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Abstract

High-dimensional statistical inference deals with modelsin which the the num-
ber of parametersp is comparable to or larger than the sample sizen. Since it
is usually impossible to obtain consistent procedures unlessp/n → 0, a line of
recent work has studied models with various types of structure (e.g., sparse vec-
tors; block-structured matrices; low-rank matrices; Markov assumptions). In such
settings, a general approach to estimation is to solve a regularized convex program
(known as a regularizedM -estimator) which combines a loss function (measuring
goodness-of-fit of the models to the data) with some regularization function that
encourages the assumed structure. The goal of this paper is to provide a unified
framework for establishing consistency and convergence rates for such regularized
M -estimation procedures under high-dimensional scaling. We state one main the-
orem and show how it can be used to re-derive several existingresults, and also
to obtain several new results on consistency and convergence rates. Our analysis
also identifies two key properties of loss and regularization functions, referred to
as restricted strong convexity and decomposability, that ensure the corresponding
regularizedM -estimators have fast convergence rates.

1 Introduction

In many fields of science and engineering such as genomics andnatural language processing, it is
of great interest to relate predictor variables (e.g. gene levels) to a response variable (e.g. cancer
status). Due to the exploding size of problems, we often find ourselves in the “largep small n”
regime—that is, the number of predictor variablesp is comparable to or even larger than the number
of observationsn. For such high dimensional data, successful statistical modeling is possible only if
the data follows models with restrictions. For instance, the data might be sparse in a suitably chosen
basis, could lie on some manifold, or the dependencies amongthe variables might have Markov
structure specifid by a graphical model.

In such settings, a common approach is to useregularizedM -estimators, where some loss function
(e.g., the negative log-likelihood of the data) is regularized by a function appropriate to the assumed
structure. Such estimators may also be interpreted from a Bayesian perspective as the Maximum A
Posterior (MAP) estimator, with the regularizer reflectingprior information. In this paper, we study
such regularizedM -estimation procedures, and attempt to provide a unifying framework that both
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recovers some existing results and provides new results on consistency and convergence rates under
high-dimensional scaling.

As an illustration of the applications of our analysis, we work with three running examples of con-
strained parametric structures. The first aresparsemodels, both where the number of model param-
eters that are non-zero is small (hard-sparse) or more generally where the number of parameters
above a certain threshold are limited (weak-sparse). The second are so called block-sparse models,
where the parameters are matrix-structured, and entire rows are either zero or not. Our third class
is the estimation of low-rank matrices, which arises in system identification, collaborative filtering,
and other types of matrix completion problems.

To motivate the need for a unified analysis, let us provide a brief (and hence necessarily incomplete)
overview of the broad range of work on high-dimensional models. For the case of sparse regression,
a popular regularizer is theℓ1 norm of the parameter vector, which is the sum of the absolutevalues
of the parameters. A number of researchers have studied the Lasso [15, 3] as well as the closely
related Dantzig selector [2] and provided conditions on various aspects of its behavior, including
ℓ2-error bounds [6, 1, 20, 2] and model selection consistency [21, 19, 5, 16]. For generalized
linear models (GLMs) and exponential family models, estimators based onℓ1-regularized maximum
likelihood have also been studied, including results on risk consistency [18] and model selection
consistency [11]. A body of work has focused on the case of estimating Gaussian graphical models,
including convergence rates in Frobenius and operator norm[14], and results on operator norm
and model selection consistency [12]. Motivated by inference problems involving block-sparse
matrices, other researchers have proposed block-structured regularizers [17, 22], and more recently,
high-dimensional consistency results have been obtained for model selection [7, 8] and parameter
consistency [4]. In this paper, we derive a single main theorem, and show how we are able to rederive
a wide range of known results on high-dimensional consistency, as well as some novel ones: such
as estimation error rates for low-rank matrices, sparse matrices, and “weakly”-sparse vectors.

2 Problem formulation and some key properties

In this section, we begin with a precise formulation of the problem, and then develop some key
properties of the regularizer and loss function. In particular, we define a notion ofdecomposability
for regularizing functionsr, and then prove that when it is satisfied, the error∆̂ = θ̂ − θ∗ of the
regularizedM -estimator must satisfy certain constraints. We use these constraints to define a notion
of restricted strong convexitythat the loss function must satisfy.

2.1 Problem set-up

Consider a random variableZ with distributionP taking values in a setZ. LetZn
1 := {Z1, . . . , Zn}

denoten observations drawn in an i.i.d. manner fromP, and supposeθ∗ ∈ R
p is some parameter

of this distribution. We consider the problem of estimatingθ∗ from the dataZn
1 . In order to do so,

we consider the following class of regularizedM -estimators. LetL : R
p ×Zn 7→ R be some loss

function that assigns a cost to any parameterθ ∈ R
p given a set of observations. Letr : R

p 7→ R

denote a regularization function. We then consider the regularizedM -estimator given by

θ̂ ∈ arg min
θ∈Rp

{
L(θ; Zn

1 ) + λnr(θ)
}
, (1)

whereλn > 0 is a regularization penalty. For ease of notation, in the sequel, we adopt the short-
handL(θ) for L(θ; Zn

1 ). Throughout the paper, we assume that the loss functionL is convex and
differentiable, and that the regularizerr is a norm.

Our goal is to provide general techniques for deriving bounds on the error̂θ−θ∗ in some error metric
d. A common example is theℓ2-normd(θ̂−θ∗) := ‖θ̂−θ∗‖2. As discussed earlier, high-dimensional
parameter estimation is made possible by structural constraints onθ∗ such as sparsity, and we will
see that the behavior of the error is determined by how well these constraints are captured by the
regularization functionr(·). We now turn to the properties of the regularizerr and the loss function
L that underlie our analysis.
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2.2 Decomposability

Our first condition requires that the regularization function r be decomposable, in a sense to be
defined precisely, with respect to a family of subspaces. This notion is a formalization of the manner
in which the regularization function imposes constraints on possible parameter vectorsθ∗ ∈ R

p. We
begin with some abstract definitions, which we then illustrate with a number of concrete examples.
Take some arbitrary inner product spaceH, and let‖ · ‖2 denote the norm induced by the inner
product. Consider a pair(A, B) of subspaces ofH such thatA ⊆ B⊥. For a given subspaceA and
vectoru ∈ H, we letπA(u) := argminv∈A ‖u − v‖2 denote the orthogonal projection ofu ontoA.
We letV = {(A, B) | A ⊆ B⊥} be a collection of subspace pairs. For a given statistical model,
our goal is to construct subspace collectionsV such that for any givenθ∗ from our model class,
there exists a pair(A, B) ∈ V with ‖πA(θ∗)‖2 ≈ ‖θ∗‖2, and‖πB(θ∗)‖2 ≈ 0. Of most interest to us
are subspace pairs(A, B) in which this property holds but the subspaceA is relatively small andB
is relatively large. Note thatA represents the constraints underlying our model class, andimposed
by our regularizer. In the remainder of this paper we assume thatH = R

p and use the standard
Euclidean innerproduct, unless otherwise specified.

As a first concrete (but toy) example, consider the model class of all vectorsθ∗ ∈ R
p, and the sub-

space collectionT that consists of a single subspace pair(A, B) = (Rp, 0). We refer to this choice
(V = T ) as thetrivial subspace collection. In this case, for anyθ∗ ∈ R

p, we haveπA(θ∗) = θ∗ and
πB(θ∗) = 0. Although this collection satisfies our desired property, it is not so useful sinceA = R

p

is a very large subspace. As a second example consider the class of s-sparse parameter vectors
θ∗ ∈ R

p, meaning thatθ∗i 6= 0 only if i ∈ S, whereS is somes-sized subset of{1, 2, . . . , p}. For
any given subsetS and its complementSc, let us define the subspaces

A(S) = {θ ∈ R
p | θSc = 0}, and B(S) = {θ ∈ R

p | θS = 0},
and thes-sparse subspace collectionS = {(A(S), B(S)) | S ⊂ {1, . . . , p}, |S| = s}. With this
set-up, for anys-sparse parameter vectorθ∗, we are guaranteed that there exists some(A, B) ∈ S
such thatπA(θ∗) = θ∗ andπB(θ∗) = 0. In this case, the property is more interesting, since the
subspacesA(S) are relatively small as long as|S| = s ≪ p.

With this set-up, we say that the regularizerr is decomposablewith respect to a given subspace pair
(A, B) if

r(u + z) = r(u) + r(z) for all u ∈ A andz ∈ B. (2)

In our subsequent analysis, we impose the following condition on the regularizer:
Definition 1. The regularizerr is decomposable with respect to a given subspace collectionV ,
meaning that it is decomposable for each subspace pair(A, B) ∈ V .

Note that any regularizer is decomposable with respect to the trivial subspace collection
T = {(Rp, 0)}. It will be of more interest to us when the regularizer decomposes with respect to
a larger collectionV that includes subspace pairs(A, B) in which A is relatively small andB is
relatively large. Let us illustrate with some examples.

• Sparse vectors andℓ1 norm regularization. Consider a model involvings-sparse regression vec-
torsθ∗ ∈ R

p, and recall the definition of thes-sparse subspace collectionS discussed above. We
claim that theℓ1-norm regularizerr(u) = ‖u‖1 is decomposable with respect toS. Indeed, for
anys-sized subsetS and vectorsu ∈ A(S) andv ∈ B(S), we have‖u + v‖1 = ‖u‖1 + ‖v‖1, as
required.

• Group-structured sparse matrices andℓ1,q matrix norms. Various statistical problems involve
matrix-valued parametersΘ ∈ R

k×m; examples include multivariate regression problems or
(inverse) covariance matrix estimation. We can define an inner product on such matrices via
〈〈Θ, Σ〉〉 = trace(ΘT Σ) and the induced (Frobenius) norm

∑k
i=1

∑m
j=1 Θ2

i,j . Let us suppose
thatΘ satisfies a group sparsity condition, meaning that theith row, denotedΘi, is non-zero only
if i ∈ S ⊆ {1, . . . , k} and the cardinality ofS is controlled. For a given subsetS, we can define
the subspace pair

B(S) =
{
Θ ∈ R

k×m | Θi = 0 for all i ∈ Sc
}
, and A(S) = (B(S))⊥,

For some fixeds ≤ k, we then consider the collection

V = {(A(S), B(S)) | S ⊂ {1, . . . , k}, |S| = s},
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which is a group-structured analog of thes-sparse setS for vectors. For anyq ∈ [1,∞], now
suppose that the regularizer is theℓ1/ℓq matrix norm, given byr(Θ) =

∑k
i=1[

∑m
j=1 |Θij |q]1/q,

corresponding to applying theℓq norm to each row and then taking theℓ1-norm of the result. It
can be seen that the regularizerr(Θ) = |||Θ|||1,q is decomposable with respect to the collectionV .

• Low-rank matrices and nuclear norm. The estimation of low-rank matrices arises in vari-
ous contexts, including principal component analysis, spectral clustering, collaborative filter-
ing, and matrix completion. In particular, consider the class of matricesΘ ∈ R

k×m that have
rankr ≤ min{k, m}. For any given matrixΘ, we letrow(Θ) ⊆ R

m andcol(Θ) ⊆ R
k denote its

row space and column space respectively. For a given pair ofr-dimensional subspacesU ⊆ R
k

andV ⊆ R
m, we define a pair of subspacesA(U, V ) andB(U, V ) of R

k×m as follows:

A(U, V ) :=
{
Θ ∈ R

k×m | row(Θ) ⊆ V, col(Θ) ⊆ U
}
, and (3a)

B(U, V ) :=
{
Θ ∈ R

k×m | row(Θ) ⊆ V ⊥, col(Θ) ⊆ U⊥}. (3b)

Note thatA(U, V ) ⊆ B⊥(U, V ), as is required by our construction. We then consider the col-
lectionV = {(A(U, V ), B(U, V )) | U ⊆ R

k, V ⊆ R
m}, where(U, V ) range over all pairs of

r-dimensional subspaces. Now suppose that we regularize with the nuclear normr(Θ) = |||Θ|||1,
corresponding to the sum of the singular values of the matrixΘ. It can be shown that the nuclear
norm is decomposable with respect toV . Indeed, since any pair of matricesM ∈ A(U, V ) and
M ′ ∈ B(U, V ) have orthogonal row and column spaces, we have|||M +M ′|||1 = |||M |||1 + |||M ′|||1
(e.g., see the paper [13]).

Thus, we have demonstrated various models and regularizersin which decomposability is satisfied
with interesting subspace collectionsV . We now show that decomposability has important con-
sequences for the error̂∆ = θ̂ − θ∗, whereθ̂ ∈ R

p is any optimal solution of the regularized
M -estimation procedure (1). In order to state a lemma that captures this fact, we need to define the
dual norm of the regularizer, given byr∗(v) := supu∈Rp

uT v
r(u) . For the regularizers of interest, the

dual norm can be obtained via some easy calculations. For instance, given a vectorθ ∈ R
p and

r(θ) = ‖θ‖1, we haver∗(θ) = ‖θ‖∞. Similarly, given a matrixΘ ∈ R
k×m and the nuclear norm

regularizerr(Θ) = |||Θ|||1, we haver∗(Θ) = |||Θ|||2, corresponding to the operator norm (or maximal
singular value).

Lemma 1. Supposêθ is an optimal solution of the regularizedM -estimation procedure(1), with
associated error∆ = θ̂−θ∗. Furthermore, suppose that the regularization penalty is strictly positive
with λn ≥ 2 r∗(∇L(θ∗)). Then for any(A, B) ∈ V

r(πB(∆̂)) ≤ 3r(πB⊥(∆̂)) + 4r(πA⊥(θ∗)).

This property plays an essential role in our definition of restricted strong convexity and subsequent
analysis.

2.3 Restricted Strong Convexity

Next we state our assumption on the loss functionL. In general, guaranteeing thatL(θ̂) − L(θ∗)

is small isnot sufficientto show thatθ̂ andθ∗ are close. (As a trivial example, consider a loss
function that is identically zero.) The standard way to ensure that a function is “not too flat” is via
the notion of strong convexity—in particular, by requiringthat there exist some constantγ > 0 such
thatL(θ∗ + ∆) − L(θ∗) −∇L(θ∗)T ∆ ≥ γd2(∆) for all ∆ ∈ R

p. In the high-dimensional setting,
where the number of parametersp may be much larger than the sample size, the strong convexity
assumption need not be satisfied. As a simple example, consider the usual linear regression model
y = Xθ∗ + w, wherey ∈ R

n is the response vector,θ∗ ∈ R
p is the unknown parameter vector,

X ∈ R
n×p is the design matrix, andw ∈ R

n is a noise vector, with i.i.d. zero mean elements. The
least-squares loss is given byL(θ) = 1

2n‖y − Xθ‖2
2, and has the HessianH(θ) = 1

nXT X . It is
easy to check that thep × p matrix H(θ) will be rank-deficient wheneverp > n, showing that the
least-squares loss cannot be strongly convex (with respectto d(·) = ‖ · ‖2) whenp > n.

Herein lies the utility of Lemma 1: it guarantees that the error ∆̂ must lie within a restricted set,
so that we only need the loss function to be strongly convex for a limited set of directions. More
precisely, we have:
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Definition 2. Given some subsetC ⊆ R
p and error normd(·), we say that the loss functionL

satisfiesrestricted strong convexity(RSC) (with respect tod(·)) with parameterγ(L) > 0 overC if

L(θ∗ + ∆) − L(θ∗) −∇L(θ∗)T
∆ ≥ γ(L) d2(∆) for all ∆ ∈ C. (4)

In the statement of our results, we will be interested in lossfunctions that satisfy RSC over sets
C(A, B, ǫ) that are indexed by a subspace pair(A, B) and a toleranceǫ ≥ 0 as follows:

C(A, B, ǫ) :=
{
∆ ∈ R

p | r(πB(∆)) ≤ 3r(πB⊥(∆)) + 4r(πA⊥ (θ∗)), d(∆) ≥ ǫ
}
. (5)

In the special case of least-squares regression with hard sparsity constraints, the RSC condition cor-
responds to a lower bound on the sparse eigenvalues of the Hessian matrixXT X , and is essentially
equivalent to a restricted eigenvalue condition introduced by Bickel et al. [1].

3 Convergence rates

We are now ready to state a general result that provides bounds and hence convergence rates for the
errord(θ̂− θ∗). Although it may appear somewhat abstract at first sight, we illustrate that this result
has a number of concrete consequences for specific models. Inparticular, we recover some known
results about estimation ins-sparse models [1], as well as a number of new results, including con-
vergence rates for estimation underℓq-sparsity constraints, estimation in sparse generalized linear
models, estimation of block-structured sparse matrices and estimation of low-rank matrices.

In addition to the regularization parameterλn and RSC constantγ(L) of the loss function, our
general result involves a quantity that relates the error metric d to the regularizerr; in particular, for
any setA ⊆ R

p, we define

Ψ(A) := sup
{u∈Rp | d(u)=1}

r(u), (6)

so thatr(u) ≤ Ψ(A)d(u) for u ∈ A.

Theorem 1(Bounds for general models). For a given subspace collectionV , suppose that the regu-
larizer r is decomposable, and consider the regularizedM -estimator(1) with λn ≥ 2 r∗(∇L(θ∗)).
Then, for any pair of subspaces(A, B) ∈ V and toleranceǫ ≥ 0 such that the loss functionL
satisfies restricted strong convexity overC(A, B, ǫ), we have

d(θ̂ − θ∗) ≤ max
{

ǫ,
1

γ(L)

[
2 Ψ(B⊥)λn +

√
2 λn γ(L) r(πA⊥(θ∗))

]}
. (7)

The proof is motivated by arguments used in past work on high-dimensional estimation (e.g., [9,
14]); we provide the details in the full-length version. In the remainder of this paper, we illustrate
the consequences of Theorem 1 for specific models. The parameterλn will be selected as small as
possible while satisfying the lower bound2 r∗(∇L(θ∗)). For the sake of clarity, the errord(·) is
taken to be‖ · ‖2. For all modelsǫ = 0, apart from the weak-sparse model in section 3.1.2.

3.1 Bounds for linear regression

Consider the standard linear regressiony = Xθ∗ + w model, whereθ∗ ∈ R
p is the regression

vector,X ∈ R
n×p is the design matrix, andw ∈ R

n is a noise vector. Given the observations
(y, X), our goal is to estimate the regression vectorθ∗. Without any structural constraints onθ∗,
we can apply Theorem 1 with the trivial subspace collectionT = {(Rp, 0)} to establish a rate
‖θ̂ − θ∗‖2 = O(σ

√
p/n) for ridge regression. Note that the RSC condition requires that X is

full-rank so thatn > p. Here we consider bounds for linear regression whereθ∗ is ans-sparse
vector.

3.1.1 Lasso estimates of hard sparse models

More precisely, let us consider estimating ans-sparse regression vectorθ∗ by solving the Lasso
program

θ̂ ∈ arg min
θ∈Rp

{ 1

2n
‖y − Xθ‖2

2 + λn‖θ‖1

}
. (8)
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The Lasso is a special case of ourM -estimator (1) withr(θ) = ‖θ‖1, andL(θ) = 1
2n‖y − Xθ‖2

2.

Recall the definition of thes-sparse subspace collectionS from Section 2.2. For this problem,
let us setǫ = 0 so that the restricted strong convexity set (5) becomesC(A, B, 0) = {∆ ∈ R

p |
‖∆Sc‖1 ≤ 3‖∆S‖1}. Establishing restricted strong convexity for the least-squares loss is equivalent
to ensuring the following bound on the design matrix:

‖Xθ‖2
2/n ≥ γ(L) ‖θ‖2

2 for all θ ∈ R
p s.t.‖θS‖1 ≤ 3‖θS‖1. (9)

As mentioned previously, this condition is essentially thesame as the restricted eigenvalue condition
developed by Bickel et al. [1]. Moreover, we note that Raskutti et al. [10] have shown that condi-
tion (9) will hold with high probability for various random ensembles of Gaussian matrices. Theith

column ofX , Xi, also satisfies the constraint‖Xi‖2 ≤ √
n. Finally, we assume that the elements of

wi are zero-mean and have sub-Gaussian tails, meaning that there exists some constantσ > 0 such
thatP[|wi| > t] ≤ exp(−t2/2σ2) for all t > 0. Under these conditions, we recover as a corollary
of Theorem 1 the following known result [1, 6].
Corollary 1. Suppose that the true vectorθ∗ ∈ R

p is exactlys-sparse with supportS, and that the

design matrixX satisfies condition(9). If we solve the the Lasso withλ2
n = 16σ2 log p

n , then with
probability at least1 − c1 exp(−c2nλ2

n), the solution satisfies

‖θ̂ − θ∗‖2 ≤ 8σ

γ(L)

√
s log p

n
. (10)

Proof. As noted previously, theℓ1-regularizer is decomposable for the sparse subspace collection
S, while condition (9) ensures that RSC holds for all setsC(A, B, 0) with (A, B) ∈ S. We must
verify that the given choice of regularization satisfiesλn ≥ 2 r∗(∇L(θ∗)). Note thatr∗(·) = ‖ ·‖∞,
and moreover that∇L(θ∗) = XT w/n. Under the column normalization condition on the design

matrixX and the sub-Gaussian nature of the noise, it follows that‖XT w/n‖∞ ≤
√

4σ2 log p
n with

high probability. The bound in Theorem 1 is thus applicable,and it remains to compute the form
that its different terms take in this special case. For theℓ1-regularizer and theℓ2 error metric, we
haveΨ(AS) =

√
|S|. Given the hard sparsity assumption,r(θ∗Sc) = 0, so that Theorem 1 implies

that‖θ̂ − θ∗‖2 ≤ 2
γ(L)

√
sλn = 8σ

γ(L)

√
s log p

n , as claimed.

3.1.2 Lasso estimates of weak sparse models

We now consider models that satisfy a weak sparsity assumption. More concretely, suppose thatθ∗

lies in theℓq-“ball” of radius Rq—namely, the setBq(Rq) := {θ ∈ R
p | ∑p

i=1 |θi|q ≤ Rq} for
someq ∈ (0, 1]. Our analysis exploits the fact that anyθ∗ ∈ Bq(Rq) can be well approximated by
ans-sparse vector (for an appropriately chosen sparsity indexs). It is natural to approximateθ∗ by a
vector supported on the setS = {i | |θ∗i | ≥ τ}. For any choice of thresholdτ > 0, it can be shown
that |S| ≤ Rqτ

−q, and as shown in the full-length version, the optimal choiceis to setτ = λn,
using the same regularization parameter as in Corollary 1. Accordingly, we consider thes-sparse
subspace collectionS with subsets of sizes = Rqλ

−q
n . We assume that the noise vectorw ∈ R

n

is as defined above and that the columns are normalized as in the previous section. We also assume
that the matrixX satisfies the condition

‖Xv‖2 ≥ κ1‖v‖2 − κ2

( log p

n

) 1

2 ‖v‖1 for constantsκ1, κ2 > 0. (11)

Raskutti et al. [10] show that this property holds with high probablity for suitable Gaussian random
matrices. Under this condition, it can be verified that RSC holds with γ(L) = κ1/2 over the set

C
(
A(S), B(S), ǫn), whereǫn =

(
4/κ1 +

√
4/κ1)R

1

2

q

(√
16 σ2 log p

n

)1−q/2
. The following result,

which we obtain by applying Theorem 1 in this setting, is new to the best of our knowledge:
Corollary 2. Suppose that the true vectorθ∗ ∈ Bq(Rq), and the design matrixX satisfies condi-

tion (11). If we solve the Lasso withλ2
n = 16σ2 log p

n , then with probability1− c1 exp(−c2nλ2
n), the

solution satisfies

‖θ̂ − θ∗‖2 ≤ R
1

2

q

(√
16 σ2 log p

n

)1−q/2 [
2

γ(L)
+

√
2√

γ(L)

]
. (12)

6



We note that both of the rates—for hard-sparsity in Corollary 1 and weak-sparsity in Corollary 2—
are known to be optimal in a minimax sense [10]. In [10], the authors also show that (12) is achiev-
able by solving the computationally intractable problem ofminimizingL(θ) over theℓq-ball.

3.2 Bounds for generalized linear models

Next, consider any generalized linear model with canonicallink function, where the distribution of
responsey ∈ Y, given predictorX ∈ R

p, is given byp(y|X ; θ∗) = exp(yθ∗T X−a(θ∗T X)+d(y)),
for some fixed functionsa : R 7→ R andd : Y 7→ R, where|X | ≤ A, and|y| ≤ B. We consider
estimatingθ∗ from observations{(Xi, yi)}n

i=1 by ℓ1-regularized maximum likelihood:

θ̂ ∈ arg min
θ∈Rp

{
− 1

n
θT
( n∑

i=1

yiXi

)
+

1

n

n∑

i=1

a(θT Xi) + ‖θ‖1

}
, (13)

so thatL(θ) = −θT
(

1
n

∑n
i=1 yiXi

)
+ 1

n

∑n
i=1 a(θT Xi), andr(θ) = ‖θ‖1. Let X ∈ R

n×p denote
the matrix withXi as rowi. Again we use thes-sparse subspace collectionS andǫ = 0, so that it
can be verified that it suffices for the restricted strong convexity condition to hold if for somec > 0,

ä(θT x) > c, for |x| ≤ M, θ ∈ {θ∗ + ∆ : ‖∆‖2 ≤ 16AB
γ(L)

√
s log p

n }, and that the design matrixX
satisfies the restricted eigenvalue bound

‖Xθ‖2
2/n ≥ γ(L)

c
‖θ‖2

2 for all θ ∈ R
p s.t.‖θSc‖1 ≤ 3‖θS‖1. (14)

Corollary 3. Suppose that the true vectorθ∗ ∈ R
p is exactlys-sparse with supportS, and the design

matrix X satisfies condition(14). Suppose that we solve theℓ1-regularizedM -estimator(13) with

λ2
n = 32A2B2 log p

n . Then with probability1 − c1 exp(−c2nλ2
n), the solution satisfies

‖θ̂ − θ∗‖2 ≤ 16AB

γ(L)

√
s log p

n
. (15)

We defer the proof to the full-length version due to space constraints.

3.3 Bounds for sparse matrices

In this section, we consider some extensions of our results to estimation of regression matrices.
Various authors have proposed extensions of the Lasso basedon regularizers that have more structure
than theℓ1 norm [17, 22]. Such regularizers allow one to impose varioustypes of block-sparsity
constraints, in which groups of parameters are assumed to beactive (or inactive) simultaneously.
We assume that the observation model takes on the formY = XΘ∗ + W , whereΘ∗ ∈ R

k×m

is the unknown fixed set of parameters,X ∈ R
n×k is the design matrix, andW ∈ R

n×m is
the noise matrix. As a loss function, we use the Frobenius norm 1

nL(Θ) = |||Y − XΘ|||2F , and
as a regularizer, we use theℓ1,q-matrix norm for someq ≥ 1, which takes the form|||Θ|||1,q =∑k

i=1 ‖(Θi1, . . . , Θim)‖q. We refer to the resulting estimator as theq-group Lasso. We define the
quantityη(m; q) = 1 if q ∈ (1, 2] andη(m; q) = m1/2−1/q if q > 2. We then set the regularization
parameter as follows:

λn =

{ 4σ√
n
[η(m; q)

√
log k + Cqm

1−1/q] if q > 1

4σ
√

log(km)
n for q = 1.

Corollary 4. Suppose that the true parameter matixΘ∗ has non-zero rows only for indicesi ∈ S ⊆
{1, . . . , k} where|S| = s, and that the design matrixX ∈ R

n×k satisfies condition(9). Then with
probability at least1 − c1 exp(−c2nλ2

n), theq-block Lasso solution satisfies

|||Θ̂ − Θ∗|||F ≤ 2

γ(L)
Ψ(S)λn. (16)

Proof. We simply need to establish that the regularization parameter satisfiesλn ≥ 2 r∗(∇L(Θ∗)).
We note that for a matrixU , r∗(U) = maxi=1,...,k ‖Ui·‖q′ for 1/q′ = 1 − 1/q. Moreover, we have
∇L(Θ∗) = 1

nXT W . Concentration results on‖ · ‖q′ and the union bound yield thatr∗( 1
nXT W ) ≤

2σ√
n
[η(m; q)

√
log k + Cqm

1−1/q], as required.
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We will now consider three special cases of the above result.A simple argument shows that
Ψ(S) =

√
s if q ≥ 2, andΨ(S) = m1/q−1/2

√
s if q ∈ [1, 2]. First, we considerq = 1, and

note that solving the Group Lasso withq = 1 is identical solving a Lasso problem with sparsity
sm and ambient dimensionkm. The resulting upper bound on the Frobenius norm reflects this fact:

more specifically, forq = 1, the bound is 8σ
γ(L)

√
s m log(km)

n . For the caseq = 2, Corollary 4 im-

plies that the Frobenius error|||Θ̂−Θ∗|||F is upper bounded as8σ
γ(L)

[√
s log k

n +
√

sm
n

]
. This is also

a very natural result: the terms log k
n captures the difficulty of finding thes non-zero rows out of

the totalk, whereas the termsm
n captures the difficulty of estimating thesm free parameters in the

matrix (once the non-zero rows have been determined). We note that recent work by Lounici et al.

[4] established the boundO( σ
γ(L)

√
c
√

m s log k
n + sm

n ), which is equivalent apart from a term
√

m.

Finally, for q = ∞, we obtain the upper bound8σ
γ(L)

[√
s log k

n + m
√

s
n

]
, which is a novel result.

3.4 Bounds for estimating low rank matrices

Finally, we consider the implications of our main result forthe problem of estimating low-rank
matrices. This structural assumption is a natural generalization of sparsity, and has been studied by
various authors (see the paper [13] and references therein). To illustrate our main theorem in this
context, let us consider the following instance of low-rankmatrix learning. Given a low-rank matrix
Θ∗ ∈ R

k×m, suppose that we are givenn noisy observations of the formYi = 〈〈Xi, Θ∗〉〉 + Wi,
whereWi ∼ N(0, 1). Such an observation model arises, for instance, in system identification
settings in control theory [13]. The following regularizedM -estimator can be considered in order
to estimate the desired low-rank matrixΘ∗:

min
Θ∈Rm×p

1

2n

n∑

i=1

|Yi − 〈〈Xi, Θ)〉〉|2 + |||Θ|||1, (17)

where the regularizer,|||Θ|||1, is the nuclear norm, or the sum of the singular values ofΘ.

Recall the rank-r collectionV defined for low-rank matrices in Section 2.2. LetΘ∗ = UΣWT be
the singular value decomposition (SVD) ofΘ∗, so thatU ∈ R

k×r andW ∈ R
m×r are orthogonal,

andΣ ∈ R
r×r is a diagonal matrix. If we letA = A(U, W ) andB = B(U, W ), then,πB(Θ∗) = 0,

so that by Lemma 1 we have that|||πB(∆)|||1 ≤ 3 |||πB⊥(∆)|||1. Thus, for restricted strong convexity
to hold it can be shown that the design matricesXi must satisfy

1

n

n∑

i=1

|〈〈Xi, ∆〉〉|2 ≥ γ(L) |||∆|||2F for all ∆ such that|||πB(∆)|||1 ≤ 3 |||πB⊥(∆)|||1. (18)

As with the analogous conditions for sparse vectors and linear regression, this condition can be
shown to hold with high probability for Gaussian random matrices.
Corollary 5. Suppose that the true matrixΘ∗ has rankr ≪ min(k, m), and that the design matrices

{Xi} satisfy condition(18). If we solve the regularizedM -estimator(17)with λn = 4
√

k+
√

m√
n

, then

with probability at least1 − c1 exp(−c2(k + m)), we have

|||Θ̂ − Θ∗|||F ≤ 16

γ(L)

[√rk

n
+

√
rm

n

]
. (19)

Proof. Note that if rank(Θ∗) = r, then |||Θ∗|||1 ≤ √
r|||Θ∗|||F so thatΨ(B⊥) =

√
2r, since the

subspaceB(U, V )⊥ consists of matrices with rank at most2r. All that remains is to show that
λn ≥ 2 r∗(∇L(Θ∗)). Standard analysis gives that the dual norm to||| · |||1 is the operator norm,
||| · |||2. Applying this observation and the fact that∇L(Θ∗) = − 1

n

∑n
i=1 XiWi we can construct a

bound on the operator norm of1
n

∑n
i=1 XiWi. We assume that the entries ofXi are i.i.d.N(0, 1).

Then, conditioned onW , the entries of the matrix1n
∑n

i=1 XiWi are i.i.d. N(0, ‖W‖2
2/n2) from

which it can be shown that with probability at least1− c1 exp(−c2n), ‖W‖2
2/n ≤ 2. Coupled with

results on random matrix theory we have that||| 1n
∑n

i=1 XiWi|||2 ≤ 2
√

k+
√

m√
n

with probability at
least1 − c1 exp(−c2(k + m)), verifying thatλn ≥ 2 r∗(∇L(θ∗)).
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A Ridge-Regression

In this section, we apply Theorem 1 to ridge-regression. Consider solving the program

θ̂ ∈ arg min
θ∈Rp

{ 1

n
‖y − Xθ‖2

2 + λn‖θ‖2

}
.

Assume that the underlying structure enforces‖θ∗‖2 ≤ M for some constantM > 0. As a result,
the restricted strong convexity assumption reduces toλmin(

1
nXT X) ≥ γ(L) > 0. We may now

present the following trivial corollary to Theorem 1. Note that the result is not new, and provides
exactly the same bound as in the ordinary least-squares solution to the problem.

Corollary 6. Suppose that the true vectorθ∗ ∈ R
p and that the design matrixX has its smallest

eigenvalue bounded below byγ(L). Suppose that we solve the Ridge-regression program withλ2
n =

p
n . Then, with probability1 − c1 exp(−c2nλ2

n), the solution satisfies

‖θ̂ − θ∗‖2 ≤ 8σ

γ(L)

√
p

n
(20)

Proof. The restricted strong convexity condition clearly holds. Furthermore, letV be the space of
all subspace-pairs. Therefore, we can apply the bound in Theorem 1. First note thatΨ(A) = 1 for
any setA sinced(v) = r(v) ∀v ∈ R

p. The dual normr∗(·) is r(·). Thus, we must establish theℓ2

norm of∇L(θ∗) = XT w/n. However, the column normalization bounds yields that‖XT w/n‖2 ≤
2σ
√

p/n with probability1 − c1 exp(−c2p). Therefore, lettingλn = 2‖XTw/n‖2 we have by
Theorem 1 thatd(θ̂−θ∗) ≤ 1

γ(L) [8
√

p
n +
√

8λnr(πA⊥(θ∗))]. Thus, the bound is clealry minimized

as long asθ
∗
A = 0, which is the case if we letA = R

p. Verifying the result.

B Proof of Theorem 1

The argument is motivated by the methods of Rothman et al. [14], in their analysis of anℓ1-
regularized log-determinant program. Consider the function

g(∆) := L(θ∗ + ∆) − L(θ∗) + λn

{
r(θ∗ + ∆) − r(θ∗)

}
. (21)

The convexity ofL(·) andr(·) implies thatg is a convex function. Here, we have that∆ = θ − θ∗

and∆̂ = θ̂ − θ∗. Observe thatg(0) = 0 so thatg(∆̂) ≤ 0. From Lemma 1, we know that̂∆ ∈ C,
where

C := {∆ ∈ R
p : r(πB(∆)) ≤ 3 r(πB(∆)) + 4 r(πA⊥(θ∗))}.

We also have that if∆ ∈ C, thent∆ ∈ C for any t ∈ [0, 1]. Now suppose thatd(∆̂) > M . Then
there exists at ∈ (0, 1) such thatd(t∆̂) = M andt∆̂ ∈ C. Now suppose thatg(t∆̂) > 0. Then, by
the convexity ofg

g((1 − t)0 + t∆̂) ≤ (1 − t)g(0) + tg(∆̂).

We knowg(0) = 0 andt > 0. Thus,g(∆̂) > 0, which is a contradiction. Therefore,d(∆̂) ≤ M .
Hence, it suffices to show that for any∆ ∈ C such thatd(∆) = M , g(∆) > 0, which we now prove.

Proof. Fix any arbitrary vector∆ ∈ R
p such that∆ ∈ C andd(∆) = M . We assume that restricted

strong convexity holds for all such vectors∆. Therefore,

g(∆) = L(θ∗ + ∆) − L(θ∗) + λn

{
r(θ∗ + ∆) − r(θ∗)

}

≥ ∇L(θ∗)T ∆ + γ(L)d(∆)2 + λn

{
r(θ∗ + ∆) − r(θ∗)

}
. (22)

Recall thatλn ≥ 2r∗(∇L(θ∗)), so that by Lemma 1

∇L(θ∗)T
∆ + λn

{
r(θ∗ + ∆) − r(θ∗)

}
≥ λn

2
{r(πB(∆)) − 3r(πB(∆)) − 4r(πA⊥(θ∗)) }

≥ −λn

2
{3r(πB(∆)) + 4r(πA⊥(θ∗)) }
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Substituting the latter inequality into equaton (22) yields

g(∆) ≥ γ(L)d(∆)2 − λn

2
{3r(πB(∆)) + 4r(πA⊥(θ∗)) } .

Noting thatr(πB(∆)) ≤ Ψ(B⊥) d(πB(∆)) ≤ Ψ(B⊥) d(∆), establishes that

g(∆) ≥ γ(L) d(∆)2 − λn

2

{
3Ψ(B⊥)d(∆) + 4r(πA⊥(θ∗))

}
.

Finally, substitutingM =
{

1
γ(L)

[
2 Ψ(B⊥)λn +

√
2 λn γ(L) r(πA⊥ (θ∗))

] }
proves thatg(∆) >

0.

C Proofs and Auxiliary Results

Proof of Lemma 1.Recall the function

g(∆) := L(θ∗ + ∆) − L(θ∗) + λn

{
r(θ∗ + ∆) − r(θ∗)

}
. (23)

We will start off by obtaining a lower bound for this function.

Loss Deviation:Using the convexity of the loss functionL, we have

L(θ∗ + ∆) − L(θ∗) ≥ ∇L(θ∗)T
∆. (24)

By the Cauchy-Schwartz inequality, we have

|∇L(θ∗)T
∆| ≤ r∗(∇L(θ∗)) r(∆)

≤ λn

2

[
r(πB(∆)) + r(πB(∆))

]
,

where we have used the assumption onr∗(∇L(θ∗)), and the triangle inequality. Substituting in (24)

L(θ∗ + ∆) − L(θ∗) ≥ −λn

2

[
r(πB(∆)) + r(πB(∆))

]
. (25)

Regularization Deviation:By the triangle inequality,

r(θ∗ + ∆) ≥ r(πA(θ∗) + πB(∆)) − r(πA⊥ (θ∗)) − r(πB(∆)).

By the decomposition property,

r(πA(θ∗) + πB(∆)) = r(πA(θ∗)) + r(πB(∆)),

so that by another application of the triangle inequality,

r(θ∗ + ∆) − r(θ∗) ≥ r(πB(∆)) − r(πB(∆)) − 2r(πA⊥ (θ∗)). (26)

Substituting the lower bounds for the loss and regularization function deviations (26) and (25) in
(23),

g(∆) ≥ λn

2
[r(πB(∆)) − 3r(πB(∆)) − 4r(πA⊥(θ∗))] . (27)

By constructiong(0) = 0, and hence the deviation of the optimum∆ satisfiesg(∆) ≤ 0. Using in
(27) and dividing byλn

2 > 0 yields,

r(πB(∆)) ≤ 3 r(πB(∆)) + 4 r(πA⊥(θ∗)),

as required.
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D Proof of Corollary 2

Proof. The subsetV∗ of the sparse-vectors decomposability-set collection we use in this corollary
is the subsetV∗ = (AS , ASc) for setsS ∈ S = {S | |S| ≤ Rq(log(p)/n)−q}. As in the proof of
Corollary 2, the assumptions of Theorem 1 are satisfied, so that we can use the bound in the theorem;
its terms can be simplified as follows. Again, for theℓ1-regularizer and theℓ2 error metric, we have
Ψ(AS∗) =

√
|S∗|. Now |S∗| can be bounded as follows:

Rq ≥
∑

i

|θ∗i |q ≥
∑

i∈S∗

|θ∗i |q

≥ τq |S∗|,

so that|S∗| ≤ τ−q Rq. Further, given the soft sparsity assumption,r(θ∗S∗c) can be bound as follows:

‖θ∗S∗c‖1 =
∑

i∈S∗c

|θ∗i |

=
∑

i∈S∗c

|θ∗i |q|θ∗i |1−q ≤ Rqτ
1−q.

We thus obtain from Theorem 1 that

‖θ̂ − θ∗‖2 ≤ 1

γ(L)

[
2
√
|S∗|λn +

√
2 λn γ(L) ‖θ∗S∗c‖1

]

≤ 1

γ(L)

[
2
√

Rqτ
−q/2λn +

√
2 λn γ(L)Rqτ1−q

]
.

From the settings ofτ andλn, it can be seen thatλn = τ , which when substituted in the previous
expression yields,

‖θ̂ − θ∗‖2 ≤
√

Rqλ
2−q
n

[
2

γ(L)
+

√
2√

γ(L)

]
.

Substituting for the value ofλn, we thus obtain the bound in the Corollary.

D.1 Restricted Strong Convexity for Weak-Sparse Models

One sufficient condition for the restricted strong convexity condition to hold is that the design ma-
tricesX ∈ R

n×p satisfy the conditioon

‖ 1√
n

Xv‖ ≥ c1‖v‖2 − c2

√
log p

n
‖v‖1

for some constantsc1 > 0 andc2 > 0.

In our setting,‖vSc‖1 ≤ 3‖vS‖1 + 4‖θ∗Sc‖1 so that‖v‖1 ≤ 4[‖vS‖1 + ‖θ∗Sc‖1], which further
implies then that

‖v‖1 ≤ 4[
√
|S|‖v‖1 + ‖θ∗Sc‖1.

Therefore, it immediately follows then that

‖ 1

n
Xv‖ ≥

(
c1 − 4c2

√
|S| log p

n

)
‖v‖2 − 4c2

√
log p

n
‖θ∗Sc‖1.

Recall from the arguments above that‖θ∗Sc‖1 ≤ Rqτ
1−q where we also setτ =

√
log p

n and we are

only concerned with sets such that|S| ≤ Rqτ
−q so that

‖ 1√
n

Xv‖ ≥
(

c1 − 4c2

√
Rqτ2−q

)
‖v‖2 − 4c2Rqτ

2−q.
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For the applications of restricted strong convexity above,we only need it told hold for the vectors
v such that‖v‖2 = O( 1

c1

√
Rqτ2−q) where we recall thatτ = λn, justifying the swap. Finally,

applying the bound on‖v‖2 yields that

‖ 1√
n

Xv‖2 ≥
(

1 − 4c′
√

Rqτ2−q

)√
Rqτ2−q − 4c′Rqτ

2−q

≥
(

1 − 8 c′
√

Rqτ2−q

)√
Rqτ2−q,

wherec′ = c2/c1. The constantsc1 andc2 are independent of everything else and by the scaling of
n, have that the term in the paranthesis can be made arbitrarily close to1 by takingn sufficiently
large. Therefore, have that

‖ 1√
n

Xv‖2 ≥ c1

2
‖v‖2,

which immediately implies then thatγ(L) = c1

2 for v ∈ G. Note, in fact that the bound holds for
anyv such that‖v‖2 ≥ 1

c1

√
Rqτ2−q, which implies then that the bound established in Corollary2

is valid since8+2
√

8
2 ≥ 1.

E Restricted Strong Convexity for the Trace Observation Model

Recall the low-rank matrix observation model is

Yi = trace(XT
i Θ∗) + Wi,

whereXi, Θ
∗ ∈ R

m×p. Note that by we can convert eachXi andΘ∗ to a vector to yield the usual
linear regression observation model

Y = Xθ + W,

whereX ∈ R
n×(pm) andθ ∈ R

pm. We establish RSC for the simple case where the observation
matricesXi are drawn from the i.i.d. Gaussian ensemble. We will then appeal to the Gordon-Slepian
Lemma to establish that

inf
{∆:‖∆‖2‖=1}

‖ 1√
n

X∆‖2 ≥ c1‖∆‖2 − c2

√
p +

√
m√

n
‖∆‖1

where the norm‖∆‖1 is the nuclear norm, and‖∆‖2 is the Frobenius norm. Gordon-Slepain will
lower bound the expected value of the random variableinf∆ ‖ 1√

n
X∆‖2, while we then apply con-

centration results to arrive at the above result with high probability, leaving that as an exercise. We
know that

inf
∆

‖X∆‖2 = inf
∆

sup
U

trace(UT X∆).

Now, trace(UT X∆) is a centered Gaussian random process indexed byU and ∆. We may
construct a second centered Gaussian random process index by U and ∆ by definingYU,∆ =
traceUT W + trace∆T Z, whereW, Z are independent normal i.i.d. Gaussian matrices. We thus
have the following

E[(XU,∆ − XU ′,∆′)2] = E[[trace (X(∆UT − ∆′(U ′)T )]2] = |||∆UT − ∆′(U ′)T |||2F . (28)

and

E[(trace((U − U ′)T W ) + trace((∆ − ∆′)T Z))2]

= E[(trace((U − U ′)T W ))2 + (trace((∆ − ∆′)T Z))2]

= |||(U − U ′)|||2F + |||(∆ − ∆′)|||2F (29)

Recall thatU and∆ are the vectorized versions of the corresponding matrices.Equation (28) is
upper bounded by equation (29). On the other hand, if∆ = ∆′, then equation (28) equals equa-
tion (29), thus verifying the conditions of the Gordon-Slepain Lemma. Therefore, by the lemma, it
immediately follows then that

E inf
∆

sup
U

UT X∆ ≥ E inf
∆

sup
U

UT W + ∆T Z

= E|||W |||F − |||∆|||1E|||Z|||2

≥
√

n

2
− |||∆|||1(

√
p +

√
m )
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as desired.
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