Figure 3B. Efficient sequence.
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The explanation of how the bench is realized by the observed action sequence in-
cludes, of course, the TRANSLATE and ROTATE actions. The explanation
specifies that the last TRANSLATE combines the pieces while maintaining their
proper relative orientations: the ROTATE establishes the proper orientation of piece
A with respect to piece B; etc. Consider using the EBG procedure to generalize this
explanation. Since all of the actions participate in the explanation or proof that a cor-
rect bench is constructed, they all appear in the new BUILD-A-BENCH task concept
generated by the EBG procedure. Generalization has occurred so that the piece iden-
tity with A and B has been eliminated. However, since the EBG process cannot alter
the structure of the explanation, the generalized concept achieves the bench using
three TRANSLATES and a ROTATE, even though a more efficient MOVETO could
be used instead of the first two TRANSLATES and the ROTATE. The MOVETO
equally well positions piece A above piece B with the proper orientation (see Figure
3B). An efficient task concept is learned because the observed task sequence is ineffi-
cient. While it is unrealistic always to expect an optimal task concept from observing
a horribly inefficient example, we will see in section 8.1 that some optimizing is easily
done. In particular, in this case the system's domain theory must already contain the
knowledge necessary to replace the TRANSLATES and ROTATE with a MOVETO.
This knowledge has to do with the effects of these actions and must already be present
to perform the goal regression. Yet the knowledge cannot be used by the EBG pro-
cedure to fabricate a more efficient assembly concept.

6. Problems with the operationality criterion

How can we assure that a new concept is meaningful to the problem solver? The final
operational definition of a concept must be specified in a vocabulary which the prob-
lem solver understands. After all, if recognizing or applying a new concept involves
solving sub-problems which are beyond the capabilities of the problem solver, then
that concept will not improve the efficiency or abilities of the problem solver.

Mitchell et al. (1986) recognize this as an important problem. Their solution is to
restrict the allowable target vocabulary through the Operationality Criterion. This
specifies that "The concept definition must be expressed in terms of the predicates
used to describe examples ... or other selected, easily evaluated predicates from the
domain theory ..."

There are two problems with this definition of the operationality criterion. First,
the process of specifying the operationality criterion for a particular domain is not
itself operational. It is clear that Mitchell et al. (1986) have in mind including some
predicates and not others and that the problem solver should have more or less im-
mediate access to the truth values of the predicates which are included. However,
there is no mention of how these predicates are actually selected or how easy their
evaluation must be to meet the operationality criterion.
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Second, the specification of predicates alone will not insure ease of evaluation. The
difficulty of discovering a truth value is properly associated with a proposition as a
whole, not just the predicate. Consider, for example, the following two propositions:

(PROVABLE"2 + 2 = 4")
(PROVABLE"FERMAT'S LAST THEOREM")

They both use the same predicate but the truth value of the first is far easier to deter-
mine than the truth value of the second. The first is operational, the second is not.
Many predicates behave in this fashion; their operationality depends on their
arguments. A training example might be selected in which the propositions are easily
evaluated but the very same predicates may be difficult to evaluate when applied to
later examples. Nor can we limit the operationality criterion to predicates that are
known to be operational for all arguments. Such a restriction would overly im-
poverish the vocabulary. Predicates like VOLUME and DENSITY necessary for the
SAFE-TO-STACK example could not be used. Determining the volume of an ir-
regularly shaped solid can be quite involved. It is easily evaluated only for simple ob-
jects or objects whose volume is included as innate in the domain theory or explicitly
specified in the training example.

7. A technical problem with the EBG algorithm

In addition to the conceptual difficulties we have raised, there is a technical problem
with the generalization algorithm as described in Mitchell et al. (1986). The problem
is that they fail to mention the necessity of an additional step when generalizing an
explanation. The following simple example illustrates the problem. The rules in the
domain theory for this example are:

HATE(a.b) n POSSESS(a,c) n WEAPON(c) D KILL(a.b)
DEPRESSED(w) D HATE(w,w)
BUY(u,v) D POSSESS(u,v)
GUN(z) D WEAPON(z)

Given the following information (i.e. training example):

DEPRESSED(JOHN)
BUY(JOHN.OBJl)
GUN(OBJl)

it is easy to conclude that John will commit suicide as shown in Figure 4. The result
of performing EBG generalization on this proof is shown in Figure 5 in the manner
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Figure 4. Explanation of the suicide example.

used in Mitchell et al. (1986). Each conjunct in the current regressed expression (the
underlined elements at each level) is unified with the consequent of the appropriate
rule to yield a set of substitutions. This set of substitutions is then applied to the
antecedent of the rule to produce the new regressed expression. The substitution is
also applied to the remaining conjuncts before regressing them through their ap-
propriate rules. The result is the following set of generalized conditions:

DEPRESSED(y) n BUY(y.c) D GUN(c)

However, the goal concept specified in the explanation structure is KILL(x.y)
when in fact the explanation is only valid for the specialized concept of suicide:
KILL(y.y). The problem is that regression only results in a set of generalized
antecedents, or sufficient conditions for being an example of the concept. It does not
result in a specification of the proper goal concept. As in the SUICIDE example, the
explanation itself may impose certain constraints on the goal concept. Although the
problem of determining the appropriate generalized goal concept is not discussed at

Figure S. Generalizing the suicide example using EBG. (Underlined expressions are the results of regress-
ing the goal concept.)
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Figure 6. The generalized proof for the suicide example.

all in Mitchell et al. (1986) it is discussed in Mahadevan (1985), and Mitchell et al.
(1985). In these papers, they described how to determine the generalized goal concept
by rederiving a generalized proof, using the regressed antecedents as a training exam-
ple and applying the same rules as in the original example. The regenerated proof for
the suicide example is shown in Figure 6. The complete generalization algorithm us-
ing goal regression is actually a two step process:

(1) Regress the original specification of the goal concept through the explanation to
obtain a set of generalized antecedents.

(2) Starting with these generalized antecedents, rederive the proof to obtain the
generalized goal concept (consequent).

In a later section we will present an alternative generalization algorithm which does
not employ goal regression and avoids having to make two passes through the
explanation.

8. Some solutions

The solution to some of these dilemmas involves acknowledging that the explanation-
based learning system has two logically distinct components: an acquisition element
and a performance element. The purpose of learning is to improve the processing
ability of the performance element. The acquisition element includes two phases.
First, it constructs an explanation for the training example and then it generalizes the
explanation to form a new concept. The performance element makes use of the new
generalized concept. In learning from observation, the explanation phase of the ac-
quisition element produces an explanation from the observed operator sequence. In
learning from one's own plans, the explanation phase of the acquisition element uses
the performance element. Either way, the generalization phase of the acquisition ele-
ment should be sensitive to the abilities of the performance element. The notion of
operationality must be judged with respect to the abilities of a particular performance
element. This is not the case in Mitchell et al. (1986). While both the understanding
and the performance element operate on the same knowledge base, they reflect the
world knowledge in subtly different ways.
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The understander's task is to construct a causal model of the observed example.
The explanation of how the example satisfies the goal in question is a subset of the
causal model. The performance element benefits from the generalized explanation.
As more concepts are acquired the performance element is able to process much more
efficiently and, due to resource limitations, is able to correctly process observations
that were previously beyond its capabilities. The performance element can be viewed
as a problem solver in the broad sense of the term. It achieves goals by finding ap-
propriate action sequences (as in the robot manipulator system) or recognizes in-
stances of concepts (as in the SAFE-TO-STACK example). In either case the perfor-
mance element has a task with a well defined goal and performance on this task is
to be improved through explanation-based learning. We will find it useful to refer
to the performance element as a problem solver and to use the vocabulary of problem
solving to describe its operations.

Since the functioning of the problem solver (or performance element) is important
only after the concept has been learned, Mitchell et al. leave it out of their specifica-
tion of the Explanation-Based Learning process. However, we believe the abilities of
the problem solver should have a major impact on the generalization process and
therefore on the concept to be learned.

8.1. Generalizing with schemata

In an explanation-based system which learns schemata, the schema knowledge itself
can be used to generalize the example. This type of generalization is not a part of the
explanation-based generalization method outlined in Mitchell et al. (1986), but as we
shall see, it can be employed to overcome some of the undergeneralization problems
discussed in the previous section. This form of generalization is possible because the
schemata are themselves generalized knowledge chunks.

The central idea underlying a schema-based problem solving system is that the
system's knowledge should be structured in such a way that knowledge relevant to
achieving a certain goal is grouped together (Chafe, 1975; Charniak, 1976; Minsky,
1975; Schank & Abelson, 1977).

This structuring of the system's knowledge into schemata aids in understanding
observed inputs and also results in an important, and efficient kind of generalization.
For example, in the kidnapping story given earlier, John (the kidnapper) points a gun
at Mary (the victim) to force her into his car so he can drive her to his hotel where
he detains her. This is an important action for John; if he did not have the gun Mary
would probably not have gotten into the car and his attempt at kidnapping would
have failed. However, this action is not essential in all kidnappings. There are many
ways John might have forced Mary into his car. He might have threatened her with
a knife or some other weapon, he might have overpowered her, or he might have
drugged her. Furthermore, he might not have used his car at all; he might have simply
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tricked her into entering his hotel room to capture her, etc. Clearly a general kidnapp-
ing schema ought not to require a gun. The gun-pointing event should be generalized
in the final schema.

Is there an appropriate generalization of the gun-pointing event? Can it be
generalized efficiently without tediously replanning with all possible variations? The
answer to both questions is "yes", and the trick is to rely on the schematic structure
of the example's explanation.

In a schema understander the explanation is constructed by finding how the
observed inputs fit into known schemata and determining how these schemata can
fit together into a well-formed whole. The pointing of the gun must be understood
as a component of the known schema THREATEN. Furthermore, it must be under-
stood that John is THREATENing Mary so that she will get into his car, and he wants
her in his car so he can drive her to his hotel room to lock her up. Thus, pointing
a gun is John's sub-sub-sub-sub-goal of detaining Mary. In our system, the schema
for seizing and detaining someone is called CAPTURE. In constructing the explana-
tion for this story the system realizes that a CAPTURE of Mary must be performed
to allow a plausible BARGAIN between John and Fred in which John trades Mary's
freedom for $250,000. Thus, the system understands that John uses the known
schema CAPTURE in a novel way to satisfy a precondition for the known schema
BARGAIN.

The schemata CAPTURE and BARGAIN are already known and, therefore,
already generalized. This already-existing generality can be exploited in the new
schema for kidnapping. The solution is to eliminate those portions of the explanation
which are merely nominal instantiations of known schemata. In the kidnapping ex-
planation the system is left with CAPTURE and BARGAIN. The goal regression
step, or its equivalent, is then performed on this greatly reduced explanation.

What happened to the event of John pointing his gun at Mary? It was eliminated
as a nominal (and, therefore, easily replannable) sub-goal deep inside the explanation
of the CAPTURE schema. However, any other successful instantiation of CAP-
TURE would have worked as well, provided it satisfies the inter-schema re-
quirements imposed by the goal regression phase (i.e., that there must be a rich per-
son who values the freedom of the person selected to be captured, etc.)

8.2. A better operationality criterion

Of course, the CAPTURE schema itself need not contain a complete specification
of all possible ways to CAPTURE a person. Rather it need only provide CAPTURE
specific information which can then be easily fleshed out in a number of ways by the
performance element through interactions with the system's other schemata (Chafe,
1976; Schank, 1982).

Any goal for which the system possesses a schema can be operationalized with very
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little effort. Thus, the operationality criterion is exactly that set of goals for which
the system possesses schemata. In other words, the operationality criterion is that set
of goals that the system could easily achieve using normal means by simply instan-
tiating an existing schema. There are two important implications of this position: 1)
The operationality criterion is derivable from the system's performance element and,
therefore, should not be independently input to the system; 2) The operationality
criterion is dynamic, not static; as the system learns new schemata, additional goals
become operational since the system can use the new schemata as building blocks to
construct future explanations.

8.3. An alternative to goal regression

As described earlier, Mitchell et al.'s EBG method employs a version of goal regres-
sion to generalize explanations. As we explained in section 7, the generalization pro-
cess described in Mitchell et al. (1986) has a technical problem which can be corrected
by augmenting the process. In this section, we present an alternative technique for
generalizing explanations which we believe has certain advantages.

We developed our method independently of Mitchell et al. and it does not employ
goal regression. The technique involves maintaining a version of the proof tree with
uninstantiated versions of the general rules (an explanation structure (Mitchell et al.,
1986)) and two independent substitution lists called SPECIFIC and GENERAL. Ap-
plying the SPECIFIC substitution to the explanation structure results in an explana-
tion for the specific example, while applying the GENERAL substitution results in
a generalized explanation.

The explanation structure and the two substitutions lists are maintained during the
construction of the original explanation independently of how the explanation is
built. When a rule is invoked during the explanation phase, whether by a planner or
by an understander, a copy of the uninstantiated rule is added to the explanation
structure. A unification between a specific statement or goal of the particular exam-
ple and a general domain rule is made in the context of the SPECIFIC substitution
and any new substitutions required for the unification are added to the SPECIFIC
list. A unification between two domain rules in the explanation structure is done
twice, once using the SPECIFIC substitution list and once using the GENERAL one,
in both cases adding any newly created substitutions. This process assures that the
GENERAL list contains only and all those substitutions which are required to main-
tain the validity of the explanation structure.

Letting a stand for the SPECIFIC substitution and j for the GENERAL substitu-
tion, the generalization procedure may be formally specified as follows (using the
notation defined in Nilsson (1980)):
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for each equality between expressions e1 and e2 in the explanation structure:
if e1 is the antecedent of a domain rule and e2 is the consequent of a domain rule
then let O = the most general unifier of e1o and e2o

let a = aO (* update SPECIFIC substitution)
let 5 = the most general unifier of e1y and e2y
let 7 = 76 (* update GENERAL substitution)

else let O = the most general unifier of e1o and e2a
let a = aO (* update SPECIFIC substitution)

We have constructed a prototype generalizer which uses this procedure to
generalize explanations in various domains (Mooney & Bennett, 1986). This system
has been used to generalize examples from the literature on STRIPS robot planning
(Fikes et al., 1972), generating physical descriptions of objects from functional infor-
mation (Winston et al., 1983), solving integration problems (Mitchell, 1983), design-
ing logic circuits (Mitchell et al., 1985), and proving theorems in mathematical logic
(O'Rorke, 1984). Figure 7 shows our generalization process applied to the suicide ex-
ample. The final substitutions shown in the figure are obtained by performing the
unifications for rules Rl through R4 in order, although any order results in
equivalent substitutions up to a change of variable names. Table 1 shows a trace of
the unifications and how they affect the two substitutions. Applying the SPECIFIC
substitutions list to the explanation stucture generates the specific explanation as
shown in Figure 4. Applying the GENERAL substitution list to the explanation struc-
ture generates the generalized explanation (the same as Figure 6 but with y renamed
to w and c renamed to z).

Figure 7. Explanation structure and substitutions for the suicide example.
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Table 1. Unifications for the suicide example.

Unification

Rl:
KILL(JOHN, JOHN) = KILL(a.b)

R2:
HATE(a.b) = HATE(w.w)
DEPRESSED(w) = DEPRESSED(JOHN)

R3:
POSSESS(a ,c) = POSSESS(u,v)
BUY(u.v) = BUY(JOHN,OBJ 1)

R4:
WEAPON(c) = WEAPON(z)
GUN(z) = OUN(OBJl)

Specific

JOHN/a.JOHN/b

JOHN/w

JOHN/u, v/c
OBJl/v

OBJl/z

General

w/a, w/b

u/w, v/c

z/v

The general rule represented by this generalized proof is:

DEPRESSED(w) D BUY(w,z) n GUN(z) D KILL(w,w)

The technique outlined above is functionally equivalent to the corrected goal-
regression technique described in section 7. In other words, the generalized
antecedents generated from a given explanation are the same for both algorithms.
However, we believe there are several advantages of this technique over the goal-
regression approach. First, the generalization process is integrated with the process
for building explanations, instead of requiring an independent process which must
trace down the explanation after it is constructed. Every time a rule is added to the
explanation, the SPECIFIC and GENERAL substitutions are updated. Generaliza-
tion is accomplished by simply applying a substitution to the explanation structure.
Second, it results in a full generalized explanation. Goal regression, on the other
hand, only results in generalized antecedents. In order to obtain the full generalized
explanation using goal regression, one must construct it by reapplying the rules in
the explanation structure to the generalized antecedents (as in Mahadevan (1985)).
It is not clear whether or not our method is actually more efficient than EBG in terms
of computational complexity; however, we feel these two differences at least make
our approach more elegant.

As additional facility of our generalization method is the ability to retract unifica-
tions from the GENERAL substitution. This is important in that it allows for
' 'pruning'' of the explanation if the "operationally criterion" is met by higher nodes
in the proof tree and not just the leaves. For example, if we knew that we could easily
determine whether or not a given item was a WEAPON, we could further generalize
the suicide example by not requiring that the weapon be a GUN. This is done by
removing the inheritance rule: GUN(z) £ WEAPON(z) from the generalized ex-
planation' and retracting its unifications from the GENERAL substitution. This
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results in retracting the substitution: z/v from the GENERAL substitution shown in
Figure 7. The new generalized rule for this example then becomes:

DEPRESSED(w) n BUY(w,v) n WEAPON(v) D KILL(w,w)

When an explanation is constructed by observing external behavior, it is important
to be able to "prune" the explanation since the system may already have operational
concepts which are more general than those used in the particular training example.

9. Our version of explanation-based generalization

We now advance a modification of the explanation-based generalization problem
and method given in Mitchell et al. (1986). We will assume that the performance ele-
ment is a schema-based problem solving system. Within this context, our method at-
tempts to overcome some of the problems outlined earlier in the paper. In particular,
it includes the possibility of learning from observation, it allows for generalizing
predicates, and it allows for altering the structure of the explanation. It also
eliminates the operationality criterion as an explicit input.

First, we will require some additional terminology. The world is composed of ob-
jects, each of which may have properties and relations to other objects. A specifica-
tion of all of the objects and their current properties and relations is a world state.
A goal is a specification of a desired partial world state. Operators map one world
state into another by altering the properties or relations of objects in the world. An
operator is defined by specifying its effects and the conditions which must hold in
the world for its application. It is assumed that operators must be applied serially,
not in parallel. A schema is a partially ordered set of operators and/or simpler
schemata linked causally. For the most part, schemata will be used as problem
solving concepts. That is, useful schemata will be those that organize operators to
achieve an important goal, or set of goals, in a general way. A problem is specified
by an initial state and a goal. The solution to a problem is a sequence of operators
which transform the initial problem state into some state which matches the goal. An
explanation of a solution is the operator sequence that solves a problem, together
with an annotation which captures how effects of one operator match the precondi-
tions of another. Often this annotation takes the form of matching the expansion of
a known schema to operators or lower-level schemata. When no known higher-level
schema can incorporate a lower-level operator/schema sequence, the annotation is
simply a specification of the most general unifications necessary for the effects of
antecedents actions to match the preconditions of later ones. The explanation forms
a proof that the solution sequence does, in fact, achieve the goal.

Table 2 presents a summary of the generalization problem we are interested in. The
task faced by the system is to augment its domain theory with a new schema which
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specifies a general method for achieving the goal. This is done by finding a particular
solution to the given problem and then generalizing the solution into a schema using
the system's existing domain theory. The particular solution may either be input to
the system or generated by the learning system's performance element. If the solution
is produced internally then the observed operator sequence is not given.

Table 2. The explanation-based generalization problem.

Given:
• Domain Theory: The domain theory consists of three parts. First, a specification of types of objects

in the world and their properties. Second, a set of inference rules for inferring properties and rela-
tions from other properties and relations. Third, a library of problem solving operators and already
known general schemata. These schemata can be previously learned or hand-coded.

• Goal: A general specification of a goal state. In general, a goal is an incomplete world state and can
be specified in non-operational terms (e.g., in a functional vocabulary).

• Initial World State: A specification of the objects in the world and their properties.
• Observed Operator/State Sequence (optional): An observed sequence of low-level operators, per-

formed by an expert, which achieves an instance of the goal. In some situations, some operators may
be missing, in which case they must be inferred from achieved states given in the input.

Determine:
• A new schema that achieves the goal in a general way.

Table 3. The generalization method.

(1) If there is no observed operator input, use the domain theory to construct a plan which achieves the
goal. Otherwise, use the domain theory to build a causally complete interpretation of the observed
operator input. In either case, maintain GENERAL and SPECIFIC substitutions as described in sec-
tion 8.3.

(2) Eliminate operators and states which do not causally support the goal. The remaining structure is the
solution explanation.

(3) Identify nominal instantiations of known schemata and eliminate them by retracting the unifications
between the general specification of the schema and the specific operators used in the instantiation.

(4) Remove actions and states which only support inferences to more abstract actions or states. This is
done by removing these abstraction inferences along with their antecedents and retracting the unifica-
tions binding them to the rest of the explanation.

(5) If the explanation was constructed from an observed solution, look for subgoals which can be achieved
in a more efficient manner. For each subgoal in the explanation, check if the system already has a
schema for achieving that subgoal which is more efficient than the one used by the observed agent.
If so, retract the observed plan for achieving this subgoal and insert the more efficient schema.

(6) Generate the final generalized explanation by applying the resulting GENERAL substitution to the
remaining explanation structure.
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9.1. The explanation-based generalization method

Table 3 is an outline of our explanation-based generalization method. Steps 1 and
2 form the explanation phase. If an expert is observed solving the problem, the
method builds an interpretation of the input operators. It justifies how the goal is
realized and how the preconditions of each operator are achieved. If there is no
observed operator input, the system constructs its own plan to achieve the goal. Step
2 eliminates observed operators and initial states which are irrelevant to the realiza-
tion of the goal. For example, if an apprentice system observes an expert air traffic
controller buy a cup of coffee from a nearby vending machine, it disregards that ac-
tion as not supporting the goal of avoiding mid-air collisions. If a block's world plan-
ning system constructs a plan for building an arch, it eliminates facts about the color
of the blocks since these facts are never used as preconditions of an action in the plan.

Step 3 insures that no redundant work is done in generalizing an example. It
eliminates nominal instantiations of already known schemata. A nominal schema in-
stantiation is one in which the instantiation gives no significant information about
what happened beyond that already specified in the general schema. For example,
consider John as an expert problem-solver who, in the course of his problem solving,
must eat lunch. Suppose we, as a learning apprentice, observe him entering
McDonalds on Green Street. He walks up to the counter, asks the attendant for a
cheeseburger, reaches into his pocket for money, pays for the cheeseburger, sits down
at a table, eats, etc. In short, he does nothing out of the ordinary. All of his actions
fit neatly into our already existing McDonalds schema. His actions can be easily re-
derived from the general McDonalds schema together with its variable bindings of
"Green Street" and "cheeseburger" because all McDonalds are alike. There is no
point in re-discovering a general version of the McDonalds schema from the low-level
observed actions of John. That work would be wasted; we already have a general
McDonalds schema. In general, for any subgoal in the explanation which is achieved
by specifying a known schema and how that schema was instantiated in a nominal
way, the actions making the nominal instantiation can be eliminated. The only struc-
ture that needs to be kept is the identity of the general schema and its variable
bindings.

Step 4 further generalizes the explanation by eliminating all but the most abstract
actions and states which support the achievement of the goal. This step eliminates
abstraction inferences like the GUN D WEAPON inference which was eliminated
from the SUICIDE example in section 8.3. It also provides an effective way of
generalizing the actions in the explanation, like the TELEPHONE to COM-
MUNICATE generalization discussed earlier. Since TELEPHONE only supports the
eventual goal through a BELIEF state which is inherited from the more abstract ac-
tion COMMUNICATE, the TELEPHONE may be eliminated from the explanation
leaving only the more abstract action COMMUNICATE.

If the explanation is generated from observing external problem solving, step 5 is



EXPLANATION-BASED LEARNING 169

an attempt to improve the efficiency of a possibly sub-optimal plan. This is done by
searching for subgoals which the system already has efficient schemata for achieving.
If the system has a more efficient method for achieving a particular subgoal, it is
substituted for the set of operators used by the observed agent. This allows for the
substitution of a MOVETO for two TRANSLATES and a ROTATE in the robot
assembly task discussed in section 5.2.

Step 6 simply applies the GENERAL substitution to the remaining explanation
structure to give the final generalized explanation. The resulting generalized explana-
tion can be easily transformed into a new schema by identifying its preconditions and
effects. The preconditions of the new schema are those preconditions of the compo-
nent schemata and operators which are not guaranteed to be satisfied internally.
Some of its effects are simply the effects of the component schemata and operators
not eliminated by a later component. However, some of the effects are specializations
of the component's effects. These constraints are due to the required unifications
with other components imposed by the causal structure of the solution.

9.2. The kidnapping example

As an example of the above procedure, consider the GENESIS natural language
system (Mooney & DeJong, 1985) acquiring a schema for kidnapping by generalizing
the explanation of a kidnapping narrative. The specification of the problem is given
in Table 4. The schemata in the domain theory are defined by the set of lower-level
schemata of which they are composed, and sets of preconditions, effects, and mental
states which motivate the actor to perform the schema. The important goal achieved
in the kidnapping narrative is John acquiring 250,000 dollars.

Table 4. Specification of the kidnap generalization problem.

Given:
• Domain Theory: Schemata for actions like BARGAIN, DRIVE, THREATEN, TELEPHONE,

etc.. Inference rules relating states like FATHER(x,y) -> PARENT(x,y).
• Goal: POSSESS(JOHN,$250,000).
• Initial State & Observed Operator Sequence: The Kidnap Story:

Fred is the father of Mary and is a millionaire. John approached Mary. She was wearing blue jeans.
John pointed a gun at her and told her he wanted her to get into his car. He drove her to his hotel
and locked her in his room. John called Fred and told him John was holding Mary captive. John
told Fred if Fred gave him $ 250,000 at Trenos then John would release Mary. Fred gave him the
money and John released Mary.

Determine:
• A general schema for kidnapping.
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Figure8. Complete causal structure of the kidnapping narrative. Interpretation of nodes shown in Table 5.

Figure 8 shows the causally complete structure the understanding process (step (1))
generates from the input text. The structure is instantiated to show the SPECIFIC
interpretation. It shows how the low-level actions in the narrative can be interpreted
as instances of general schemata the system already possesses, and how these
schemata are causally connected to achieve the desired goal. As is evident from the
figure, all the actions and states in the narrative support the achievement of the goal
except the fact that Mary is wearing jeans. Consequently, only this fact is removed
in step (2). The remaining structure is the explanation for how John acquired the
money.

Step (3) eliminates nominal instantiations of schemata, or instantiations whose in-
ternal actions do not support the achievement of the ultimate goal except through
the general goals achieved by the schema. This eliminates the specific actions John
used to capture Mary and telephone Fred as well as the specific actions involved in
the bargain. The resulting explanation is shown in Figure 9.

In step (4), actions and states which only support inferences to more abstract ac-
tions and states are retracted. This removes the state specifying that the ransom payer
is the victim's father, since this state is subsumed by the more abstract state specifying
that the ransom payer and victim have a close interpersonal relationship. This close
interpersonal relationship is the only requirement in motivating the ransom payer to
fulfill his end of the bargain. It also removes the specific action TELEPHONE since
this action is subsumed by the more abstract action COMMUNICATE. The COM-
MUNICATE is the only requirement in transferring the appropriate information to
the ransom payer which allows him to participate in the bargain.

Since the system does not have a more efficient method for achieving any of the
subgoals in the plan, no optimization is done in step (5). Finally, applying the
GENERAL substitution to the remaining structure in step (6) results in the final
generalized explanation shown in Figure 10.

The generalized explanation is easily packaged into a schema by taking its leaves
to be preconditions and the combined effects of its actions to be effects. This schema
can then be stored away and used in understanding future narratives.
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Figure 9. Explanation of kidnapping after Step 3. Interpretation of nodes shown in Table 5.

Table 5. Interpretation of nodes for Figures 8 & 9.

POSSESS9
BARGAINl

MTRANS3
RELEASEl
ATRANS1
POSSESS14
POSSESS1
GOAL-PRIORITY5
POSITIVE-IPT1
PARENT1
FATHER 1
HELD-CAPTIVE1
CAPTUREl
D-KNOW1
PTRANS1
DRIVE1
THREATEN1
AIM1
MTRANS1
AT1
CONFINE1
FREE1
BELIEF8
COMMUNICATE1
TELEPHONE1
CALL1
CPATH1
MTRANS2
BELIEF9
BELIEF15
BELIEF16
BELIEF13

BELIEF14
GOAL-PRIORITY4
GOAL9
ATTIRE1

John has $ 250,000.
John makes a bargain with Fred in which John releases Mary and Fred gives
$ 250,000 to John.
John tells Fred he will release Mary if he gives him $ 250,000.
Fred releases Mary.
Fred gives John $ 250,000.
Fred has $ 250,000.
Fred has millions of dollars.
Fred wants Mary free more than he wants to have $ 250,000.
Fred has a positive interpersonal relationship with Mary.
Fred is Mary's parent.
Fred is Mary's father.
John is holding Mary captive.
John captures Mary.
John finds out where Mary is.
John moves Mary to his hotel room.
John drives Mary to his hotel room.
John threatens to shoot Mary unless she gets in his car.
John aims a gun at Mary.
John tells Mary he wants her to get in his car.
Mary is in John's hotel room.
John locks Mary in his hotel room.
Mary is free.
Fred believes John is holding Mary captive.
John contacts Fred and tells him that he is holding Mary captive.
John calls Fred and tells him that he is holding Mary captive.
John called Fred on the telephone.
John had a path of communication to Fred.
John told Fred he had Mary.
John believes he is holding Mary captive.
John believes Fred has $ 250,000.
John believes Fred has millions of dollars.
John believes Fred wants Mary to be free more than he wants to have
$ 250,000.
John believes Fred is Mary's father.
John wants to have $ 250,000 more than he wants to hold Mary captive.
John wants to have $ 250,000.
Mary is wearing blue jeans.
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Figure 10. Final generalized explanation of kidnapping. Interpretation of nodes shown in Table 6.

Table 6. Interpretation of nodes for Figure 10.

POSSESS9
BARGAINl

POSSESS14
GOAL-PRIORITY5
POSITIVE-IPT1
HELD-CAPTIVE1
CAPTURE 1
FREE1
BELIEFS
COMMUNICATE1
BELIEF9
BELIEF15
BELIEF13

BELIEF14

GOAL-PRIORITY4
GOAL9

Personl has Moneyl.
Person 1 makes a bargain with Person2 in which Personl releases Persons and
Person2 gives Moneyl to Personl.
Person2 has Moneyl.
Person2 wants Person3 free more than he wants to have Moneyl.
There is a positive interpersonal relationship between Person2 and Person3.
Personl is holding Persons captive.
Personl captures Persons.
PersonS is free.
Person2 believes Personl is holding Person3 captive.
Personl contacts Person2 and tells him that he is holding Persons captive.
Personl believes he is holding Person3 captive.
Personl believes Person2 has Moneyl.
Personl believes Person2 wants Person3 to be free more than he wants to
have Moneyl.
Personl believes there is a positive interpersonal relationship between Person2
and Person3.
Personl wants to have Moneyl more than he wants to hold Person3 captive.
Personl wants to have Moneyl.

10. Conclusions

In this paper our approach to learning has been contrasted at some length with the
approach of Mitchell, Keller, and Kedar-Cabelli (1986). One might forget that in the
universe of learning research our approaches are very similar. Far more views and
biases unite us than divide us. Indeed, this is true across most explanation-based
learning efforts. Let us contrast the explanation-based approach with generalization
learning in a few non-explanation-based systems.

In the ACT system (Anderson, 1983), processing is done in a production system
framework. The production rules formulate solutions to problems given to the
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system. Generalized rules are formed to capture the generalities among two
examples. Each example consists of a problem and its solution. The generalization
captures what the two examples have in common. The generalization process does
not itself interact with any domain knowledge. It is performed by a partial pattern
matcher, incidentally the same partial pattern matcher that underlies analogical
learning. It can be contrasted to the explanation-based approach in two ways: 1) there
is no domain theory that participates in the generalization process, 2) the generaliza-
tion algorithm is well defined only with multiple examples.

The SOAR system (Laird et al., 1984), shares the notion of knowledge chunking
with our work and indeed with much of the other explanation-based work. Their
claim is that chunking of knowledge (in the form of production rules) is universal
for learning. That is, no other learning mechanisms need be postulated. In particular
there is no domain theory needed to guide the generalization process. This, again,
differs from the explanation-based learning work. Furthermore, no researcher in
explanation-based learning has yet made a claim of universality for the approach;
most researchers seem to believe that the ultimate answer to learning will involve a
combination of explanation-based, similarity based and analogical algorithms.

EURISKO (Lenat & Brown, 1984) is in some sense the dual to explanation-based
systems. Both are knowledge based and require some form of domain theory to be
input. However, EURISKO attempts to discover heuristic concepts. Heuristics are
rules of thumb that seem to hold in the domain but for which there is no explanatory
analysis. EURISKO tries to discover helpful concepts through massive simulation.
An explanation-based system, on the other hand, generates a concept only if it can
analyze why it works.

The explanation-based approach to learning holds great promise, particularly in
the area of learning apprentice systems (Minton, 1985; Mitchell et al., 1985;
O'Rorke, 1984; Wilkins et al., 1985) and other systems that can learn from observing
behavior beyond their capabilities (Ellman, 1985; Minton, 1984; Mooney & DeJong,
1985; Segre & DeJong, 1985; Shavlik, 1985). However, recent research in
explanation-based learning has only scratched the surface.

To date, working explanation-based systems have learned by explaining new con-
figurations of known operators. We call this schema composition. There are many
other uses of explanations to drive both generalization and concept refinement
(DeJong, 1983).

Another important area for future research is combining similarity-based and
explanation-based methods. There has already been significant research on com-
bining the two approaches along many different directions (Lebowitz, 1985;
Mitchell, 1984; Pazzani, 1985; Porter & Kibler, 1985; Rajamoney et al., 1985).

Finally, we wish to stress the important part that implementation of large com-
puter systems played in our work. Time and again algorithms that appeared elegant
on paper could not be implemented. Even more important were the gaps in our
theories that attempts at implementation exposed. Theories that appeared to be
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general and worked well in several domains failed to support an apparently similar
type of concept acquisition when extended to yet another domain. We believe that
significant implementations in many diverse domains, although often painful and in
many ways expensive, is a necessary step toward a formalized general theory of
explanation-based learning.
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