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Abstract

High-dimensional statistical inference deals with modelsvhich the the num-
ber of parameterg is comparable to or larger than the sample gizeSince it
is usually impossible to obtain consistent proceduressspign — 0, a line of
recent work has studied models with various types of stredte.g., sparse vec-
tors; block-structured matrices; low-rank matrices; Mawrkssumptions). In such
settings, a general approach to estimation is to solve daeged convex program
(known as a regularizetll -estimator) which combines a loss function (measuring
goodness-of-fit of the models to the data) with some regzdéidn function that
encourages the assumed structure. The goal of this papepistide a unified
framework for establishing consistency and convergertes far such regularized
M -estimation procedures under high-dimensional scaling siAte one main the-
orem and show how it can be used to re-derive several exigtgigts, and also
to obtain several new results on consistency and conveegaes. Our analysis
also identifies two key properties of loss and regularizatimctions, referred to
as restricted strong convexity and decomposability, thatiee the corresponding
regularized\V -estimators have fast convergence rates.

1 Introduction

In many fields of science and engineering such as genomiceamndal language processing, it is
of great interest to relate predictor variables (e.g. gewmel$) to a response variable (e.g. cancer
status). Due to the exploding size of problems, we often fingelves in the “large smalln”
regime—that s, the number of predictor variahbés comparable to or even larger than the number
of observations. For such high dimensional data, successful statisticaletiog is possible only if
the data follows models with restrictions. For instance,dhta might be sparse in a suitably chosen
basis, could lie on some manifold, or the dependencies artftengariables might have Markov
structure specifid by a graphical model.

In such settings, a common approach is toneggilarized)M -estimatorswhere some loss function
(e.g., the negative log-likelihood of the data) is reguadi by a function appropriate to the assumed
structure. Such estimators may also be interpreted fromya$ian perspective as the Maximum A
Posterior (MAP) estimator, with the regularizer reflectprgr information. In this paper, we study
such regularized/-estimation procedures, and attempt to provide a unifyiagiework that both



recovers some existing results and provides new resultsisistency and convergence rates under
high-dimensional scaling.

As an illustration of the applications of our analysis, werkvaith three running examples of con-
strained parametric structures. The firstsparsemodels, both where the number of model param-
eters that are non-zero is smdilagd-sparsg or more generally where the number of parameters
above a certain threshold are limiteggak-sparse The second are so called block-sparse models,
where the parameters are matrix-structured, and entire eo& either zero or not. Our third class
is the estimation of low-rank matrices, which arises in eystdentification, collaborative filtering,
and other types of matrix completion problems.

To motivate the need for a unified analysis, let us provideef fand hence necessarily incomplete)
overview of the broad range of work on high-dimensional ni&deor the case of sparse regression,
a popular regularizer is thg norm of the parameter vector, which is the sum of the absohltees

of the parameters. A number of researchers have studiedas®ol[15, 3] as well as the closely
related Dantzig selector [2] and provided conditions oriotes aspects of its behavior, including
{s-error bounds [6, 1, 20, 2] and model selection consiste@dy 19, 5, 16]. For generalized
linear models (GLMs) and exponential family models, estorabased o# -regularized maximum
likelihood have also been studied, including results ok c@nsistency [18] and model selection
consistency [11]. A body of work has focused on the case ahasing Gaussian graphical models,
including convergence rates in Frobenius and operator fjd#}, and results on operator norm
and model selection consistency [12]. Motivated by infeeeproblems involving block-sparse
matrices, other researchers have proposed block-stadttegularizers [17, 22], and more recently,
high-dimensional consistency results have been obtamrechdédel selection [7, 8] and parameter
consistency [4]. In this paper, we derive a single main teegiand show how we are able to rederive
a wide range of known results on high-dimensional conststeas well as some novel ones: such
as estimation error rates for low-rank matrices, sparseiceat and “weakly”-sparse vectors.

2 Problem formulation and some key properties

In this section, we begin with a precise formulation of thelgem, and then develop some key
properties of the regularizer and loss function. In palicuve define a notion alecomposability
for regularizing functions:, and then prove that when it is satisfied, the ebor= § — 6* of the
regularizedV/ -estimator must satisfy certain constraints. We use thesst@ints to define a notion
of restricted strong convexityat the loss function must satisfy.

2.1 Problem set-up

Consider a random variablewith distributionP taking valuesina sef. Let 77" := {7, ..., Z,}
denoten observations drawn in an i.i.d. manner frdmand supposé* € R? is some parameter
of this distribution. We consider the problem of estimatifigrom the dataZ}". In order to do so,
we consider the following class of regularizéfi-estimators. Lel : R? x Z™ — R be some loss
function that assigns a cost to any paraméter R? given a set of observations. Let R? — R
denote a regularization function. We then consider theleeged M -estimator given by

§ € arg ;161%1’ {£0: Z7) + \r(0) }, 1)

where),, > 0 is a regularization penalty. For ease of notation, in theiseqve adopt the short-
hand£(0) for £L(0; Z7*). Throughout the paper, we assume that the loss fungti@nconvex and
differentiable, and that the regularizeis a norm.

Our goal is to provide general techniques for deriving ba@wrdthe errof — 0* in some error metric

d. Acommon example is thie-normd(6—6*) := ||#—0*||2. As discussed earlier, high-dimensional
parameter estimation is made possible by structural caingtrond* such as sparsity, and we will
see that the behavior of the error is determined by how weldhconstraints are captured by the
regularization functiom(-). We now turn to the properties of the regularizemd the loss function
L that underlie our analysis.



2.2 Decomposability

Our first condition requires that the regularization fuooti- be decomposable, in a sense to be
defined precisely, with respect to a family of subspacess afion is a formalization of the manner
in which the regularization function imposes constraimgossible parameter vectals € R?. We
begin with some abstract definitions, which we then illustmgith a number of concrete examples.
Take some arbitrary inner product spdge and let|| - |2 denote the norm induced by the inner
product. Consider a pafd, B) of subspaces dff such thatd C B*. For a given subspacé and
vectoru € H, we letm 4 (u) := argmin, 4 ||u — v||2 denote the orthogonal projection@bnto A.
We letV = {(A,B) | A C B} be a collection of subspace pairs. For a given statisticaleho
our goal is to construct subspace collectidhsuch that for any gived* from our model class,
there exists a paitd, B) € V with ||74(6%)]|2 ~ ||60*]|2, and||75(6*)]|2 ~ 0. Of most interest to us
are subspace paifsl, B) in which this property holds but the subspatés relatively small and3

is relatively large. Note thatl represents the constraints underlying our model classirapdsed
by our regularizer. In the remainder of this paper we assutagH = R? and use the standard
Euclidean innerproduct, unless otherwise specified.

As a first concrete (but toy) example, consider the modebadésll vectorg* € R?, and the sub-
space collectior that consists of a single subspace gair B) = (R?,0). We refer to this choice
(Vv = 7) as thetrivial subspace collectionin this case, for ang* € R?, we haver 4 (6*) = 6* and
mp(0*) = 0. Although this collection satisfies our desired propettig hot so useful sincd = RP

is a very large subspace. As a second example consider the afla-sparse parameter vectors
6* € RP, meaning that’y # 0 only if i € S, whereS is somes-sized subset of1,2, ..., p}. For
any given subset and its complement®, let us define the subspaces

A(S)={0 eR? | sc =0}, and B(S)={0 €RP | 05 =0},
and thes-sparse subspace collectich= {(A(S), B(S)) | S C {1,...,p}, |S| = s}. With this
set-up, for any-sparse parameter vectdt, we are guaranteed that there exists sgreB) € S

such thatr4(60*) = 6* andw(6*) = 0. In this case, the property is more interesting, since the
subspaces!(S) are relatively small as long 48| = s < p.

With this set-up, we say that the regularizes decomposablwith respect to a given subspace pair
(A, B) if

r(u+z)=r(u)+r(z) forallue Aandz € B. 2
In our subsequent analysis, we impose the following coowlitin the regularizer:

Definition 1. The regularizer is decomposable with respect to a given subspace colletton
meaning that it is decomposable for each subspacd paiB) € V.

Note that any regularizer is decomposable with respect ® ttivial subspace collection
7 = {(RP,0)}. It will be of more interest to us when the regularizer decosgs with respect to
a larger collection) that includes subspace paitd, B) in which A is relatively small andB is
relatively large. Let us illustrate with some examples.

e Sparse vectors angl norm regularization Consider a model involving-sparse regression vec-
torsf* € RP, and recall the definition of the sparse subspace collectiSrdiscussed above. We
claim that the/;-norm regularizer(u) = |jul|; is decomposable with respect$o Indeed, for
any s-sized subse$ and vectors: € A(S) andv € B(S), we havel|u + v|1 = |Ju|1 + [|v]1, as
required.

e Group-structured sparse matrices algd, matrix norms Various statistical problems involve

matrix-valued parametel® ¢ R¥*™; examples include multivariate regression problems or
(inverse) covariance matrix estimation. We can define amrippmoduct on such matrices via

(O, ) = trace(0TY) and the induced (Frobenius) nom’_, > i, ©7,. Letus suppose

that© satisfies a group sparsity condition, meaning thaitheow, denoted;, is non-zero only
if i € S C{1,...,k} and the cardinality of' is controlled. For a given subsét we can define
the subspace pair

B(S)={©eR"™ | ©;=0 forallie S}, and A(S)=(B(9))",
For some fixed < k, we then consider the collection
V={(A(S),B(S)) | Sc{l,....k}, |S]=s},



which is a group-structured analog of thesparse sef for vectors. For any; € [1, 0], now
suppose that the regularizer is the'¢, matrix norm, given by-(©) = Zle[zgnzl |©;;]9]/

corresponding to applying the norm to each row and then taking thenorm of the result. It
can be seen that the regularizé®) = ||©||, 4 is decomposable with respect to the collectian

Low-rank matrices and nuclear normThe estimation of low-rank matrices arises in vari-
ous contexts, including principal component analysiscspé clustering, collaborative filter-
ing, and matrix completion. In particular, consider thesslaf matrice® € R¥*™ that have
rankr < min{k, m}. For any given matri¥®, we letrow(©) C R™ andcol(0) C R* denote its
row space and column space respectively. For a given paidahensional subspacés C R”
andV C R™, we define a pair of subspacdstU, V) and B(U, V) of R¥*™ as follows:

AU, V) :={© e RF*™ | row(©) C V, col(®) CU}, and (3a)
B(U,V):={0 e R*"™ | row(©) C V', col(®) CU"'}. (3b)

Note thatA(U,V) € B+(U,V), as is required by our construction. We then consider the col
lectionV = {(A(U,V),B(U,V)) | U C RF, V C R™}, where(U, V) range over all pairs of
r-dimensional subspaces. Now suppose that we regularibeh@tnuclear norm(©) = ||O];,
corresponding to the sum of the singular values of the mé&trik can be shown that the nuclear
norm is decomposable with respectio Indeed, since any pair of matricéé € A(U, V) and
M’ € B(U, V) have orthogonal row and column spaces, we Hade+ M'||, = || M| + | M’ |1
(e.g., see the paper [13]).

Thus, we have demonstrated various models and regulanzetsich decomposability is satisfied
with interesting subspace coIIectlom’s We now show that decomposability has important con-
sequences for the errdx = 6 — 6%, wheref € R” is any optimal solution of the regularized
M-estimation procedure (1). In order to state a lemma thatcapthis fact, we need to define the

dual norm of the regularizer, given by (v) := sup,cp» T(Tu) For the regularizers of interest, the

dual norm can be obtained via some easy calculations. F@mios, given a vectdt € R? and
r(0) = |61, we haver*(0) = ||0|l«. Similarly, given a matrix0 € R**™ and the nuclear norm
regularizer(©) = ||O||1, we have*(0) = ||©]|2, corresponding to the operator norm (or maximal
singular value).

Lemma 1. Suppos@is an optimal solution of the regularizet -estimation procedur€l), with

associated errol = §—6*. Furthermore, suppose that the regularization penaltyristty positive
with A,, > 2r*(VL(0*)). Then forany( A, B) € V

r(rp(A)) < 3r(rpe (D)) + 4r(m4e (67)).

This property plays an essential role in our definition ofrieted strong convexity and subsequent
analysis.

2.3 Restricted Strong Convexity

Next we state our assumption on the loss funcifonin general, guaranteeing thé(@) — L(6%)

is small isnot sufficientto show that) and 6* are close. (As a trivial example, consider a loss
function that is identically zero.) The standard way to eaghat a function is “not too flat” is via
the notion of strong convexity—in particular, by requiritigt there exist some constant- 0 such
that£(0* + A) — £(0%) — VL(O*)" A > ~d?(A) for all A € R. In the high-dimensional setting,
where the number of parametersnay be much larger than the sample size, the strong convexity
assumption need not be satisfied. As a simple example, @rtbiel usual linear regression model
y = X0* + w, wherey € R" is the response vectd; € R? is the unknown parameter vector,
X € R"*? is the design matrix, an@ € R™ is a noise vector, with i.i.d. zero mean elements. The
least-squares loss is given BY0) = o |ly — X 0|3, and has the Hessiali(¢) = 1 X7 X. Itis
easy to check that the x p matrix H (6) will be rank-deficient whenever > n, showing that the
least-squares loss cannot be strongly convex (with respéct) = || - ||2) whenp > n.

Herein lies the utility of Lemma 1: it guarantees that theoerk must lie within a restricted set,
so that we only need the loss function to be strongly convexflimited set of directions. More
precisely, we have:



Definition 2. Given some subset C RRP and error normi(-), we say that the loss functiofi
satisfiegestricted strong convexifRSC) (with respect td(-)) with parametety(L£) > 0 overC if

LO"+A) = L(0°) = VLO)'A > H(L)d*(A)  forall AecC. (4)

In the statement of our results, we will be interested in losgtions that satisfy RSC over sets
C(A, B, ¢) that are indexed by a subspace gair B) and a tolerance > 0 as follows:

C(A,Be):={AeR” | r(rp(A)) < 3r(rpL(A)) +4r(rae(07)), d(A)>€}. (5)

In the special case of least-squares regression with hardigpconstraints, the RSC condition cor-
responds to a lower bound on the sparse eigenvalues of tisgaHesatrixX " X, and is essentially
equivalent to a restricted eigenvalue condition introdime Bickel et al. [1].

3 Convergence rates

We are now ready to state a general result that provides lscamaihence convergence rates for the

errord(@— 6*). Although it may appear somewhat abstract at first sight/lwstiate that this result
has a number of concrete consequences for specific modedsrtioular, we recover some known
results about estimation istsparse models [1], as well as a number of new results, imgjuzbn-
vergence rates for estimation undefsparsity constraints, estimation in sparse generalineg
models, estimation of block-structured sparse matricdseatimation of low-rank matrices.

In addition to the regularization parametgr and RSC constant(£) of the loss function, our
general result involves a quantity that relates the errdriméto the regularizer; in particular, for
any setd C R?, we define

YA = s (), (6)
{u€eRP | d(u)=1}

so thatr(u) < U(A)d(u) foru € A.

Theorem 1(Bounds for general modelsfor a given subspace collectiah suppose that the regu-
larizer r is decomposable, and consider the regulariadéeestimator(1) with A,, > 2r*(V.L(0*)).
Then, for any pair of subspacésl, B) € V and tolerances > 0 such that the loss functiof
satisfies restricted strong convexity oA, B, ¢), we have

ﬁ [20(BY) Ay + V2 A0 (L) r(mar (07))] } )

d(é\— ") < max {e,

The proof is motivated by arguments used in past work on Higiensional estimation (e.g., [9,
14]); we provide the details in the full-length version. hetremainder of this paper, we illustrate
the consequences of Theorem 1 for specific models. The ptaaiewill be selected as small as
possible while satisfying the lower boud*(VL(6*)). For the sake of clarity, the errai(-) is
taken to bd| - ||2. For all models: = 0, apart from the weak-sparse model in section 3.1.2.

3.1 Bounds for linear regression

Consider the standard linear regressior= X6* + w model, where#* € RP is the regression
vector, X € R™*? is the design matrix, and € R™ is a noise vector. Given the observations
(y, X), our goal is to estimate the regression veetar Without any structural constraints i,

we can apply Theorem 1 with the trivial subspace collection= {(R?,0)} to establish a rate
[0 — 6*|]2 = O(c+/p/n) for ridge regression. Note that the RSC condition requines X is
full-rank so thatn > p. Here we consider bounds for linear regression wi#éres an s-sparse
vector.

3.1.1 Lasso estimates of hard sparse models

More precisely, let us consider estimating @&sparse regression vectét by solving the Lasso
program

~ . 1
0 arg min { 7-[ly = X613 + Aallo] |- ®)
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The Lasso is a special case of adrestimator (1) with-(6) = [|6]|1, andL(0) = o ||y — X6]|3.

Recall the definition of the-sparse subspace collectiéhfrom Section 2.2. For this problem,
let us sete = 0 so that the restricted strong convexity set (5) beco@es B,0) = {A € R? |
[[Ase|l1 < 3||Agll1}. Establishing restricted strong convexity for the leagieses loss is equivalent
to ensuring the following bound on the design matrix:

IX0lI3/n > ~(L)[10]3  forall§ € R”s.t.0s]l1 < 3[|6s]:. 9)

As mentioned previously, this condition is essentiallyghme as the restricted eigenvalue condition
developed by Bickel et al. [1]. Moreover, we note that Raslattal. [10] have shown that condi-
tion (9) will hold with high probability for various randormeembles of Gaussian matrices. Tffe
column of X, X, also satisfies the constraihk;||» < \/n. Finally, we assume that the elements of
w; are zero-mean and have sub-Gaussian tails, meaning thattkists some constamt> 0 such
thatP[|w;| > t] < exp(—t?/20?) for all t > 0. Under these conditions, we recover as a corollary
of Theorem 1 the following known result [1, 6].

Corollary 1. Suppose that the true vectét € R? is exactlys-sparse with suppot$, and that the
design matrixX satisfies conditiorf9). If we solve the the Lasso witff = 16%&, then with
probability at leastl — ¢; exp(—canA?), the solution satisfies

8s [slogp
T oLV n

16— 072 (10)

Proof. As noted previously, thé,-regularizer is decomposable for the sparse subspaceitotie
S, while condition (9) ensures that RSC holds for all g&td, B, 0) with (A, B) € S. We must
verify that the given choice of regularization satisfies> 2 r*(V.L(0*)). Note that*(-) = || - || o>
and moreover thaV £(0*) = XTw/n. Under the column normalization condition on the design

matrix X and the sub-Gaussian nature of the noise, it follows [{Batw /1| - < 1/40210% with

high probability. The bound in Theorem 1 is thus applicable] it remains to compute the form
that its different terms take in this special case. For&hesgularizer and thé, error metric, we

havel(Ag) = +/|S|. Given the hard sparsity assumptiefds. ) = 0, so that Theorem 1 implies
that||§ — %], < &5 VA = %51/ L, as claimed. O

3.1.2 Lasso estimates of weak sparse models

We now consider models that satisfy a weak sparsity assamp¥ore concretely, suppose thkit
lies in the/,-“ball” of radius R,—namely, the seB,(R,) := {6 € R? | >¥_,10;|9 < R,} for
someg € (0,1]. Our analysis exploits the fact that afy € B,(R,) can be well approximated by
ans-sparse vector (for an appropriately chosen sparsity injlexis natural to approximaté* by a
vector supported on the s&t= {i | |6;| > 7}. For any choice of threshold > 0, it can be shown
that|S| < R,7~9, and as shown in the full-length version, the optimal chaéc® setr = A,
using the same regularization parameter as in Corollary dcoAdingly, we consider the-sparse
subspace collectiof with subsets of size = R\, 7. We assume that the noise vectore R"

is as defined above and that the columns are normalized as prekiious section. We also assume
that the matrixX satisfies the condition

1
I Xvll2 > kil|v]2 — @(loip) “Io]lx for constants:;, ko > 0. (11)
Raskutti et al. [10] show that this property holds with higblmablity for suitable Gaussian random
matrices. Under this condition, it can be verified that RS@&evith v(L£) = x1/2 over the set

C(A(S), B(S),€n), Wheree,, = (4/r1 + VAr1)RE (\/16"2%)1_”2. The following resuilt,
which we obtain by applying Theorem 1 in this setting, is newhe best of our knowledge:
Corollary 2. Suppose that the true vectét € B,(R,), and the design matriX satisfies condi-
tion (11). If we solve the Lasso witk? = 16"2%, then with probabilityl — ¢; exp(—canA2), the
solution satisfies

1—q/2
I T .

=




We note that both of the rates—for hard-sparsity in Corgliaand weak-sparsity in Corollary 2—
are known to be optimal in a minimax sense [10]. In [10], thiéhats also show that (12) is achiev-
able by solving the computationally intractable problenmifimizing £(6) over thel,-ball.

3.2 Bounds for generalized linear models

Next, consider any generalized linear model with canoricklfunction, where the distribution of
responsg € ), given predictorX € R?, is given byp(y|X; 0%) = exp(y6*T X —a(0*T X)+d(y)),
for some fixed functions : R — R andd : Y — R, where|X| < A, and|y| < B. We consider
estimating?* from observation$(X;, y;)}7_, by ¢;-regularized maximum likelihood:

. ) 1 " n 1 n .

6 € arg min { — —0 (;yle)w;a(o Xi) + 11001}, (13)
sothatC(d) = =07 (237" 4 Xi) + L 30 a(67X;), andr(d) = ||6]|1. Let X € R"*P denote
the matrix withX; as rowi. Again we use the-sparse subspace collectiSrande = 0, so that it
can be verified that it suffices for the restricted strong eaity condition to hold if for some > 0,
a(0Tz) > ¢, for|z| < M, 0 € {0* + A: |All2 < fé?\/m%}, and that the design matrix
satisfies the restricted eigenvalue bound

L
1X6||3/n > #HGH% forall & € RPs.t.||0s<|1 < 3||0s]1- (14)
Corollary 3. Suppose thatthe true vectt € R? is exactlys-sparse with suppot§, and the design
matrix X satisfies conditioifl4). Suppose that we solve thgregularizedM -estimator(13) with
2 np2
A2 = 3248 loar Then with probabilityl — ¢; exp(—c2n)2), the solution satisfies

16AB [slogp

0— 0%, <

(15)
We defer the proof to the full-length version due to spacestraimts.

3.3 Bounds for sparse matrices

In this section, we consider some extensions of our resoltstimation of regression matrices.
Various authors have proposed extensions of the Lasso basedularizers that have more structure
than thef; norm [17, 22]. Such regularizers allow one to impose vartypgs of block-sparsity
constraints, in which groups of parameters are assumed &uthe (or inactive) simultaneously.
We assume that the observation model takes on the #orm X©* + W, where®@* ¢ RF*™

is the unknown fixed set of parameters, € R"** is the design matrix, antl’ € R™*™ is
the noise matrix. As a loss function, we use the Frobeniumnbt(©) = [|Y — XO|%, and

as a regularizer, we use tle ,-matrix norm for some; > 1, which takes the fornj©|:, =

Zle 1(©i1,...,0im)|lq- We refer to the resulting estimator as trgroup Lasso. We define the
quantityn(m; q) = 1if ¢ € (1,2] andn(m;q) = m'/>=1/9if ¢ > 2. We then set the regularization
parameter as follows:

En(m; q)logk + Cqm!~1/9) i g > 1
An - )
4o/ Loglbm) forg = 1.

Corollary 4. Suppose that the true parameter mak has non-zero rows only for indicées S C
{1,...,k} where|S| = s, and that the design matriX € R"** satisfies conditiof9). Then with
probability at leastl — ¢; exp(—canA?), theg-block Lasso solution satisfies

~ 2
1©-e%lr <

< M‘IJ(S)M- (16)

Proof. We simply need to establish that the regularization paransattisfies\,, > 2 *(VL(©*)).
,,,,, & IUi ||l for1/¢" = 1 — 1/q. Moreover, we have
VL(©*) = L XTW. Concentration results dt |- and the union bound yield that (1 X7 <

% [n(m; q)v/Iogk + C,;m!'~Y/4], as required. 0



We will now consider three special cases of the above resiltsimple argument shows that
U(S) =+/5if ¢ > 2, and¥(S) = m'/a1/2/5sif ¢ € [1,2]. First, we considey = 1, and
note that solving the Group Lasso wigh= 1 is identical solving a Lasso problem with sparsity
sm and ambient dimensiolwn. The resulting upper bound on the Frobenius norm reflectddlot:

smlog(km)

more specifically, foy = 1, the bound isfé—z . For the casg = 2, Corollary 4 im-

plies that the Frobenius erry© — ©* |  is upper bounded aﬁ%) { % + %} . Thisis also

a very natural result: the terd#2* captures the difficulty of finding the non-zero rows out of
the totalk, whereas the terni™* captures the difficulty of estimating then free parameters in the
matrix (once the non-zero rows have been determined). Wethat recent work by Lounici et al.
[4] established the boun@ (=2~ e C‘ﬁnﬂ + 2), which is equivalent apart from a tergimn.
Finally, for ¢ = oo, we obtain the upper bounﬁf) £/ % +m \/ﬂ , which is a novel result.

3.4 Bounds for estimating low rank matrices

Finally, we consider the implications of our main result the problem of estimating low-rank
matrices. This structural assumption is a natural gereatadin of sparsity, and has been studied by
various authors (see the paper [13] and references thefBnjlustrate our main theorem in this
context, let us consider the following instance of low-ramktrix learning. Given a low-rank matrix
©* € R¥*™ suppose that we are givennoisy observations of the fori, = (X;, ©*)) + W},
whereW; ~ N(0,1). Such an observation model arises, for instance, in systemtification
settings in control theory [13]. The following regularizéd-estimator can be considered in order
to estimate the desired low-rank mat@t'

omin oo Z Y — (Xi, @)Y + €], (17)

where the regularizef©|;, is the nuclear norm, or the sum of the singular value® of

Recall the rank: collectionV defined for low-rank matrices in Section 2.2. l@t = UXW7 be
the singular value decomposition (SVD) @f, so thatl/ € R**" andW € R™*" are orthogonal,
andX € R"*" is a diagonal matrix. If we ledl = A(U, W) andB = B(U, W), then,rp(0*) = 0,
so that by Lemma 1 we have thitz (A)[l1 < 3|7 (A)]l1. Thus, for restricted strong convexity
to hold it can be shown that the design matridgsnust satisfy

1 n
- Do AP = (L) JAIE  forall Asuchtharp(A)|: < 3lmp- (A)]i-  (18)
i=1
As with the analogous conditions for sparse vectors anatimegression, this condition can be
shown to hold with high probability for Gaussian random ncafs.

Corollary 5. Suppose that the true mati®* has rankr < min(k, m), and that the design matrices
{X;} satisfy conditior{18). If we solve the regularizedi/ -estimator(17)with \,, = 4%, then
with probability at leastl — ¢; exp(—ca(k + m)), we have

18-k = 1o [+ /). 19)

Proof. Note that ifrank(©*) = r, then||©*|; < /7||©*||r so that¥(BL) = /2r, since the
subspaceB(U, V)* consists of matrices with rank at mazt. All that remains is to show that
An > 2r*(VL(©*)). Standard analysis gives that the dual nornf| to|; is the operator norm,
I - l2- Applying this observation and the fact tHa’(0*) = —1 3" | X;IW; we can construct a

bound on the operator norm &f3"" | X;W;. We assume that the entriesX¥f are i.i.d. N(0,1).
Then, conditioned oV, the entries of the matri¥ >°" | X;W; are i.i.d. N(0, [|[W||3/n?) from
which it can be shown that with probability at ledst ¢; exp(—can), [|W||3/n < 2. Coupled with
results on random matrix theory we have that>"" | X, W;[l. < 2% with probability at
leastl — ¢y exp(—ca(k + m)), verifying thath,, > 2r*(VL(0*)). O
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A Ridge-Regression

In this section, we apply Theorem 1 to ridge-regression.sittar solving the program
~ o1 )
0 < arg min { ~fly — X0/3 + Aal6] .

Assume that the underlying structure enforf,@¥|> < M for some constanmt/ > 0. As a result,
the restricted strong convexity assumption reducesllg(%XTX) > ~(£) > 0. We may now
present the following trivial corollary to Theorem 1. Not®t the result is not new, and provides
exactly the same bound as in the ordinary least-squaretosota the problem.

Corollary 6. Suppose that the true vectét € RP and that the design matriX has its smallest
eigenvalue bounded below byL). Suppose that we solve the Ridge-regression program\gith
2. Then, with probabilityl — ¢, exp(—can)?), the solution satisfies

~ 8o [p
60— 6" < — /= 20
[ 2 < SO\ (20)

Proof. The restricted strong convexity condition clearly holdsrtRermore, led be the space of
all subspace-pairs. Therefore, we can apply the bound iofEne 1. First note thab(A) = 1 for
any setd sinced(v) = r(v) Yv € RP. The dual norm*(-) is r(-). Thus, we must establish tlie
norm of VL(0*) = XTw/n. However, the column normalization bounds yields th&{ w/n||s <

20\/p/n with probability 1 — ¢; exp(—cap). Therefore, letting\,, = 2||X7w/n|> we have by
Theorem 1 that(6 —0*) < =7=[81/%+1/8Aur(ma: (67))]. Thus, the bound s clealry minimized
as long aéz = 0, which is the case if we letl = R?. Verifying the result. O

B Proof of Theorem 1
The argument is motivated by the methods of Rothman et al, jh4their analysis of ar¢;-
regularized log-determinant program. Consider the famcti

g(A) = LO"+A) = L(0%) + M {r(0" + A) —r(6")]. (21)

The convexity of£(-) andr(-) implies thatg is a convex function. Here, we have that= 0 — 6*

andA = § — 6*. Observe thag(0) = 0 so thatg(ﬁ) < 0. From Lemma 1, we know thak € C,
where
C = {AeRP:r(rp(A) <3r(Tp(A)) +4r(ma(07))}.

We also have that if\ € C, thentA € C for anyt € [0,1]. Now suppose that(A) > M. Then
)

there exists & € (0, 1) such thati(tA) = M andtA € C. Now suppose thaf(tA) > 0. Then, by
the convexity ofy

g((1 =10+ tA) < (1—1)g(0) +tg(A).

We knowg(0) = 0 andt > 0. Thus,g(A) > 0, which is a contradiction. Thereforé(A) < M.
Hence, it suffices to show that for ady € C such thati(A) = M, g(A) > 0, which we now prove.

Proof. Fix any arbitrary vecton € R? such thatA € C andd(A) = M. We assume that restricted
strong convexity holds for all such vectats Therefore,
g(A) = L +A) = L)+ X {r(0* + A) —r(6%)}
> VLEO) A+ (L)d(A)? + N {r(0* + A) —r(67)}. (22)
Recall that\,, > 2r*(VL(6*)), so that by Lemma 1

VLE) A+ M6+ 8) = r(6)) 2 T {rlrn(A)) - 3r(ms(A)) ~ dr(rmas (07)))

> _%" (3r(Fp(A)) + 4r(r 4 (69)) }
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Substituting the latter inequality into equaton (22) ygeld
)\n — *
9(8) = y(L)d(A)* = T {3r(7Tp(A)) + 4r(mas(07)) }
Noting thatr(7Tg(A)) < W(BLY)d(Tg(A)) < W(BY)d(A), establishes that

9(8) > A(0)dA) — 2 {3U(BIA(A) +4r(mas (6) ).

Finally, substitutingh/ = {ﬁ [2 V(B A\, +4/2 ARW(E)T(WAJ.(H*))} } proves thay(A) >
0. O

C Proofs and Auxiliary Results

Proof of Lemma 1 Recall the function
g(A) = LO"+A) = L(0%) + M {r(0" + A) —r(6")]. (23)
We will start off by obtaining a lower bound for this function
Loss DeviationUsing the convexity of the loss functiafy we have
L0+ A) - L(6") > VLEO)TA. (24)
By the Cauchy-Schwartz inequality, we have

VL) Al < (VL") (D)

< 2 [r(ns(a)) +r(ma(A)],

where we have used the assumption-ofV £(6*)), and the triangle inequality. Substituting in (24)

L+ D)~ L) 2~ [r(ms(A) + r(ms (A)]. (25)

Regularization DeviationBy the triangle inequality,
r(0*+A) = r(ma(07) +7p(A)) —r(mae (67)) — r(T(A)).

By the decomposition property,

r(ma(0%) +mp(A)) = r(wa(0%)) +r(rp(A)),
so that by another application of the triangle inequality,
r(0% + A) = 1(0%) > r(mp(A)) = r(7p(A)) — 2r(m 4 (6%)). (26)

Substituting the lower bounds for the loss and regulaoratiinction deviations (26) and (25) in
(23),

g(A) = /\_2n[T(T"B(A))_3T(7?B(A))_4T(7TAL(9*))]- (27)

By constructiory(0) = 0, and hence the deviation of the optimulnsatisfiesy(A) < 0. Using in
(27) and dividing by > 0 yields,

r(mp(A)) <3r(Tp(A)) +4r(mas (67)),

as required. O
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D Proof of Corollary 2

Proof. The subseV* of the sparse-vectors decomposability-set collection sesin this corollary
is the subseV* = (Ag, Age) forsetsS € S = {S | |S| < R,(log(p)/n)~9}. As in the proof of
Corollary 2, the assumptions of Theorem 1 are satisfied,aoth can use the bound in the theorem;
its terms can be simplified as follows. Again, for theregularizer and thé, error metric, we have

U(Ag«) = /|S*|. Now |S*| can be bounded as follows:

ZIH*I‘Z > > 1o

1€S*

R,

Y

Y

Tq|S* l,
sothatS*| < 77 R,. Further, given the soft sparsity assumptia(#s. ) can be bound as follows:

= > 16

i€S*¢

= D 1671961 < Ryr' O

i€S*¢

1051

We thus obtain from Theorem 1 that

~ N 1

60 —0%]2 < 3] [2\/|S*)\ +\/2)\n'y |95*c|1}
< L {2\/RQT_Q/2/\R + \/2 An (L) Rqu_q} .
)

From the settings of and)\,,, it can be seen that,, = 7, which when substituted in the previous
expression yields,

~ - 2 V2
10—0%2 < VR ! | = + —=
! (L) AL
Substituting for the value of,,, we thus obtain the bound in the Corollary. O

D.1 Restricted Strong Convexity for Weak-Sparse Models

One sufficient condition for the restricted strong convegiindition to hold is that the design ma-
trices X € R"*P gatisfy the conditioon

logp

Xovl| > erfjv]l2 = e2 vl

|—=
\/_
for some constants > 0 andcy > 0.

In our setting,|[vse|1 < 3|lvs|li + 4[|0%:||1 so that|v]1 < 4[||vs|1 + ||0%]1], which further
implies then that

[ollx < 4[V/ISlllvlls + ([0l
Therefore, it immediately follows then that

| [ e
HEXUH > <C1 deo l[vll2 — 105 l1-

Recall from the arguments above thj&t. ||, < R,7'~¢ where we also set = 1"% and we are
only concerned with sets such that < R,7~¢ so that

I \/_XUH > (cl — 4cz,/RqT2—q) llvlle — 4eaRym274
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For the applications of restricted strong convexity abeve only need it told hold for the vectors
v such that|v|ls = O(%,/Rqﬂﬂ) where we recall that = \,,, justifying the swap. Finally,
applying the bound ofv||» yields that

(1 - 40'\/Rq7'2‘1) \/RqTQ*q - 4C/Rq7’2_q
(1 -8 c/\/Rq72q> \/RqTQ*q,

wherec’ = ¢3/c1. The constants; andc, are independent of everything else and by the scaling of
n, have that the term in the paranthesis can be made arhjtcdoe tol by takingn sufficiently
large. Therefore, have that

X’U”Q

Y

”\/_

Y

n \/—XU||2 S lolz,
which immediately implies then that(£) = < for v € G. Note, in fact that the bound holds for
anyv such thatlv|z > = L /R,72~4, which |mpI|es then that the bound established in Corolary

is valid smce% > 1.

E Restricted Strong Convexity for the Trace Observation Mocel

Recall the low-rank matrix observation model is
Y; = trace(X] ©*) + W;,
whereX;, ©* € R™*P, Note that by we can convert eadh and©* to a vector to yield the usual
linear regression observation model
Y =X0+W,
whereX e R™*(®™) andd € RP™. We establish RSC for the simple case where the observation
matricesX; are drawn from the i.i.d. Gaussian ensemble. We will thereapip the Gordon-Slepian
Lemma to establish that
- VP +Vm

{a: HAIIz\ 1} \F Vn
where the normj|A||; is the nuclear norm, anfiA||; is the Frobenius norm. Gordon-Slepain will
lower bound the expected value of the random variaig || %XAHQ, while we then apply con-

centration results to arrive at the above result with higibpbility, leaving that as an exercise. We
know that

XAllz > al|Allz = co—F7—|Allx

inf || X Allo = inf sup trace(U? X A).
A Ay

Now, trace(UT X A) is a centered Gaussian random process indexe@ nd A. We may
construct a second centered Gaussian random process igdeéxamnd A by definingYy A =

trace UTW + trace AT Z, whereW, Z are independent normal i.i.d. Gaussian matrices. We thus
have the following

E[(Xv.a — Xur,a0)’] = Efftrace (X (AUT — A'(U)1)] = JAUT = A"(U)T 7. (28)
and
E[(trace((U — U")TW) + trace((A — AT Z))?]
E[(trace((U — U")TW))? + (trace((A — AT Z))?]
U = UIE + 1A = A)IE (29)
Recall thatU and A are the vectorized versions of the corresponding matrieggiation (28) is
upper bounded by equation (29). On the other hand, i A’, then equation (28) equals equa-

tion (29), thus verifying the conditions of the Gordon-SlapLemma. Therefore, by the lemma, it
immediately follows then that

EinfsupUTXA > EinfsupUTW +ATZ
AU AU

= E|Wlr - |ALE[Z]l:

VAL (VB + Vi)

Y
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as desired.
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