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Abstract

Markov logic networks (MLNs) are an expres-

sive representation for statistical relational learn-

ing that generalizes both first-order logic and

graphical models. Existing discriminative weight

learning methods for MLNs all try to learn

weights that optimize the Conditional Log Like-

lihood (CLL) of the training examples. In this

work, we present a new discriminative weight

learning method for MLNs based on a max-

margin framework. This results in a new model,

Max-Margin Markov Logic Networks (M3LNs),

that combines the expressiveness of MLNs with

the predictive accuracy of structural Support Vec-

tor Machines (SVMs). To train the proposed

model, we design a new approximation algorithm

for loss-augmented inference in MLNs based on

Linear Programming (LP). The experimental re-

sult shows that the proposed approach generally

achieves higher F1 scores than the current best

discriminative weight learner for MLNs.

1. Introduction

Existing discriminative training algorithms for learning

MLN weights attempt to maximize the conditional log

likelihood (CLL) of a set of target predicates given evi-

dence provided by a set of background predicates (Singla

& Domingos, 2005; Lowd & Domingos, 2007; Huynh &

Mooney, 2008). If the goal is to predict accurate target-

predicate probabilities, this approach is well motivated.

However, in many applications, the actual goal is to max-

imize an alternative performance metric such as classifi-

cation accuracy or F-measure. Max-margin methods are

a competing approach to discriminative training that are

well-founded in computational learning theory and have

demonstrated empirical success in many applications (Cris-

tianini & Shawe-Taylor, 2000). They also have the ad-

vantage that they can be adapted to maximize a variety of
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performance metrics in addition to classification accuracy

(Joachims, 2005). Max-margin methods have been suc-

cessfully applied to structured prediction problems, such as

in Max-Margin Markov Networks (M3Ns) (Taskar et al.,

2003) and structural SVMs (Tsochantaridis et al., 2005);

however, until now, they have not been applied to an SRL

model that generalizes first-order logic such as MLNs.

In this paper, we develop Max-Margin MLNs (M3LNs)

by instantiating an existing general framework for max-

margin training of structured models (Tsochantaridis et al.,

2005). This requires developing a new algorithm for ap-

proximating the “loss-augmented” inference in MLNs. Ex-

tensive experiments in the two real-world MLN applica-

tions demonstrate that M3LNs generally produce improved

results when the goal involves maximizing predictive accu-

racy metrics other than CLL.

2. Max-Margin Weight Learning for MLNs

2.1. Max-Margin Formulation

All of the current discriminative weight learners for MLNs

try to find a weight vector w that optimizes the conditional

log-likelihood P (y|x) of the query atoms y given the ev-

idence x. However, an alternative approach is to learn a

weight vector w that maximizes the ratio:

P (y|x,w)

P (ŷ|x,w)

between the probability of the correct truth assignment y

and the closest competing incorrect truth assignment ŷ =
arg maxȳ∈Y\y P (ȳ|x). For MLNs, this problem translates

to the problem of maximizing the following margin:

γ(x,y;w) = w
T
n(x,y) − w

T
n(x, ŷ)

= w
T
n(x,y) − max

ȳ∈Y\y
w

T
n(x, ȳ)

where n(x,y) is a vector in which each component i is

the number of true groundings of clause fi given the truth

assignment (x,y) In turn, this max-margin problem can be

formulated as a “1-slack” structural SVM (Joachims et al.,

2009 to appear) as follows:
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Optimization Problem 1 (OP1): Max-Margin Markov Logic
Networks

min
w,ξ≥0

1

2
w

T
w + Cξ

s.t. ∀ȳ ∈ Y : wT [n(x,y) − n(x, ȳ)] ≥ ∆(y, ȳ) − ξ

So for MLNs, the number of true groundings of the clauses

n(x,y) plays the role of the feature vector function Ψ(x, y)
in the general structural SVM problem. In other words,

each clause in an MLN can be viewed as a feature repre-

senting a dependency between a subset of inputs and out-

puts or a relation among several outputs. The optimization

problem OP1 can be solved efficiently by the general cut-

ting plane algorithm proposed by Joachims et al. (2009-to

appear) if we have efficient algorithms to solve the follow-

ing two arg max problems:

Prediction: argmaxy∈Y wTn(x,y)

Separation Oracle: arg maxȳ∈Y {∆(y, ȳ)+wT n(x, ȳ)}

It is clear that the prediction problem is just the Most Proba-

ble Explanation (MPE) inference problem. For MLNs, this

problem is equivalent to the Weighted MAX-SAT prob-

lem which is an NP-hard problem (Singla & Domingos,

2005). We can use MaxWalkSAT (Kautz et al., 1997) to

get an approximate solution, but we have found that models

trained with MaxWalkSAT have very low predictive accu-

racy. On the other hand, recent work (Finley & Joachims,

2008) has found that fully-connected pairwise Markov ran-

dom fields, a special class of structural SVMs, trained with

overgenerating approximate inference methods (such as re-

laxation) preserve the theoretical guarantees of structural

SVMs trained with exact inference, and exhibit good em-

pirical performance. Based on this result, we sought a

relaxation-based approximation for MPE inference. We

developed an LP-relaxation algorithm for doing MPE in-

ference and a variant of it which can solve the separation

oracle for some specific loss functions.

3. Experimental Evaluation

This section presents experiments comparing M3LNs to the

current best discriminative weight learner for MLNs with

recursive clauses, preconditioner scaled conjugate gradi-

ent (PSCG) (Lowd & Domingos, 2007).

3.1. Datasets

We ran experiments on two large, real-world MLN

datasets: WebKB for collective web-page classification,

and CiteSeer for bibliographic citation segmentation.

The WebKB dataset consists of labeled web pages from the

computer science departments of four universities. Differ-

ent versions of this data have been used in previous work.

We used the version from (Lowd & Domingos, 2007),

which contains 4165 web pages and 10,935 web links.

Each page is labeled with a subset of the categories: person,

student, faculty, professor, department, research project,

and course. The goal is to predict these categories from

the words and links on the web pages. We used the same

simple MLN from (Lowd & Domingos, 2007), which only

has clauses relating words to page classes, and page classes

to the classes of linked pages.

For CiteSeer, we used the dataset and MLN used in (Poon

& Domingos, 2007). The dataset has 1,563 citations and

each of them is segmented into three fields: Author, Title

and Venue. The dataset has four disconnected segments

corresponding to four different research topics. We used

the simplest MLN in (Poon & Domingos, 2007), which is

the isolated segmentation model.

3.2. Metrics

We used F1, the harmonic mean of recall and precision,

to measure the performance of each algorithm. This is the

standard evaluation metric in multi-class text categoriza-

tion and information extraction. For systems that compute

marginal probabilities rather than MPEs, we predict that an

atom is true iff its probability is at least 0.5.

3.3. Methodology

We ran four-fold cross-validation (i.e. leave one univer-

sity/topic out) on both datasets. For the max-margin weight

learner, we used a simple process for selecting the value of

the C parameter. For each train/test split, we trained the

algorithm with five different values of C: 1, 10, 100, 1000,

and 10000, then selected the one which gave the highest

average F1 score on training. The ǫ parameter was set

to 0.001. To solve the QP problems in the cutting plane

algorithm and LP problems in the LP-relaxation MPE in-

ference, we used the, we used the MOSEK 1 solver. The

PSCG algorithm was carefully tuned by its author. For pre-

diction, we ran MCSAT (Poon & Domingos, 2006) for 100

burn-in and 1000 sampling iterations to get the marginal

conditional probability of each query atom, and ran LP-

relaxation MPE inference to obtain the most probable truth

assignment to all query atoms.

3.4. Results and Discussion

Table 1. F1 score on WebKB
AVERAGE F1

PSCG-MCSAT 0.465 +/- 0.115
PSCG-LPRELAX 0.474 +/- 0.115
MM-LPRELAX 0.601 +/- 0.100

Table 1 and 2 present the performance of different systems

on the WebKB and Citeseer datasets. Each system is named

by the weight learner used and the inference algorithm used

1http://www.mosek.com/
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Table 2. F1 score on CiteSeer with different parameter values

AVERAGE F1

PSCG-MCSAT-5 0.864 +/- 0.035
PSCG-MCSAT-10 0.939 +/- 0.022
PSCG-MCSAT-15 0.861 +/- 0.047
PSCG-MCSAT-20 0.801 +/- 0.060
PSCG-MCSAT-100 0.656 +/- 0.035
MM-LPRELAX-1 0.934 +/- 0.013
MM-LPRELAX-10 0.932 +/- 0.013
MM-LPRELAX-100 0.932 +/- 0.013
MM-LPRELAX-1000 0.933 +/- 0.015
MM-LPRELAX-10000 0.935 +/- 0.020

in testing. For the max-margin (MM) learner, the infer-

ence used in training is the loss-augmented version of the

one used in testing. For example, MM-LPRelax is the MM

weight learner trained with the loss-augmented (Hamming

loss) LP-relaxation MPE inference algorithm and tested

with the LP-relaxation MPE inference algorithm.

On WebKB, the max-margin weight learner achieves the

best F1 score (0.601), which is much higher than the 0.465

F1 score obtained by the current best discriminative weight

learner for MLN, PSCG. This improvement is clearly due

to the max-margin approach since LP-relaxation MPE in-

ference improves the accuracy of PSCG a bit (the PSCG-

LPRelax system), but it is still far from that of the max-

margin weight learner.

On the Citeseer dataset, the performance of max-margin

methods are very close to those of PSCG. However, its

performance is much more stable than that of PSCG. Ta-

ble 2 shows the performance of MM weight learners and

PSCG with different parameter values by varying the C

value for MM and the number of iterations for PSCG. The

best number of iterations for PSCG is 9 or 10. In principle,

we should run PSCG until it converges to get the optimal

weight vector. However, in this case, the performance of

PSCG drops drastically on both training and testing after

a certain number of iterations. For example, from Table 2

we can see that at 10 iterations PSCG achieves the best F1

score of 0.939, but after 15 iterations, its F1 score drops

to 0.861 which is much worse than the max-margin weight

learners. Moreover, if we let it run until 100 iterations, then

its F1 score is only 0.656. On the other hand, the perfor-

mance of MM only varies a little bit with different values

of C and we don’t need to tune the number of iterations of

MM.

4. Conclusions

We have presented a max-margin weight learning method

for MLNs based on the framework of structural SVMs. It

resulted in a new model, M3LN, that has the representa-

tional expressiveness of MLNs and the predictive perfor-

mance of SVMs. M3LNs can be trained to optimize dif-

ferent performance measures depending on the needs of

the application. To train the proposed model, we devel-

oped a new approximation algorithm for loss-augmented

MPE inference in MLNs based on LP-relaxation. The ex-

perimental results showed that the new max-margin learner

generally has better and more stable predictive accuracy (as

measured by F1) than the current best discriminative MLN

weight learner.
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