
Human-Assisted Neuroevolution
Through Shaping, Advice and Examples

Igor V. Karpov, Vinod K. Valsalam and Risto Miikkulainen
Dept. of Computer Science, The University of Texas at Austin

1 University Station C0500, Austin, TX, USA
ikarpov@cs.utexas.edu, vkv@cs.utexas.edu, risto@cs.utexas.edu

ABSTRACT
Many different methods for combining human expertise with
machine learning in general, and evolutionary computation
in particular, are possible. Which of these methods work
best, and do they outperform human design and machine
design alone? In order to answer this question, a human-
subject experiment for comparing human-assisted machine
learning methods was conducted. Three different approaches,
i.e. advice, shaping, and demonstration, were employed to
assist a powerful machine learning technique (neuroevolu-
tion) on a collection of agent training tasks, and contrasted
with both a completely manual approach (scripting) and a
completely hands-off one (neuroevolution alone). The re-
sults show that, (1) human-assisted evolution outperforms
a manual scripting approach, (2) unassisted evolution per-
forms consistently well across domains, and (3) different
methods of assisting neuroevolution outperform unassisted
evolution on different tasks. If done right, human-assisted
neuroevolution can therefore be a powerful technique for
constructing intelligent agents.

Categories and Subject Descriptors
H.1.2 [Information Systems]: User/Machine Systems—
human factors, software psychology

General Terms
Human Factors, Experimentation, Algorithms

Keywords
human-assisted machine learning, imitation, advice, machine-
learning games, neuroevolution, shaping

Track: Digital Entertainment Technologies and Arts

1. INTRODUCTION
When building autonomous agents with complex behav-

ior, such as non-player characters for a video game, or a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

robotic soccer team, machine learning techniques can be
highly useful. For example, evolution of artificial neural net-
works with augmenting topologies (NEAT) has been demon-
strated to be effective in the NERO machine-learning video
game, where human players compete to design the most ef-
fective policy for agents in a complex virtual environment
[10].

However, human domain experts often lack sufficient ex-
pertise in machine learning techniques to translate their
knowledge into model parameters and training processes.
Effective and natural ways to combine their domain ex-
pertise with machine learning are needed; such techniques
would enable experts and non-experts alike to direct ma-
chine learning with their knowledge, thus speeding up the
process of creating effective and interesting behaviors for
autonomous agents.

Many candidate approaches to this problem of human-
assisted machine learning have been proposed [4, 8, 1, 6,
12, 14]. In order to compare and contrast their advantages
and disadvantages, this article presents a human subject ex-
periment evaluating the relative merit of three possible ap-
proaches: giving advice in terms of rules, demonstrating the
desired behavior through examples, and shaping machine
learning through a sequence of gradually more challenging
tasks.

Figure 1: A screenshot of the 3D environment with a hu-
man user attempting to solve one of the test tasks using the
shaping-assisted neuroevolution method.

In the experiment, the subjects took on the role of agent
behavior engineers. Three different behavior design tasks
commonly solved as part of the NERO machine-learning
game were implemented in OpenNERO, an open-source plat-
form for AI research and education (Figure 1). These tasks

were a simple navigation around an obstacle (basic naviga-
tion), catching a fast moving obstacle (dynamic navigation),
and going to a number of targets in sequence (sequential
behavior). The experiment held the machine learning algo-
rithm constant—it used the NeuroEvolution of Augmenting
Topologies (NEAT) method [11]—and varied the method
that the human subjects used to assist neuroevolution in
developing the desired policy. In addition to advice, exam-
ples, and shaping, neuroevolution alone and a fully manual
approach, scripting, were tested as controls.

Each subject was assigned one of the three methods of as-
sisting machine learning. They were then asked to solve each
of the three tasks twice, once using the scripting method,
and once using their assigned human-assisted neuroevolu-
tion method. All the interactions of the subjects with the
system were logged via screen capture video and logs created
by OpenNERO.

In all tasks, human-assisted and unassisted neuroevolu-
tion were more effective than manual scripting. Unassisted
evolution was consistently good across all tasks; However, a
different human-assisted method outperformed it in differ-
ent tasks, revealing interesting differences and opportunities
for them:

When using the example method, subjects were able to
control an agent first person and to record an example
behavior in the virtual environment. This example was
then introduced as training data for supervised train-
ing of the evolving neural network controllers. This
approach worked particularly well in the obstacle nav-
igation task where the desired behavior is concrete and
specific.

When using the advice method, subjects were able to write
short snippets of example code and provide them to the
evolving population. These snippets were converted
into partial artificial neural networks and spliced into
the networks within the population [13]. This ap-
proach was most effect in the moving obstacle tasks
because desired behavior could be expressed as a gen-
eral rule.

When using the shaping method, subjects were able to
modify the task by adding and removing objects, mov-
ing, scaling and rotating objects, changing the tra-
jectory, and speed of moving targets. The schedule
on which this environment modification was combined
with evolution was left up to the discretion of the en-
gineer. This approach was best in the sequential task,
where it was natural to make the task gradually more
complex.

Overall, human-assisted machine learning turned out to
be a powerful approach, given that the right method can
be chosen for the task. The rest of this article is organized
as follows. Section 2 describes related work in combining
human design and machine learning. Section 3 briefly re-
views the necessary background of real-time neuroevolution
in machine-learning video games. Section 4 provides the
details of the behavior design tasks created for the experi-
ments, the architecture of the agents’ sensors and actuators
within the virtual environment, and the three alternative ap-
proaches to assisting neuroevolution with human knowledge.
Section 5 describes how the experiments were conducted,

and section 6 presents the results. Section 7 draws general
conclusions about the results and outlines future work in
leveraging human expertise with machine learning.

2. RELATED WORK
Almost any application of a machine learning technique to

agent behavior design has a human designer bias due to the
time spent by the designer in order to pick the right features
or representation, tune algorithm parameters, select termi-
nation conditions or fitness/reward functions. However, re-
cently a number of methods have been proposed that are
specifically designed to be useful to domain experts without
detailed access to the underlying machine learning algorithm
[4, 8, 1, 6, 12, 14].

One possibility is shaping the learning process via human
evaluative feedback. For example, the TAMER system com-
bines human reinforcement with MDP learning in order to
speed up the learning process and make it more sample-
efficient [5]. Similarly, fitness shaping methods can be used
with evolutionary computation as demonstrated with neu-
roevolution and the NERO machine learning game [10].

Another approach involves formulating knowledge about
the domain as rules, and providing these rules as a useful
addition to the learning algorithm. An early example of this
type of approach includes the work by Maclin and Shavlik,
where rules were used to modify a value function approxi-
mated with an artificial neural network [7]. More recently,
modern natural language processing techniques have been
recruited in order to free the human user from the need to
use a specially crafted formal language [6].

A third approach to assisting learning agents involves demon-
stration of expert performance in the domain. For example,
imitation learning has been applied to learning driving poli-
cies for virtual race cars [2]. A variant of the demonstration-
based approaches is apprenticeship learning through inverse
reinforcement, where the expert behavior is used to estimate
the reward function which is then used for learning in con-
junction with a model of the environment [1, 9].

The power of such approaches has been demonstrated
many times. For example, apprenticeship learning was used
to successfully learn autonomous control for aerobatic he-
licopters [3]. Additionally, some work has started to con-
sider the human factor in the interaction between the hu-
man teacher and the machine learner more directly [15].
However, it remains unclear how these different methods
of providing assistance to machine learning methods com-
pare against each other, and against manual policy design
methods.

3. BACKGROUND
The particular machine learning technique evaluated in

this paper is neuroevolution, i.e. evolving neural networks
through genetic algorithms, in particular through the NEAT
method. The tasks are chosen from the general framework of
the NERO machine learning game, where the human player
faces the challenge of designing effective behaviors for the
agents in the game.

3.1 Machine Learning Games
The NeuroEvolving Robotic Operatives game (NERO)

belongs to a growing new genre of machine-learning video
games, where agents that learn from experience are inte-

gral to game play [10]. In NERO, the human players com-
pete by using neuroevolution to evolve teams of agents that
are effective at combat and other tasks within a complex
virtual environment. They do so interactively and in real
time, by shaping the real-time neuroevolution of a team of
agents through a combination of modifying the virtual envi-
ronment, adjusting the relative importance of the multiple
components of their fitness (or objective) function, and ex-
plicitly punishing unwanted behavior by lowering its fitness
or interacting with the simulation from a first-person per-
spective.

OpenNERO is a freely available open source research plat-
form that includes NERO and other environments, and pro-
vides several tools for constructing new environments, tasks,
and learning algorithms. It includes several reinforcement
and other learning methods, supports comparative experi-
ments between them, and provides a way to visualize them
using a modern 3D game engine.

3.2 NEAT
NeuroEvolution of Augmenting Topologies (NEAT) and

its real-time, steady-state variant Real-Time NEAT (rtNEAT)
are two evolutionary machine learning methods well suited
for designing complex controllers [11]. NEAT evolves ar-
tificial neural network controllers by starting with a pop-
ulation of single layer, fully connected feed-forward neural
networks with random weights. During evolution, it com-
plexifies these networks through crossover and mutation op-
erators that add new nodes and connections to the network,
as well as change its weights. NEAT has been shown power-
ful in several applications involving evolution of intelligent
agent behavior (including NERO); it also supports several
human-assisted methods naturally, and is therefore used as
the machine learning method for the experiments in this
paper.

4. SYSTEM DESCRIPTION
The experiments described in this article were performed

using three behavior design tasks implemented within the
machine learning video game OpenNERO (Section 4.1). The
tasks involved training a team of virtual agents (Section 4.2)
using one of three approaches to human-assisted neuroevo-
lution (Section 4.4) and a manual scripting approach.

4.1 Behavior Design Tasks
In order to explore the breadth of possible tasks that

might face a designer of game bot behavior, three tasks were
created for the experiment (Figure 2).

One task commonly encountered by game bots is that
of obstacle avoidance, where the bots have to navigate to
a target around some level geometry. In order to test this
scenario, the subjects were presented with an obstacle avoid-
ance task (Figure 2a). The fitness on the task is defined as
1.0 or greater if the agent starting at the origin reaches the
goal and collects the target cube positioned there.

The second task tested in the experiment is that of a mov-
ing target chasing (Figure 2b). The task consists of a target
moving along a predefined trajectory (in this case, a circle).
The goal of the agent is to reach the moving target and to
collect the 1.0 fitness by doing so. Another part of the fitness
is normalized to range between 0.0 (agent ending far away
from the target) and 0.1 (agent ending close to the target).

(a) Obstacle avoidance (b) Target Chasing

(c) Resource gathering task

Figure 2: The three tasks used during the experiments.
The blue bars represent walls, the red crosses represent the
spawning location of the agents, and the green boxes rep-
resent the targets that the agents were required to reach in
order to complete the task.

The third task tested in the experiment is that of multiple
resource gathering (Figure 2c). The task consists of four
resources positioned behind two walls. It is possible for an
agent to move around the walls and collect all four, but not
with a lot of time to spare. The agent receives a +1 towards
its fitness for reaching a resource, and a fraction of 0.1 for
getting close to one.

4.2 Agent Configuration

!"# !$# !%# !&# !'# !$$#!"

("# ($#

)*+,#-,.!/0!# 1(22#-,.!/0!#

!$"#

)/.!30*43,5#/0#,6/26,5#788#

Figure 3: The architecture of the agent. The agent has
twelve sensors and two actuators. The actuators determine
the speed and direction of motion, while the sensors provide
information about the location of the targets and the walls in
the environment around the agent. The controller is always
a neural network, either constructed manually from rules, or
evolved using NEAT (with or without assistance).

The overall agent architecture is depicted in Figure 4.
Each agent can sense the virtual environment through a set
of egocentric sensors and act in the environment using a
set of actuators. The sensors consist of target sensors (Fig-

!"
#$

%&'
#(
)*
$"
&

+,&

+-& +.&

+/&

+0&

+1&+2&

+3&

(a) Target sensors

!"
#$

%&'
#(
)*
$"
&

+,,&
+,-& +.&

+/&

(b) Wall sensors

Figure 4: The sensor of the agent consist of target sensors
(a), and wall sensors (b). The observations of the target
values vary with proximity and with with number of targets,
while the wall sensors only report whether or not a collision
in that direction has occurred.

ure 4a) and wall sensors (Figure 4b). All observations were
normalized to lie within the range [0, 1].

The target sensors’ value increases linearly with relative
proximity of the target object (a blue cube) and with angular
alignment of the sensor axis with the ray cast towards the
location of the target. The value is cumulative for all targets
in the environment. The targets disappear from agent’s view
after they are visited once. The wall sensors return binary
observations that report whether or not a ray cast in the
direction of the sensor intersects a wall in the environment.

The agents have two continuous action outputs. The actu-
ator a0 sets the speed of forward motion: it stops the agent
when its value is set to 0, and moves the agent at the max-
imum allowed speed as the value approaches −1 or 1. The
actuator a1 sets the turn rate, ranging from −1 (maximum
left turn) to 1 (maximum right turn).

The fitness is defined as +1.0 for each target reached, and
a fraction of 0.1 for approaching the target faster, for getting
closer to a target, or for closely following the example trace.

4.3 Manual Design Through Scripting
One possible approach to designing a complex behavior

(and the one usually used in game industry) is to simply
write a deterministic program to execute it. Thus each sub-
ject in the experiment was asked to solve the tasks using
a custom scripting language that consists of a collection of
if-statements that determine the actions of the agent given
its current inputs (figure 5).

A simple procedural language based on KBANN (Knowledge-
Based Artificial Neural Networks; [7]) and in earlier work
on human-assisted neuroevolution [13] was implemented in
OpenNERO. The language consists of simple if-then-else
constructs, where the if-statement conditions are based on
binary comparisons of sensor values and then- and else-
clauses can assign constant values to output actuators (Fig-
ure 6) or to temporary register values. The script is pro-
cessed using a lexical analyzer and parsed using a parser
generated from a set of context-free grammar rules (Figure
5).

Using KBANN, the scripts written in this language are
compiled into neural networks that implement the desired
behavior. In the fully manual scripting case, these networks

rules → rule | rules rule
rule → if conds setrules iftail
rule → if conds setrules iftail
iftail → | elif setrules iftail
conds → term | conds and term
term → false | true | variable termop varvar
termop → ≤ | < | > | ≥
varval → variable | value
setrules → setvar | setrules setvar
setvar → variable = expr
expr → eterm | expr + eterm | expr − eterm
eterm → value | variable | −variable |
value*variable

Figure 5: The context-free grammar used in parsing script
and advice. The primary construct is an if-then-else clause,
and the primary statement is assignment. The ground sym-
bol value stands for a floating point number, and variable

can be a sensor name, an actuator name, or a temporary
register name.

are used as the sole controllers. However, these networks
can also be used as pieces of advice to the neuroevolution,
as described next.

Go to a t a r g e t
i f s3 < s4 {

a0 = 1
a1 = 1

} else {
a0 = 1
a1 = −1

}

Go around a w a l l
i f s9 > 0 .5 {

a0 = 1
a1 = 1

} e l i f s10 > 0 .5 {
a0 = 1
a1 = −1

}

Figure 6: Example rules for going to a target (a), and going
around the wall (b). Variable names starting with ’s’ refer
to sensor values, and those starting with ’a’ refer to actua-
tor settings. These rules can be used either as standalone
scripts, or combined with neuroevolution as pieces of advice.
While these scripts are relatively simple, the process of for-
mulating such rules for an agent behavior can take a long
time.

4.4 Human-Assisted Neuroevolution
Neuroevolution provides a suitable testbed to compare dif-

ferent ways of integrating human knowledge because it is
capable of supporting many of them. For the experiment
presented in this article, the subjects were asked to train
populations of NEAT agents to complete a number of tasks
using one of four approaches defined below.

4.4.1 Advice
The scripting language described above can also be used

to formulate pieces of advice, instead of the entire behavior
at once. Such advice can then be converted into small neu-
ral networks, and spliced into the networks of the actively
evolving population. It is easy for NEAT to incorporate such
advice because it adds nodes and connections are to evolving
networks already as part of evolution. If the advice network
provides a useful modification to the individual’s behavior,
it will be incorporated into subsequent generations, speeding

up learning. If the piece of advice is not beneficial, it will
be selected against or even reused for something else later
in evolution.

4.4.2 Examples
A second way to assist evolution of agents is to provide

them with a trace of an example behavior. The subjects
were asked to provide such a trace by controlling an agent
from a third-person perspective via keyboard commands.

In order to match the agent behavior with examples of
different length and complexity, a segment-based approach
was developed. A trace is recorded and stored as a sequence
of agent positions. It is then broken up into segments 10
steps long. Each neural network is first evaluated on how
well it matches the example, and then it is trained to match
it better using backpropagation.

During evaluation, the network is allowed to move the
agent for 10 steps starting at the beginning point of the first
segment. If its path deviates too much from the example, the
network is trained with backpropagation on this segment. If
the network’s path follows the example segment to within
a small deviation, the next segment of the path is evalu-
ated, until all segments have been processed. The network’s
fitness is a fraction of segments successfully matched.

During backpropagation training, the output actions that
would have generated the example path are used as targets,
and the input activations resulting from the agent’s location
as the input. Each step through the segment generates one
backpropagation input/output pair; the network is trained
on each pair once, backpropagating the error through the
network topology until all weights leading from the inputs
are updated. The backpropagation changes are then en-
coded back into the genetic representation of the network,
and are thus inherited by its offspring.

4.4.3 Shaping via Environment
A third way to assist evolution of agents is to shape their

behavior by modifying the task gradually. The tasks were
instrumented with a graphical user interface with which the
subjects could modify the environment and task parame-
ters, thereby guiding the process of evolution. The idea is
that the engineer will be able to find the appropriate task
decomposition using such a method: After a simpler version
of the task is solved, a more complicated version of the task
may become easier for neuroevolution to master. Several
different kinds of shaping approaches were possible:

In free environment modification, the user adds or removes
targets and walls at any location on the field. The user
can also scale and rotate these objects, as well as move
them from one location to another.

In restricted environment modification, specific keys on the
keyboard are used to add, reset or remove the objects
that were part of the original task.

In parametrized environment modification, the subjects are
able to modify the speed and trajectory of the moving
target in the dynamic target domain.

The subjects did indeed use each of these in the process
of attempting to discover a useful shaping strategy.

Table 1: Attempted solutions by task and method

Obstacle Chasing Resource Total
Scripting 14 16 14 44
Examples 5 6 6 17
Shaping 6 6 6 18
Advice 4 3 2 9
Total 29 31 28 88

5. EXPERIMENTS
In order to compare the different methods of assisting

evolution in constructing agent behavior, a human subject
study was conducted. Participants in the study took on the
roles of engineers attempting to create agents with a partic-
ular behavior in order to solve three machine-learning game
tasks defined below.

5.1 Experiment Setup
The interactions with the system were recorded and ana-

lyzed to extract the success rate in solving the tasks using
the different methods, how long it took to solve them, and
how many times they had to restart before reaching a solu-
tion.

Additionally, in order to compare the performance of the
human-assisted evolution and human manual scripting to
evolution alone, 30 runs of evolution were performed on each
of the tasks defined below.

In all of the experiments that use neuroevolution, the
same algorithm (NEAT) with the same set of parameters
was used. A population of size 50 was used in all cases.
When time comparisons are made, the time is always wall
clock time. Both the evolution runs and the human subject
experiments were conducted on identical machines with In-
tel Core 2 Duo CPUS running at 1.83 GHz and configured
with 2 GB of RAM.

5.2 Experimental Protocol
Sixteen subjects were drawn from a freshman research

course. The subjects had experience using neuroevolution
in the context of a machine-learning game, and had a lec-
ture describing how the method works.

All subjects were briefed before the experiment, describ-
ing the timeline of the experiment, the methods they were
allowed to use, the user interface they were using for the
experiment, the tasks they were solving, and the goal they
had to achieve within each task.

Each subject was randomly assigned a sequence of three
tasks and a collection of two methods. They then used the
two methods to solve each of the the three tasks, in order, for
a total of six task and method combinations. Subjects were
not allowed to work longer than 30 minutes on each combi-
nation. The subjects were given a total of 150 minutes to
complete as many combinations as they could. The number
of task and method combinations attempted are summarized
in Table 1. Each subject could attain at most one successful
solution for each of the six task-method combinations they
were assigned.

All subjects filled out a survey immediately after the ex-
periment rating the quality of their solutions, the quality
of the approaches they used, how many times they had to
restart on each task-method combination, and whether or
not they understood the task.

When running neuroevolution, subjects had the choice of
running it in “visible” mode that shows every action of ev-
ery agent, or in “headless” mode, that runs evolution in the
background and can make progress four to five times faster.
Running neuroevolution alone was done using the fastests
“headless” mode.

6. RESULTS
The results of the experiments are divided into two broad

categories. The survey results are self-reported by the sub-
jects who filled out a short online survey in the lab imme-
diately after participating in the experiment. The recorded
results are extracted from the game logs and from the video
screen capture of the sessions.

All results presented in this section exclude the first task-
method combination for each subject. This was done be-
cause leave-one-out analysis shows an acclimatization effect
of the subjects where they improve their performance after
having gotten used to the interface during the first trial.

6.1 Survey Results

0

2

4

6

8

10

chase resource obstacle

R
a
ti

n
g

o
f

a
p
p
ro

a
ch

(1
0

is
b

es
t,

0
is

w
o
rs

t)

scripting
example
shaping

advice

Figure 7: Average approach quality ratings collected during
the post-experiment survey. While these scores are subjec-
tive (in particular, example is rated highly because it is most
fun to use), some trends correlate with the recorded results:
shaping is really difficult on the chase task, advice is rated
lowest on resource collection, and all methods are rated rel-
atively highly on the obstacle task.

During the post-experiment surveys, the subjects were
asked to rate the quality of the approach they were using to
solve the tasks (Figure 7). The highest rating was given to
example, followed by scripting, shaping, and advice, respec-
tively. These subjective ratings did not always correlate with
the objective rate of success achieved on the tasks. They ap-
pear rather to contain a substantial subjective “ease of use”
components that do not directly translate into functionality
and effectiveness but can make the process of solving the
task more fun.

6.2 Recorded Results
In order to collect objective measures of the performance

of these methods, the interactions of the users with the
OpenNERO interface were logged and recorded via screen
capture. Three main measures were collected - the rate of
success (i.e. whether or not the subject was able to solve a

0

20

40

60

80

100

120

140

160

chase resource obstacle

T
im

e
(m

in
)

p
er

so
lu

ti
o
n

scripting
example
shaping

advice
evolution

Figure 8: Average time spent by subjects before success-
fully solving each task. Bars not shown indicate an un-
known value because no successful solutions were seen in
the data. Evolution alone does consistently well and out-
performs scripting, but is always outperformed by one of
the human-assisted methods.

0

20

40

60

80

100

120

140

chase resource obstacle

T
ri

es
p

er
so

lu
ti

o
n

scripting
example
shaping

advice

Figure 9: Average number of retries by subjects before suc-
cessfully solving each task. Bars not shown indicate an un-
known value because no successful solutions were seen in the
data.

particular task using a particular method within the allot-
ted time), the time to solution (how long the subject took
to solve the task), and the number of restarts (how many
times the subject restarted the interface before reaching a
solution).

The average time per solution (the sum of the total time
taken by all subjects divided by the number of successful so-
lutions) is shown in Figure 8. An equivalent measure is also
shown for neuroevolution without human assistance. This
measure represents the expected amount of time one would
have to wait before a solution is obtained, for each task
and method. In all three cases, evolution performs well and
outperforms scripting. Additionally, at least one human-
assisted method outperforms neuroevolution alone on each
task. The average number of restarts per successful solution
is shown in Figure 9 and confirms this trend.

Another interesting result of the experiments becomes ap-
parent when considering the detailed timelines of the success

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

F
ra

ct
io

n
o
f

su
b

je
ct

s
so

lv
in

g
ta

sk

Time (min)

Fraction of ”around the wall” tasks solved by method

scripting
example

advice
shaping

evolution

Figure 10: Fraction of“around the wall” tasks solved by each
method over time. Here, scripting, shaping, and advice do
not work as well as evolution alone, but example allows all
the subjects to solve their task before evolution does, using
fewer samples of the simulation in the process.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

F
ra

ct
io

n
o
f

su
b

je
ct

s
so

lv
in

g
ta

sk

Time (min)

Fraction of ”circle chase” tasks solved by method

scripting
example

advice
shaping

evolution

Figure 11: Fraction of “circle chase” tasks solved by each
method over time. In this task, shaping and scripting do
not work at all, but advice allows the subjects to solve all
the tasks before evolution alone.

rates of the methods (Figures 10, 11, and 12). In each case,
unassisted and human-assisted evolution perform much bet-
ter than scripting. While neuroevolution performs consis-
tently well across the domains, it is outperformed by one of
the human-assisted methods in each task - a different one
in each case. While example traces work best in obstacle
avoidance, advice works best in target chasing and shaping
works best in the resource gathering task.

These results confirm that both neuroevolution and human-
assisted neuroevolution outperform the manual scripting ap-
proach and that human-assisted neuroevolution is most ef-
fective, given the right approach to the task.

7. DISCUSSION AND FUTURE WORK
The result that different human assisted neuroevolution

methods are best in different tasks makes sense when one
considers the inherent characteristics of the tasks.

First, in the simple obstacle avoidance task, all methods

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

F
ra

ct
io

n
o
f

su
b

je
ct

s
so

lv
in

g
ta

sk

Time (min)

Fraction of ”resource gathering” tasks solved by method

scripting
example

advice
shaping

evolution

Figure 12: Fraction of “resource gathering” tasks solved by
each method over time. Here, the task is more challenging
for all methods, but the best method turns out to be shaping
because the task can be easily decomposed by modifying the
environment.

work relatively well and the intuitive nature and ease of use
of the example method allow users to complete the task in
a short amount of time.

In the target chase task, in contrast, while it remains pos-
sible to solve the task with examples, the examples that are
first attempted by the subjects are not as helpful, and the
process therefore takes a longer time. Also, the task does
not lend itself well to shaping because it contains a con-
ceptual discontinuity: the behavior required to reach slow
moving targets or targets that move within a smaller radius
is drastically different from that of the complete solution.
Thus shaping by modifying the environment is not a good
fit for this task. However, formulating what needs to be
done as either advice or script is relatively easy in this task,
and neuroevolution with advice has an advantage because
it can recover from mistakes made during rule design and
learn some of the task autonomously.

In the resource gathering task depicted in Figure 2c, the
complicated nature of the environment and the possibility
to decompose the task into logical subtasks allow shaping
to outperform advice and example. In particular, an effec-
tive and simple shaping strategy is to simply remove all the
targets except for the one that should come first in the se-
quence, and allow neuroevolution to master that task first,
after adding the next target in the sequence and repeating
until the complete task is learned.

In addition to performing well compared to unassisted
neuroevolution in real time, it is important to note that hu-
man assisted neuroevolution is much more sample-efficient
in that it requires many fewer interactions with the envi-
ronment per unit time. In particular, while the entire time
during the neuroevolution runs was spent evaluating neu-
ral network controllers in the environment at the highest
possible speed, the human-assisted methods dedicate a frac-
tion of time to other activities, such as writing scripts and
advice pieces, providing example behavior traces, running
neuroevolution in the slower real-time mode in order to ver-
ify the agents’ performance, or simply thinking about the
problem. Therefore it is a particularly good approach when
testing candidate solutions is expensive.

The results of such experiments can be used to select and
customize human-assisted evolution methods for building
autonomous agents in virtual environments, as well as au-
tonomous robots that interact with and learn from humans.
They may also be used to train machine learning agents that
adapt to a changing task on the fly. Most importantly, they
give human engineers a degree of control that may make it
easier for them to incorporate advanced machine learning
techniques into the design process.

8. CONCLUSIONS
This article described the design and results of a human

subject experiment evaluating three different approaches to
combining human domain knowledge with neuroevolution,
comparing them with both completely manual design and
completely automated discovery through neuroevolution. The
results demonstrate that (1) human-assisted evolution out-
performs a manual scripting approach, (2) unassisted evo-
lution performs consistently well across domains, and (3)
different methods of human-assisted neuroevolution outper-
form unassisted evolution on different tasks. Therefore, if
done right, human-assisted neuroevolution can be powerful
technique for constructing intelligent agents in the future.

9. ACKNOWLEDGMENTS
This work was supported in part by the National Sci-

ence Foundation under grants IIS-0757479, IIS-0915038, and
DBI-0939454. The authors would also like to acknowledge
the Freshman Research Initiative at the University of Texas
at Austin and the students of the Computational Intelligence
in Game Design stream for participating in the study.

10. REFERENCES
[1] P. Abbeel and A. Ng. Apprenticeship Learning via

Inverse Reinforcement Learning. In Proceedings of the
twenty-first International Conference on Machine
Learning ICML’04, page 1. ACM, 2004.

[2] L. Cardamone, D. Loiacono, and P. L. Lanzi. Learning
Drivers for TORCS through Imitation Using
Supervised Methods. In Proceedings of the IEEE 2009
Symposium on Computational Intelligence and Games
(CIG’09), 2009.

[3] A. Coates, P. Abbeel, and A. Y. Ng. Apprenticeship
Learning for Helicopter Control. Commun. ACM,
52:97–105, July 2009.

[4] W. Knox and P. Stone. Interactively Shaping Agents
via Human Reinforcement: the TAMER Framework.
In Proceedings of the 5th International Conference on
Knowledge Capture, pages 9–16. ACM, 2009.

[5] W. Knox and P. Stone. Combining Manual Feedback
with Subsequent MDP Reward Signals for
Reinforcement Learning. In van der Hoek, Kaminka,
Lespérance, Luck, and Sen, editors, Proceedings of the
9th Int’l Conf. on Autonomous Agents and Multiagent
Systems (AAMAS 2010), pages 5–12, May 2010.

[6] G. Kuhlmann, P. Stone, R. Mooney, and J. Shavlik.
Guiding a reinforcement learner with natural language
advice: Initial results in RoboCup soccer. In The
AAAI-2004 Workshop on Supervisory Control of
Learning and Adaptive Systems, July 2004.

[7] R. Maclin and J. Shavlik. Creating advice-taking
reinforcement learners. Machine Learning, 22:251–281,
1996.

[8] M. N. Nicolescu and M. J. Mataric. Learning and
Interacting in Human-Robot Domains. IEEE
Transactions on Systems, Man and Cybernetics, Part
A: Systems and Humans, 31(5):419–430, 2002.

[9] D. Ramachandran and E. Amir. Bayesian Inverse
Reinforcement Learning. In Twentieth International
Joint Conference on Artificial Intelligence, 2007.

[10] K. O. Stanley, B. D. Bryant, and R. Miikkulainen.
Real-time neuroevolution in the NERO video game.
IEEE Transactions on Evolutionary Computation,
9(6):653–668, 2005.

[11] K. O. Stanley and R. Miikkulainen. Evolving neural
networks through augmenting topologies. Evolutionary
Computation, 10:99–127, 2002.

[12] L. Torrey, J. Shavlik, T. Walker, and R. Maclin. Skill
acquisition via transfer learning and advice taking. In
Proceedings of the Seventeenth European Conference
on Machine Learning (ECML’06), pages 425–436,
Berlin, Germany, 2006.

[13] C. H. Yong, K. O. Stanley, I. V. Karpov, and
R. Miikkulainen. Incorporating Advice into
Neuroevolution of Adaptive Agents. In Proceedings of
the Artificial Intelligence and Interactive Digital
Entertainment Conference (AIIDE’06), pages 98–104,
2006.

[14] P. Zang, A. Irani, P. Zhou, C. L. Isbell, and
A. Thomaz. Using Training Regimens to Teach
Expanding Function Approximators. In Proceedings of
the Ninth International Joint Conference on
Autonomous Agents and Multiagent Systems
(AAMAS), 2010.

[15] P. Zang, R. Tian, C. L. Isbell, and A. Thomaz. Batch
versus Interactive Learning by Demonstration. In
Proceedings of the Ninth International Conference on
Development and Learning (ICDL), 2010.

	Introduction
	Related Work
	Background
	Machine Learning Games
	NEAT

	System Description
	Behavior Design Tasks
	Agent Configuration
	Manual Design Through Scripting
	Human-Assisted Neuroevolution
	Advice
	Examples
	Shaping via Environment

	Experiments
	Experiment Setup
	Experimental Protocol

	Results
	Survey Results
	Recorded Results

	Discussion and Future Work
	Conclusions
	Acknowledgments
	References

