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Abstract. The recently proposed notion of an elementary set yielded a refine-
ment of the theorem on loop formulas, telling us that the stable models of a
disjunctive logic program can be characterized by the loop formulas of its ele-
mentary sets. Based on the notion of an elementary set, we propose the notion
of head-elementary-set-free (HEF) programs, a more general class of disjunctive
programs than head-cycle-free (HCF) programs proposed by Ben-Eliyahu and
Dechter, that can still be turned into nondisjunctive programs in polynomial time
and space by ”shifting” the head atoms into the body. We show several prop-
erties of HEF programs that generalize earlier results on HCF programs. Given
an HEF program, we provide an algorithm for finding an elementary set whose
loop formula is not satisfied, which has a potential for improving stable model
computation by answer set solvers.

1 Introduction

Disjunctive logic programs under the stable model semantics are more expressive than
nondisjunctive programs. The problem of deciding whether a disjunctive program has a
stable model is ΣP

2 -complete [1], while the same problem for a nondisjunctive program
is NP-complete.

However, Ben-Eliyahu and Dechter [2] showed that a class of disjunctive programs
called “head-cycle-free (HCF)” programs can be turned into nondisjunctive programs
in polynomial time and space, by “shifting” the head atoms into the body—a simple
operation defined in [3]. This tells us that an HCF program is an “easy” disjunctive
program, which is merely a syntactic shortcut of a nondisjunctive program. Thus, HCF
programs play an important role in efficient computation of stable models for disjunc-
tive programs. Indeed, the HCF property is exploited by answer set solvers DLV1 [4]
and CMODELS2 [5].

In this paper, we propose the notion of head-elementary-set-free (HEF) programs, a
more general class of disjunctive programs than HCF programs, that can still be turned
into nondisjunctive programs in polynomial time and space by shifting. This is mo-
tivated by the recent study on elementary sets [6], which yielded a refinement of the
theorem on loop formulas by Lin and Zhao [7]. All elementary sets are loops, but not
all loops are elementary sets; still stable models can be characterized by elementary

1 http://www.dbai.tuwien.ac.at/proj/dlv/
2 http://www.cs.utexas.edu/users/tag/cmodels/
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sets’ loop formulas. Our definition of an HEF program is similar to the definition of
an HCF program except that the former refers to elementary sets instead of loops. We
observe that some other properties of nondisjunctive programs and HCF programs can
be extended to HEF programs, including the main results by Lin and Zhao [8] charac-
terizing the stable models of a nondisjunctive program by “inherent tightness,” and the
operational characterization of stable models of HCF programs by Leone et al. [9].

The properties of HEF programs studied here may be useful for improving the com-
putation of disjunctive answer set solvers, such as DLV and CMODELS. As a first step,
we provide an algorithm for finding an elementary set whose loop formula is not satis-
fied for a given HEF program, which is simpler and more efficient than the algorithm
described in [10].

The outline of the paper is as follows. In Section 2, we review the definition of an
elementary set introduced in [6] and show some of its properties. In Section 3, we intro-
duce the notion of HEF programs and show that shifting preserves their stable models.
In Section 4, we demonstrate that the notion of inherent tightness can be generalized
to HEF programs, but not to general disjunctive programs. This section also includes
simplifications of earlier notions. In Section 5, we show that the operational character-
ization of stable models by Leone et al. [9] can be extended to HEF programs as well.
We also define “bounding” loops that allow for enhancing the model checking approach
for disjunctive programs introduced in [9,11]. In Section 6, we present an algorithm for
computing an elementary set for a given HEF program.

2 Review of Elementary Sets for Disjunctive Programs

We begin with a review of elementary sets, introduced in [6], which are a reformulation
and generalization of elementary loops [12].

A disjunctive program is a finite set of (disjunctive) rules of the form

a1; . . . ; ak ← ak+1, . . . , al, not al+1, . . . , not am, not not am+1, . . . , not not an (1)

where n ≥ m ≥ l ≥ k ≥ 0 and a1, . . . , an are propositional atoms. We will identify a
rule of the form (1) with the propositional formula

(ak+1 ∧ · · · ∧ al ∧ ¬al+1 ∧ · · · ∧ ¬am ∧ ¬¬am+1 ∧ · · · ∧ ¬¬an) → (a1 ∨ · · · ∨ ak) .

We will also write (1) as
A ← B, F (2)

where A is a1; . . . ; ak, B is ak+1, . . . , al, and F is

not al+1, . . . , not am, not not am+1, . . . , not not an ,

and we identify A and B with their corresponding sets of atoms.
Let Π be a disjunctive program. A nonempty set X of atoms occurring in Π is called

a loop of Π if, for all nonempty proper subsets Y of X , there is a rule (2) in Π such
that A ∩ Y �= ∅ and B ∩ (X \ Y ) �= ∅. As shown in [6], this definition of a loop is
equivalent to the definition based on a positive dependency graph given in [13].
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We say that a subset Y of X is outbound in X for Π if there is a rule (2) in Π such
that A ∩ Y �= ∅, B ∩ (X \ Y ) �= ∅, A ∩ (X \ Y ) = ∅, and B ∩ Y = ∅. A nonempty
set X of atoms that occur in Π is elementary for Π if all nonempty proper subsets of X
are outbound in X for Π . It is clear that every elementary set is also a loop, but the
converse does not hold. The definition of an elementary set above remains equivalent
even if we restrict Y to be loops or even elementary sets.

Proposition 1. For any disjunctive program Π and any nonempty set X of atoms that
occur in Π , X is elementary for Π iff all proper subsets of X that are elementary for Π
are outbound in X for Π .

For any set Y of atoms, the external support formula of Y , denoted by ESΠ(Y ), is
the disjunction of conjunctions B ∧ F ∧

∧
a∈A\Y ¬a for all rules (2) of Π such that

A ∩ Y �= ∅ and B ∩ Y = ∅.
The following proposition describes the relationship between the external support

formula of an arbitrary set of atoms and the external support formulas of its subsets.

Proposition 2. Let Π be a disjunctive program, and let X , Y , Z be sets of atoms
such that X ⊇ Y ⊇ Z . If Z is not outbound in Y for Π and X |= ESΠ(Z), then
X |= ESΠ(Y ).

This proposition is similar to Lemma 5 in [14], which states that ESΠ(Z) |= ESΠ(Y )
holds if there is no rule (2) in Π such that A∩Z �= ∅ and B∩(Y \Z) �= ∅. Proposition 2
is more general in the sense that it refers to the stronger condition of “outboundness.”

For any set Y of atoms, by LFΠ(Y ) we denote the following formula:

∧
a∈Y a → ESΠ(Y ) . (3)

Formula (3) is called the (conjunctive) loop formula of Y for Π . Note that we still call
(3) a loop formula even when Y is not a loop.

From Proposition 2, we derive the following relationship among loop formulas.

Proposition 3. For any disjunctive program Π and any nonempty set X of atoms that
occur in Π , there is a subset Y of X such that Y is elementary for Π and LFΠ(Y ) |=
LFΠ(X).

Proposition 3 allows us to restrict the attention to loop formulas of elementary sets only,
rather than those of arbitrary sets or even loops. This yields the following theorem.

Theorem 1. [6] For any disjunctive program Π and any model X of Π whose atoms
occur in Π , the following conditions are equivalent:

(a) X is stable for Π;3

(b) X satisfies LFΠ(Y ) for all nonempty sets Y of atoms occurring in Π;
(c) X satisfies LFΠ(Y ) for all loops Y of Π;
(d) X satisfies LFΠ(Y ) for all elementary sets Y of Π .

3 For a model of Π , we will say that it is “stable for Π” if it is a stable model of Π .
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3 Head-Elementary-Set-Free Logic Programs

Ben-Eliyahu and Dechter [2] defined a class of disjunctive programs called “head-cycle-
free” programs that can be mapped in polynomial time and space to nondisjunctive
programs, preserving the stable models. A disjunctive program Π is called Head-Cycle-
Free (HCF) if, for every rule (2) in Π , there is no loop Y of Π such that |A ∩ Y | > 1.

By referring to elementary sets in place of loops in the definition, we can define a
class of programs that is more general than HCF programs. We will call a program Π
Head-Elementary-set-Free (HEF) if, for every rule (2) in Π , there is no elementary
set Y of Π such that |A ∩ Y | > 1. From the fact that every elementary set is a loop,
it is clear that every HCF program is an HEF program as well. However, not all HEF
programs are HCF. For example, consider the following program Π1:

p ← r
q ← r
r ← p, q
p ; q ← .

(4)

The program has 6 loops, {p}, {q}, {r}, {p, r}, {q, r}, {p, q, r}. Since the head of the
last rule contains two atoms from loop {p, q, r}, the program is not HCF. However, it
is HEF since {p, q, r} is not elementary for Π1 (its subsets {p, r} and {q, r} are not
outbound in {p, q, r} for Π1).

Let us write rule (2) in the following form:

a1; . . . ; ak ← B, F . (5)

Gelfond et al. [3] defined a mapping of a disjunctive program Π into a nondisjunctive
program Πsh , the “shifted” variant of Π , by replacing each rule (5) with k new rules:

ai ← B, F, not a1, . . . , not ai−1, not ai+1, . . . , not ak . (6)

They showed that every stable model of Πsh is also a stable model of Π , but not vice
versa. Ben-Eliyahu and Dechter [2] showed that the other direction holds as well if Π
is HCF. Here we extend the result to HEF programs.

Theorem 2. If a program Π is HEF, then Π and Πsh have the same stable models.

For instance, one can check that both Π1 and (Π1)sh have {p} and {q} as their only sta-
ble models. Theorem 2 shows that HEF programs are not more expressive than nondis-
junctive programs, so that one can regard the use of disjunctive rules in such programs
as a syntactic shortcut. Another consequence is that the problem of deciding whether
a model is stable for an HEF program is tractable, as in the case of nondisjunctive and
HCF programs. (In the general disjunctive case, it is coNP-complete [4].)

Comparing the elementary sets of Π and the elementary sets of Πsh gives the fol-
lowing result.

Proposition 4. For any disjunctive program Π , if X is an elementary set of Π , then X
is an elementary set of Πsh .
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The converse of Proposition 4 does not hold, even if Π is HEF. For instance, consider
the following HEF program Π2:

p ; q ← r
r ← p
r ← q .

Set {p, q, r} is not elementary for Π2 since, for instance, {p} is not outbound in {p, q, r}.
On the other hand, {p, q, r} is elementary for (Π2)sh :

p ← r, not q
q ← r, not p
r ← p
r ← q .

(7)

However, there is a certain subset of Πsh whose elementary sets are also elementary
sets of Π . For a set X of atoms, by ΠX we denote the set of all rules in Π whose bodies
are satisfied by X .

Proposition 5. Let Π be a disjunctive program, X a set of atoms that occur in Π , and
Y a subset of X . If Y is elementary for (Πsh )X , then Y is elementary for Π as well.

For X = {p, q, r} and (Π2)sh , we have that [(Π2)sh ]X consists of the last two rules
of (7) only. Only singletons {p}, {q}, and {r} are elementary for [(Π2)sh ]X , and they
are elementary for Π2 as well.

4 HEF Programs and Inherent Tightness

When we add more rules to a program, a stable model of the original program remains
to be a stable model of the extended program as long as it satisfies the new rules.

Proposition 6. For any disjunctive program Π and any model X of Π , X is stable
for Π iff there is a subset Π ′ of Π such that X is stable for Π ′.

In view of Theorem 1, Proposition 6 tells us that, provided that X is a model of Π , it is
sufficient to find a subset Π ′ of Π such that X is stable for Π ′, in order to verify that X
is stable for Π . Of course, one can trivially take Π itself as the subset Π ′, but there
are nontrivial subsets that deserve attention. If Π is nondisjunctive in Proposition 6, it
is known that the subset Π ′ can be further restricted to a “tight” program [15,16]—the
result known as “inherently tight”, or “weakly tight” programs [8,17]. We will reformu-
late these results and show that they can be extended to HEF programs.

As in [13], we call a set of atoms occurring in Π trivial if it consists of a single
atom a that has no rule (2) in Π such that a ∈ A ∩ B. Recall that by ΠX we denote the
set of all rules in Π whose bodies are satisfied by X .

Definition 1. [16,13] A disjunctive program Π is called tight if every loop of Π is
trivial. Program Π is called tight on a set X of atoms if every loop of ΠX is trivial.

As defined in [18], a set X of atoms is supported by a nondisjunctive program Π if, for
every atom a ∈ X , there is a rule (2) in ΠX such that A = {a}. We reformulate Lin
and Zhao’s notion of inherent tightness [8] as follows.
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Definition 2. A nondisjunctive program Π is called inherently tight on a set X of atoms
if there is a subset Π ′ of Π such that Π ′ is tight and X is supported by Π ′.

Theorem 1 from [8] can be reformulated as follows.

Proposition 7. For any nondisjunctive program Π and any model X of Π , X is stable
for Π iff Π is inherently tight on X .

One may wonder whether Proposition 7 can be extended to disjunctive programs as
well, since the definition of a tight program (Definition 1) applies to disjunctive pro-
grams as well, and the notion of support was already extended to disjunctive pro-
grams [19,20,13]: a set X of atoms is supported by a disjunctive program Π if, for
every atom a ∈ X , there is a rule (2) in ΠX such that A ∩ X = {a}. We extend
Definition 2 to disjunctive programs with these extended notions.

Unfortunately, for disjunctive programs, this straightforward extension of inherent
tightness is not sufficient to characterize the stability of a model. In other words, only
one direction of Proposition 7 holds for disjunctive programs.

Proposition 8. For any disjunctive program Π and any model X of Π , if Π is inher-
ently tight on X , then X is stable for Π .

The following program Π3 illustrates that the converse does not hold:

p ; q ←
p ← q
q ← p .

Set {p, q} is the only stable model of Π3, but there is no subset Π ′ of Π3 such that Π ′

is tight and {p, q} is supported by Π ′.
However, one may expect that Proposition 7 can be extended to HEF programs since,

as we noted in Section 3, HEF programs are merely a syntactic shortcut of nondisjunc-
tive programs. Indeed, the following proposition holds.

Proposition 9. For any HEF program Π and any model X of Π , X is stable for Π iff
Π is inherently tight on X .

Since every HCF program is HEF, the proposition also holds for HCF programs.
We observed that by turning to the notion of an elementary set in place of a loop, we

can get generalizations of results known for loops, such as Theorem 2 and Proposition 9.
This brings our attention to the following question. Can the notion of a tight program,
which is based on loops, be generalized by referring to elementary sets instead? To
answer this, let us modify Definition 1 as follows.

Definition 3. A disjunctive program Π is called e-tight if every elementary set of Π is
trivial. Program Π is called e-tight on a set X of atoms if every elementary set of ΠX

is trivial.

Since every elementary set is a loop, it is clear that a tight program is e-tight as well. But
is the class of e-tight programs strictly more general than the class of tight programs?
The reason why this is an interesting question to consider is because, if so, it would
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lead to a generalization of Fages’ theorem [15], which would provide a more general
class of programs for which the stable model semantics and the completion semantics
coincide. However, it turns out that e-tight programs are not truly more general than
tight programs.

Proposition 10. (a) A disjunctive program is e-tight iff it is tight.
(b) A disjunctive program is e-tight on a set X of atoms iff it is tight on X .

This result also indicates that the notion of an inherently tight program does not become
more general by referring to elementary sets. That is, replacing “Π ′ is tight” in the
statement of Definition 2 by “Π ′ is e-tight” does not affect the definition.

In the remainder of this section, we compare our reformulation of inherent tightness
above with the original definition by Lin and Zhao.

Definition 4. [8] A nondisjunctive program Π is called inherently tight on a set X of
atoms if there is a subset Π ′ of Π such that Π ′ is tight on X and X is a stable model
of Π ′.

There are two differences between our reformulation (Definition 2) and Definition 4.
The former does not rely on the relative notion of tightness (“tight on a set of atoms”)
and uses a weaker condition of supportedness. Nevertheless it is not difficult to check
that the two definitions are equivalent.

Proposition 7 above is a simplification of Theorem 1 from [8].

Proposition 11. [8, Theorem 1] For any nondisjunctive program Π and any set X of
atoms, X is a stable model of Π iff X is a model of the completion of Π and Π is
inherently tight on X .

Our reformulation of inherently tight programs is closely related to what Fages’ called
“well-supported” models [15]. We do not reproduce Fages’ definition here due to lack
of space, but it is not difficult to check that, for a nondisjunctive program Π and a set X
of atoms, X is well-supported by Π iff Π is inherently tight on X . Proposition 7 is
similar to Theorem 3.1 from [15], which showed that well-supported models coincide
with stable models.

The notion of an inherently tight program is also closely related to the notion of a
weakly tight program presented in [17].

5 Checking the Stability of Models for HEF Programs

The problem of deciding whether a given model is stable is coNP-complete for a dis-
junctive program, while it is tractable for HCF programs [9]. Leone et al. [9] presented
an operational framework for checking the stability of a model in polynomial time for
HCF programs. Given a disjunctive program Π and sets X , Y of atoms, they defined a
sequence R0

Π,X(Y ), R1
Π,X(Y ), . . . that converges to a limit Rω

Π,X(Y ) as follows:

– R0
Π,X(Y ) = Y and

– Ri+1
Π,X(Y ) is obtained from Ri

Π,X(Y ) by removing every atom a for which there is
a rule (2) in ΠX such that A ∩ X = {a} and B ∩ Ri

Π,X(Y ) = ∅.4

4 Recall that ΠX consists of all rules (2) in Π such that X |= B, F .
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A set Y of atoms is called unfounded by Π w.r.t. X if X �|= ESΠ(Y ). Set X is
unfounded-free for Π if it contains no nonempty subset that is unfounded by Π w.r.t. X .
As shown in Corollary 2 from [21] and Theorem 4.6 from [9], unfounded-free models
coincide with stable models.

Proposition 6.5 from [9] shows that X is unfounded-free for Π if Rω
Π,X(X) = ∅.

The converse also holds if Π is restricted to be a HCF program, as shown in Theo-
rem 6.9 from the same paper. That theorem can be extended to HEF programs.5

Proposition 12. For any HEF program Π and any set X of atoms, X is unfounded-free
for Π iff Rω

Π,X(X) = ∅.

As an example, consider again program Π1 ((4) in Section 3), which is HEF but not
HCF. Theorem 6.9 from [9] does not apply since it is limited to HCF programs. How-
ever, for set X1 = {p, q, r}, it holds that Rω

Π1,X1
(X1) = X1, and in accordance

with Proposition 12, X1 is not a stable model of Π1. For set X2 = {p}, the limit
Rω

Π1,X2
(X2) = ∅, and X2 is a stable model of Π1.

The following proposition shows how the HEF property and Rω
Π,X can be used to

decide whether a set Y of atoms contains a nonempty unfounded set for Π w.r.t. X .
By ΠX,Y we denote the set of all rules (2) in ΠX such that X ∩ (A \ Y ) = ∅.

Proposition 13. For any disjunctive program Π , any set X of atoms, and any subset Y
of X such that ΠX,Y is HEF, Rω

Π,X(Y ) �= ∅ iff Y contains a nonempty unfounded
subset for Π w.r.t. X .

If we replace “Rω
Π,X(Y ) �= ∅” by “Rω

Π,X(Y ) = Y and Y is nonempty” in Proposi-
tion 13, only the left-to-right direction still holds. In the next section, we present an
algorithm based on this for finding a non-trivial unfounded set for a HEF (sub)program.

As defined in [6], we say that a set Y of atoms occurring in a disjunctive program Π
is elementarily unfounded by Π w.r.t. a set X of atoms if

– Y is an elementary set of ΠX,Y that is unfounded by Π w.r.t. X , or
– Y is a singleton that is unfounded by Π w.r.t. X .

For a model X of Π , Theorem 1(e′) from [6] states that X is stable for Π iff no subset
of X is elementarily unfounded by Π w.r.t. X . Thus stability checking can be cast into
a problem of ensuring the absence of elementarily unfounded sets. Since every elemen-
tarily unfounded set is a loop, every elementarily unfounded set is clearly contained
in a maximal loop, which allows us to split the search for elementarily unfounded sets
by maximal loops. Below we describe a notion called “bounding loops,” which give
tighter bounds than maximal loops. We remark that the idea of using maximal loops for
partitioning the program and splitting stability checking by subprograms was already
presented by Leone et al. [9] and Koch et al. [11]. Their results can be enhanced by
referring to bounding loops.

For a disjunctive program Π and a set X of atoms, let S be the set of all sets Y of
atoms such that Y is a loop of ΠX,Y and Rω

Π,X(Y ) = Y . We call a maximal element

5 We here consider slightly more general rules than those considered in [9], since the body of a
rule may contain double negation (not not).



Head-Elementary-Set-Free Logic Programs 157

of S a bounding loop for Π w.r.t. X . The following two propositions describe prop-
erties of bounding loops, that are similar to maximal loops used for modular stability
checking.

Proposition 14. For any disjunctive program Π and any set X of atoms, bounding
loops for Π w.r.t. X are disjoint.

Proposition 15. For any disjunctive program Π and any set X of atoms, every non-
singleton elementarily unfounded set for Π w.r.t. X belongs to a bounding loop for Π
w.r.t. X .

Clearly, every bounding loop is contained in a maximal loop. However, as shown in the
example below, bounding loops provide tighter bounds than maximal loops for locating
elementarily unfounded sets. Propositions 14 and 15 tell us that the process of checking
the absence of elementarily unfounded sets can be split by bounding loops.

Proposition 16. For any disjunctive program Π and any model X of Π , X is stable
for Π iff X is supported by Π and X contains no bounding loop Y for Π w.r.t. X such
that Y has a nonempty unfounded subset for Π w.r.t X .

We note that computing all bounding loops for Π w.r.t. X that are contained in X can
be done in polynomial time using the following method:

1. Let Y := X .
2. Let Z := Rω

Π,X(Y ). (Note that Z = Rω
Π,X(Z) holds.)

3. If Z �= ∅, then consider the following cases:
(a) If Z is a loop of ΠX,Z , then mark Z as a bounding loop for Π w.r.t. X .
(b) Otherwise, proceed with step 2 for every maximal loop Y of ΠX,Z that is

contained in Z .

For example, consider program Π4,

p ← r s ; t ← p ; q ← s
q ← r s ← t t ; u ← q
r ← p, q t ← s, u u ; v ← ,

and its model X = {p, q, r, s, t, u}. It holds that (Π4)X,X = Π4, and X is a maximal
loop of Π4. Note that Rω

Π4,X(X) = {p, q, r, s, t} �= X , so that X is not a bounding
loop for Π4 w.r.t. X . Set Z = {p, q, r, s, t} is not a loop of (Π4)X,Z ; the maximal loops
of (Π4)X,Z contained in Z are Y1 = {p, q, r} and Y2 = {s, t}. Indeed, Y1 and Y2 are
the two bounding loops for Π4 w.r.t. X .

From Proposition 13 and the definition of a bounding loop, we derive the following.

Corollary 1. Let Π be a disjunctive program, X a set of atoms, and Y a bounding
loop for Π w.r.t. X that is contained in X . If ΠX,Y is HEF, then there is a nonempty
subset of Y that is unfounded by Π w.r.t. X .

Recall program Π4, its model X , and bounding loop Y1. Note that (Π4)X,Y1 is HEF. By
Corollary 1, the fact that (Π4)X,Y1 is HEF implies that X is not stable for Π4. In fact,
Y1 contains {p, r} and {q, r}, which are both elementarily unfounded by Π4 w.r.t. X .
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6 Computing Elementarily Unfounded Sets

It is inevitable that exponentially many loop formulas have to be considered in the worst
case [22]. Hence, SAT-based answer set solvers do not try to find all loop formulas at
once; loop formulas are added incrementally until a stable model is found (if there is
any). As shown in [6], it is sufficient to consider only loop formulas of elementarily
unfounded sets in this process. Thus, it is important to design an efficient algorithm for
finding elementarily unfounded sets.

For a general disjunctive program, it has been shown that deciding whether a given
set of atoms is elementary is coNP-complete [6]. While we do not expect a tractable
algorithm for computing elementarily unfounded sets of general disjunctive programs,
it is possible for HEF programs. Below we present a tractable algorithm for HEF pro-
grams, which is simpler and more efficient than the one described in [10].6

For any disjunctive program Π and any set Y of atoms, we define (Y, ECΠ(Y )) as
a directed graph where:

EC0
Π(Y ) = ∅

ECi+1
Π (Y ) = { (a, b) | there is a rule (2) in Π such that A ∩ Y = {a} and

all atoms b in B ∩ Y belong to the same
strongly connected component of (Y, ECi

Π(Y )) }
ECΠ(Y ) =

⋃
i≥0ECi

Π(Y ) .

This graph is equivalent to the “elementary subgraph” defined in [6], and it is closer to
the algorithm for computing an elementarily unfounded set described below.

We first note that Theorem 2 in [6] can be extended to HEF programs.

Proposition 17. For any HEF program Π and any nonempty set Y of atoms that occur
in Π , Y is elementary for Π iff (Y, ECΠ(Y )) is a strongly connected graph.

Given a disjunctive program Π , a set X of atoms occurring in Π , and a nonempty subset
Y of X such that ΠX,Y is HEF and Rω

Π,X(Y ) = Y , Figure 1 shows an algorithm for
computing an elementarily unfounded set by Π w.r.t. X that is contained in Y .7

Due to Step I, E-SET never considers any rule (2) of ΠX,Y such that |A ∩ Y | > 1.
This is similar to the definition of ECi+1

Π (Y ) above, where only rules (2) satisfying
A ∩ Y = {a} contribute to any edge. In a bottom-up manner, Step 1(a) of E-SET adds
edges to ECΠX,Y (Y ) for rules (2) such that |B ∩ Y | = 1. This ensures that all rules
contributing to edges depend on a single SCC of (Y, ECΠX,Y (Y )). In rules (2) of ΠX,Y

such that B contains multiple atoms from a recently computed SCC, Step 1(b) replaces
all atoms of the SCC by a single representative. If this leads to |B ∩ Y | = 1, rule (2)
contributes an edge in the next iteration of Step 1(a). The described process is iterated
until no further edges can be added. If a single SCC is obtained, i.e., if (Y, ECΠX,Y (Y ))
is strongly connected, then Y is elementarily unfounded by Π w.r.t. X . Otherwise,
in Step 2, we remove atoms from Y that belong to some SCC C that is not reached
(Y \C still contains an elementarily unfounded set for Π w.r.t. X). In the next iteration

6 That algorithm was designed for nondisjunctive programs, but also applies to HEF programs.
7 “SCC” is used as a shorthand for “Strongly Connected Component.”
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E-SET(ΠX,Y , Y )

I. ΠX,Y := ΠX,Y \ {(A ← B, F ) ∈ ΠX,Y | |A ∩ Y | > 1}
II. ECΠX,Y (Y ) := ∅

III. While (Y, ECΠX,Y (Y )) is not strongly connected Do

1. While there is a rule (A ← B, F ) in ΠX,Y such that |A ∩ Y | = 1 and |B ∩ Y | = 1 Do

(a) For each rule (A ← B, F ) in ΠX,Y such that |A ∩ Y | = 1 and |B ∩ Y | = 1 Do

i. ECΠX,Y (Y ) := ECΠX,Y (Y ) ∪ {(a, b) | A ∩ Y ={a}, B ∩ Y ={b}}
ii. ΠX,Y := ΠX,Y \ {(A ← B, F )} /* the rule needs not be considered further */

(b) For each (non-trivial) SCC (C, ECΠX,Y (Y ) ∩ (C×C)) of (Y, ECΠX,Y (Y )) Do

i. Select an atom b ∈ C

ii. ΠX,Y := (ΠX,Y \ {(A ← B, F ) ∈ ΠX,Y | |B ∩ C| > 1}) ∪
{(A ← b, B \ C, F ) | (A ← B, F ) ∈ ΠX,Y , |B ∩ C| > 1}

2. If (Y, ECΠX,Y (Y )) is not strongly connected Then

(a) Select some SCC (C, ECΠX,Y (Y )∩ (C ×C)) of (Y, ECΠX,Y (Y )) that is not reached
in (Y, ECΠX,Y (Y ))

(b) Y := Y \ C /* some Z ⊆ Y \ C is elementarily unfounded by Π w.r.t. X */

(c) ECΠX,Y (Y ) := ECΠX,Y (Y ) \ {(a, b) ∈ ECΠX,Y (Y ) | a ∈ C}

IV. Return Y

Fig. 1. E-SET: An algorithm to compute an elementarily unfounded set

of Step 1, this might allow to add more edges to ECΠX,Y (Y ) for rules (2) of ΠX,Y such
that B ∩ C �= ∅. The process is repeated until (Y, ECΠX,Y (Y )) becomes a strongly
connected graph. Note that the computed set Y can be a proper subset of the Y in the
invocation of E-SET(ΠX,Y , Y ).

When we apply E-SET to Π1 ((4) in Section 3) and Y = {p, q, r}, it adds edges (p, r)
and (q, r) to ECΠ1(Y ). As the resulting graph is not strongly connected, either q or p
is removed from Y . After this, adding edge (r, p) or (r, q), respectively, to ECΠ1(Y )
leads to a strongly connected graph. The result of E-SET is thus either {p, r} or {q, r},
which are the two elementarily unfounded sets for Π1 w.r.t. {p, q, r}.

The following proposition states the correctness of the E-SET algorithm.

Proposition 18. Let Π be a disjunctive program, X a set of atoms that occur in Π , and
Y a nonempty subset of X . If ΠX,Y is HEF and Rω

Π,X(Y ) = Y , then E-SET(ΠX,Y ,Y )
returns an elementarily unfounded set for Π w.r.t. X .

It is reasonable to take a bounding loop Y for Π w.r.t. X such that ΠX,Y is HEF as
input for E-SET since every elementarily unfounded set is a subset of some bound-
ing loop. For the correctness of E-SET, it is however sufficient that ΠX,Y is HEF and
Rω

Π,X(Y ) = Y .
Finally, we comment on the complexity of E-SET. Note that E-SET successi-

vely merges atoms from an input set Y into SCCs until finally obtaining a single SCC.
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Whenever a new SCC C is produced, all its atoms are replaced by a single element of C
in rules (2) such that |B∩C| > 1. This can be regarded as counting down body elements
until only one atom from Y is left, in which case a rule “fires.” This behavior is similar
to the Dowling-Gallier algorithm [23], also used to compute the minimal model of a
set of Horn clauses. Since the computation of SCCs and the Dowling-Gallier algorithm
have linear complexity, the same is concluded for E-SET. In contrast, the elementary
set computation algorithm in [10] has complexity O(n × log n).

7 Conclusion

The main contribution of this paper is identifying the class of HEF programs, a more
general class of disjunctive programs than HCF programs, that can be turned into
nondisjunctive programs in polynomial time and space by shifting head atoms into the
body. We showed that several properties of nondisjunctive programs and HCF programs
can be extended to HEF programs in a straightforward way. Since HCF programs have
played an important role in the computation of stable models for disjunctive programs,
we expect that HEF programs can be useful as well. As a first step, we have provided
an algorithm for finding an elementarily unfounded set for a HEF program, which has
a potential for improving the stable model computation for disjunctive programs.

As a future work, we plan to implement algorithm E-SET, presented in this paper, in
CMODELS for an empirical evaluation. It is an open question whether identifying HEF
programs is tractable, while it is known that identifying HCF programs can be done in
linear time.
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