Signed Logic Programs

Hudson Turner
Department of Computer Sciences
University of Texas at Austin

Austin, TX 78712 USA

hudson@cs.utexas.edu

Abstract

In this paper we explore the notion of a “signing” of a logic program, in the frame-
work of the answer set semantics. In particular, we generalize and extend the notion
of a signing, and show that even for programs with classical negation and disjunc-
tion the existence of a signing i1s a simple syntactic criterion that can guarantee
several different sorts of good behavior: consistency, coincidence of consequences
under answer set and well-founded semantics, existence of “standard” answer sets
expressible in terms of the well-founded model and a signing for the program, and a
restricted monotonicity property. The key technical result in this paper is a theorem
relating the consequences of a signed disjunctive program with classical negation to
the consequences of the members of a closely related family of signed nondisjunc-
tive programs. These nondisjunctive programs are the “covers” of the disjunctive
program, where a cover is any program that can be obtained by removing all but
one literal from the head of each rule in the disjunctive program. To illustrate the
usefulness of these results, we apply them to a family of programs for reasoning
about action.

1 Introduction

In this paper we explore the notion of a “signing” of a logic program, in the frame-
work of the answer set (or stable model) semantics [Gelfond and Lifschitz, 1991].
In particular, we generalize and extend the notion of a signing, and show that even
for programs with classical negation and disjunction the existence of a signing is a
simple syntactic criterion that guarantees several different sorts of good behavior.

The notion of a signing for a normal logic program (that is, a program without
classical negation and disjunction) was introduced by Kunen [1989], who used it as
a tool in his proof that two-valued and three-valued completion semantics coincide
on the class of “strict” normal programs. For Kunen, the notion was defined on
the predicate dependency graph of a finite first-order program, so when Gelfond
and Lifschitz [1993] recast the definition to apply directly to the rules of infinite
propositional normal programs, the notion of a signing was made strictly more
general. In [Turner, 1993] the definition was extended to the class of nondisjunctive
programs with classical negation. In this paper it is generalized slightly and further
extended to apply to programs with disjunction as well as classical negation.

For a normal program P, a signing S is a set of atoms such that for every rule
in P either (i) the head and the positive atoms in the body belong to S and the
negated atoms do not, or (ii) the head and the positive atoms in the body do not
belong to S and the negated atoms do. From the perspective of answer sets for
normal programs, signings are already known to be interesting for the following
four reasons.

1. Signed normal programs are consistent. This is a special case of a more gen-
eral theorem by Fages [1994], who has shown that “order-consistent” normal
programs are consistent.

2. If S is a signing for a normal program P, then P has two “standard” answer
sets that are expressible in terms of S and the well-founded model of P.

[Turner, 1993]

3. The consequences of a signed normal program under the answer set semantics
coincide with 1ts consequences under the well-founded semantics. This is a
special case of a more general result due to Dung [1992], who has shown that
the answer set and well-founded semantics coincide for “bottom-stratified &
top-strict” programs. Notice that this result shows that interpreters such as
SLG [Chen and Warren, 1993], which compute the well-founded semantics,
can also be used to compute the consequences of such programs under the
answer set semantics.’

4. There is a monotonicity theorem for signed normal programs. [Turner, 1993]

In [Turner, 1993] we showed that some of these results can be extended to nondis-
Jjunctive programs with classical negation. In this paper we generalize these previous
results slightly, and also extend them in various ways to signed programs with dis-
Junction as well as classical negation.

For a disjunctive program P with classical negation, a signing S is a subset of
the literals of the language of P, satisfying several simple syntactic conditions. (The
precise definition appears in Section 3.) We show that under this extension of the
notion of a signing, the following properties hold.

1. Signed disjunctive programs without classical negation are consistent. (Corol-
lary 4.) A similar result is known for “locally stratified” disjunctive programs
without classical negation.? Since some signed disjunctive programs without
classical negation are not locally stratified, the consistency of such disjunctive
programs is a new result.

2. If S is a signing for a consistent nondisjunctive program P with classical
negation, then P has a “standard” answer set expressible in terms of .S and a
naive extension of the well-founded semantics.® (Theorem 1(iii).)

3. If S'is a signing for a consistent nondisjunctive program P with classical nega-
tion, then the consequences of P in the complement of S are also expressible in
terms of a naive extension of the well-founded semantics. (Corollary 1.) This
result corresponds to Lemma 8 of [Turner, 1993]. Similarly, if S is a signing
for a disjunctive program P with classical negation, then the consequences
of P in the complement of S can be characterized in terms of a syntactically
determined family of signed nondisjunctive programs with classical negation.
(Theorem 2, Corollary 3.)

n [Lifschitz et al., 1993] we show that SLG can also be used, under certain qualifications, to
correctly compute the consequences of signed nondisjunctive programs with classical negation.

2The definition of “local stratification” is due to Przymusinski [1988]. The consistency of locally
stratified disjunctive programs without classical negation under the answer set semantics is clear
from Przymusinski’s similar result under the perfect model semantics.

3This result is implicit in [Turner, 1993].

4. A generalization of the monotonicity theorem from [Turner, 1993] applies to
all signed programs.* (Theorem 4.)

The key technical result in this paper is a theorem (Theorem 2) relating the con-
sequences of a signed disjunctive program to the consequences of the members of
a closely related family of signed nondisjunctive programs. These nondisjunctive
programs are the “covers” of the disjunctive program, where a cover i1s any pro-
gram that can be obtained by removing all but one literal from the head of each
rule in the disjunctive program. The notion of a cover was introduced in the paper
“Disjunctive Defaults” [Gelfond et al., 1991] in order to explore the possibility of
reducing a “disjunctive default theory” to a family of (nondisjunctive) default the-
ories. The authors showed by counterexample that in general this cannot be done
in any straightforward manner. On the other hand, it follows from their results
(Theorems 6.2, 6.3 and 7.2) that for any disjunctive logic program P with classical
negation: (i) every answer set for P is a minimal member of the set of answer sets
for covers of P, and (ii) if P is positive (that is, includes no negation as failure),
then X is an answer set for P if and only if X is a minimal member of the set of
answer sets for covers of P. From (ii) it follows that the consequences of a positive
disjunctive program P with classical negation coincide with the intersection of the
consequences of all covers of P. In this paper we extend this result by showing
that if S is a signing for a disjunctive program P with classical negation, then the
consequences of P in the complement of S coincide with the intersection of the
consequences, in the complement of S| of the covers of P.

To illustrate the usefulness of these results, we apply them to a family of pro-
grams for reasoning about action. Gelfond and Lifschitz [1993] defined a high-level
language A for reasoning about action, and a sound translation from A4 to nondis-
Junctive logic programs with classical negation. We define in this paper a slight
extension Ay of the language .4, in which disjunctive information about the values
of fluents can be expressed, and we specify a translation from 44 into signed dis-
Junctive logic programs with classical negation. We use our results on the properties
of signed programs, along with the Splitting Sequence Theorem from [Lifschitz and
Turner, 1994], to prove this translation sound and complete.

Section 2 consists of preliminary definitions and observations, after which we
define the notion of a signing and give some examples (Section 3), and characterize
useful properties of nondisjunctive programs with signings (Section 4). The theorem
relating a signed disjunctive program to its signed nondisjunctive covers is discussed
in Section 5, along with results on the existence of consistent answer sets for signed
disjunctive programs. In Section 6 we discuss the restricted monotonicity theorem
for signed programs. These various results are applied to a family of signed programs
for reasoning about actions (Section 7), and finally we conclude with a few additional
remarks (Section 8). Proofs are omitted due to lack of space.

2 Answer Sets

We begin with a brief review of the syntax and semantics of logic programs.

To specify a language £ for logic programs, we can begin with a nonempty set
of symbols called atoms. A literal of £ is an atom of £ possibly preceded by the
classical negation symbol =. A rule in £ is determined by three finite subsets of

4In [Turner, 1993] the monotonicity theorem is applied to nondisjunctive programs only, and
even in this special case it is slightly less general than the monotonicity theorem in this paper.

the literals of £L—the set of head literals, the set of positive subgoals and the set of
negated subgoals. The rule with the head literals Ly, ..., L;, the positive subgoals
Liy1, ..., Ly and the negated subgoals Ly,11,..., L, 1s written as

Li|...|Li+ Lig1,...,Lym,not Lyyyq,...,n0t Ly, .

We will denote the three parts of a rule r by head(r), pos(r) and neg(r). A program
is a set of rules in a language £. For convenience, we often use Lp to denote the
set of all literals of the language of a program P.

A program P is positive if, for every rule r € P, neg(r) is empty. The notion of
an answer set 1s first defined for positive programs, as follows. Let P be a positive
program and let X be a subset of Lp. We say that X is closed under P if, for every
rule » € P such that pos(r) C X, head(r) N X is nonempty. (We write X C Y when
X is a subset of Y, not necessarily proper.) We say that X is logically closed (with
respect to Lp) if X is consistent or X = Lp. An answer set for P is a minimal set
of literals that is both closed under P and logically closed (with respect to Lp).

Now let P be an arbitrary program, with X a subset of Lp. For each rule
r € P such that neg(r) N X is empty, consider the rule »* defined by head(r') =
head(r), pos(r’') = pos(r), neg(r') = (. The positive program consisting of all rules
' obtained in this way is the reduct of P relative to X, denoted by PX. We say
that X is an answer set for P if X is an answer set for PX.

A program P entails exactly those literals from Lp that are included in every
answer set for P. By Cn(P) we denote the set of literals entailed by program P.
Finally, P is consistent if Cn(P) is consistent, and inconsistent otherwise.

We will at times be interested in the following classes of programs. A program
P is constraint-free if for every rule r € P, head(r) is nonempty. A program P
is nondisjunctive if for every rule r € P, head(r) is a singleton.> Notice that
nondisjunctive programs are constraint-free. A program is basic if it is positive and
nondisjunctive.

Traditionally, programs without classical negation have been of great interest.
In particular, nondisjunctive programs without classical negation (that is, “normal”
programs) have been extensively studied. In this paper, instead of making stipu-
lations about the presence of classical negation, we’ll generally prefer the following
more general condition.

Definition. For any program P, Head(P) = |J,¢p head(r). We say that P is
head-consistent if Head(P) is a consistent set.

Observe that if a set X of literals is closed under a positive program P, then so
is X N Head(P). Tt follows that every minimal set closed under a head-consistent
program is consistent. For our purposes, this is the most salient property possessed
by programs without classical negation but not possessed by programs in general.
So we’ll usually speak about head-consistent programs instead of programs without
classical negation, and about head-consistent nondisjunctive programs instead of
normal programs.

5Nondisjunctive programs are also known as extended programs [Gelfond and Lifschitz, 1990].
The objects we here call logic programs are also known as extended disjunctive programs [Gelfond
and Lifschitz, 1991].

3 Signings

Definition. Let P be a constraint-free program, with S a subset of Lp such that
no literal in S N Head(P) appears complemented in Head(P). We say that S is a
signing for P if each rule r € P satisfies the following two conditions:

e head(r) U pos(r) C S and neg(r) C S, or
head(r) U pos(r) C S and neg(r) C S,

o if head(r) C S, then head(r) is a singleton,

where S = £p \ S. If a program has a signing, we say that it is signed.®

Notice that every constraint-free positive program has the signing S = . We
also observe that for programs without classical negation, the class of signed pro-
grams and the class of locally stratified programs overlap, and neither contains the
other.

Consider the following program P;.

a ¢ notb
b « nota
—a

Program P; has a signing S = {b}. Observe that neither {a, —a} nor {a} is a signing
for P, since we have a,—a € Head(P). So we see that the definition of a signing
1s asymmetric. That is, if a program P with signing S is not head-consistent, then
S is not a signing for P, because there is a literal in S N Head(P) that appears
complemented in Head(P).

We will want the following definition in order to describe a second asymmetry
in the definition of a signing.

Definition. Let P be a program. If S is a signing for P, then

hs(P) = {r € P:head(r) C S},
h=(P) = {r € P:head(r) C S}.

Let r be a rule in a program P with signing S. Since signed programs are
constraint-free, the set head(r) is nonempty. Thus, either head(r) C S or head(r) C
S, but not both. It follows that a signing S divides a program P into a pair of
disjoint subprograms: hg(P) and hz(P).

Consider the following program Ps.

alb «
b « notec

c +— nota

Program P has a signing S = {c¢}. So the last rule of P belongs to hg(P-), and
hg(Pz) consists of the first two rules of P. Because of the second condition in the

SEven in the special case of nondisjunctive programs, this definition is more general than the
one proposed in [Turner, 1993]. There, a signing for a nondisjunctive program P is defined as a set
S of atoms that satisfies condition (i) above and also includes no atom whose complement appears

in P.

definition of a signing, the set {a,b} is not a signing for P». And in general, if S
is a signing for a program P, then hg(P) is a nondisjunctive program. So we see
a second asymmetry in the definition of a signing. That is, if a program P with
signing .S is not nondisjunctive, then .S is not a signing for P, because h<(P) is not
a nondisjunctive program.

In later discussion we will indicate why these asymmetries in the definition of a
Signing are necessary.

4 Signed Nondisjunctive Programs

For the most part, the results in this section can also be found, in a slightly less
general form, in [Turner, 1993), either explicitly or implicitly.

Definition. Let P be a basic program. By «(P) we denote the least subset of £Lp
that is closed under P.

For any basic program P, it’s clear that if a(P) is a consistent set, then «(P)
is the unique answer set for P and a(P) = Cn(P). On the other hand, if «(P) is
inconsistent, then £p is the unique answer set for P. Observe that «(P) C Head(P).

Definition. Let P be a nondisjunctive program. For every X C Lp, I'pX =
a(PX) .

Observe that the answer sets for a nondisjunctive program P are the fixpoints
of I'p. It is easy to verify that 'p is anti-monotone. Consequently, I'% is monotone.
Because I'Z is monotone, we know by the Knaster—Tarski theorem [Tarski, 1955]
that I'% has a least and a greatest fixpoint.

Definition. Let P be a nondisjunctive program. By WF | (P) we denote the least
fixpoint of T'%, and by WFr(P) the greatest.

If P is a normal program, then these two sets — WF | (P) and WFt(P) —
capture essential information about the well-founded semantics of P [Van Gelder
et al., 1990]. That is, under the well-founded semantics, when an atom L € Lp is
submitted as a query: the answer should be “yes” when L € WF | (P); “unknown”
when L € WFt(P)\ WF 1 (P); and “no” when L ¢ WF1(P).

Even when a nondisjunctive program P includes classical negation, the sets
WF | (P) and WF1(P) provide lower and upper bounds on the consistent answer
sets for P. Thus, if X is a consistent answer set for P, then

WFJ_(P) cXcC WFT(P) ,
because each fixpoint of I'p is also a fixpoint of F%.7

Theorem 1 Let P be a nondisjunctive program with signing S. The following three
conditions are equivalent.

(i) P is a consistent program.
(ii) WF 1 (P) NS is a consistent sel.

(iii) WF (P)U(WF1(P)NS) is a consistent answer set for P.

"The reader may notice that the sets WF | (P) and WF 1(P) correspond, essentially, to a
proposal by Przymusinski[1990], extending the well-founded semantics to nondisjunctive programs
with classical negation. Further work in this direction can be found in [Pereira and Alferes, 1992].

This theorem shows, for instance, that if a nondisjunctive program P with sign-
ing S is consistent, then P has a “standard” answer set expressible in terms of
WF | (P), WFt(P) and S.

We also have the following corollary.

Corollary 1 Let P be a nondisjunctive program with signing S. If P is consistent,
then Cn(P)NS = WF_ (P)NS.

The right to left direction is clear, since we’ve seen that every answer set for
a nondisjunctive program P contains WF; (P). For the other direction, we know
by Theorem 1(iii) that WF(P)U (WFt(P) N S) is an answer set for P. The
intersection of this answer set with S coincides with WF (P)N S, and it follows
that Cn(P)NS C WF(P)NS.

Consider, for example, program P; from the previous section. Since P is finite,
and very small, we can conveniently calculate WF | (Py) as follows.

I11310 = {_'aaaab}
I50 = {-a}
%0 = {-a,a,b}

We see that '3 0 is the least fixpoint of I'h , so WF(Py) = {—a}. Recall that
S = {b} is a signing for Py, so WF (P;) NS = {=a}. Since WF (P) NS is
a consistent set, we can conclude by Theorem 1 that P; is a consistent program.
For any nondisjunctive program P, it follows from the anti-monotonicity of I'p
that WF+(P) = Tp(WF L(P)), so we have WF1(Py) = F?jgl@ = {—a,a,b}. Thus
WF+(P1) NS = {b}, and we can conclude by Theorem 1 that {—a,b} is an answer
set for P;.% Finally, since program P is consistent and WF | (Py) NS = {=a}, we
can conclude by Corollary 1 that Cn(P;) NS = {-a}.

Observe that for any head-consistent basic program P, the set «(P) is consistent,
since a(P) C Head(P). From this it follows easily that if P is a head-consistent
nondisjunctive program, then WF 1 (P) is consistent. Furthermore, if such a pro-
gram P has a signing S, then S is also a signing for P. These observations yield
the following corollary to the previous results.

Corollary 2 Let P be a head-consistent nondisjunctive program with signing S.
The following three conditions hold:

(i) P is a consistent program;

(i1) WF 1 (P)U(WFT(P)NS) and WF | (P)U(WF1(P)NS) are consistent answer
sets for P,

(iii) Cn(P) = WF (P).

In particular, Corollary 2 applies when P is a normal program with signing S.

8Note that the set WF | (P1) U (WF(P,)nS) = {-a}uU{-a,a} = {-a,a} is not an answer
set for Pp; so the asymmetry in the definition of a signing for a nondisjunctive program is needed
for Theorem 1.

5 Signed Disjunctive Programs

Our subsequent results rely on the close relationship between a signed disjunctive
program and the set of its (signed nondisjunctive) covers, defined as follows.

Definition. Let P be a constraint-free program. A nondisjunctive program P’
(in the language of P) is a cover of P if P’ can be obtained from P by replacing
each rule » € P with a rule v’ such that head(r') is a singleton, head(r') C head(r),
pos(r') = pos(r), and neg(r') = neg(r).

Of course we’re particularly interested in the covers of signed programs, so notice
that if P is a program with signing S, then each cover of P is a nondisjunctive
program with signing S

For example, the following two programs are the only covers of program P, from
Section 3.

Program Ps: Program Py:
a b

b <« notec b < note
c < nota c ¢+ nota

Definition. Let P be a constraint-free program. By covers(P) we denote the
set of all covers of P, and by good-covers(P) we denote the consistent programs in
covers(P).

Thus, covers(Ps2) = {Ps, P4} = good-covers(Ps), since programs Ps and Py are
both consistent.”

Now we state our main theorem relating a signed program to its covers.

Theorem 2 Let P be a program. If S is a signing for P, then

Cn(P)N'S N Cn(PY | NS

P’ccovers(P)

N WE (P | NS.
P'egood-covers(p)

For example, we've already noted that S = {c} is a signing for program P,
and that covers(Ps) = {Ps, P4} = good-covers(Ps). Tt’s not hard to check that
WF | (Ps) = {a,b} and WF | (Ps) = {b,c}. So by Theorem 2 we can conclude that
Cn(Pz) ns = WFJ_(P;),) N WFJ_(P4) ns = {b}.lo

Recall that if S is a signing for a program P, then hg(P) is a nondisjunctive
program. Without this asymmetry, Theorem 2 can fail to hold even in very simple
cases. For example, program hz(P-) is not nondisjunctive, so S is not a signing for
P>. And we can see that

N WE (PYNS=WF (Ps)NWF, (Py)NS =0
Pregood-covers(Py)
and yet Cn(P2) NS = {c}.

If a program P is signed and head-consistent, each of its covers is a signed head-
consistent nondisjunctive program. It follows by Corollary 2(i) that every cover

9Program P; has the unique answer set {a, b}, and program P4 has the unique answer set {b, c}.
10The unique answer set for program Ps is {b,c}, so Cn(P2) = {b,c}.

of P is consistent, and thus that covers(P) = good-covers(P). This gives us the
following corollary to Theorem 2.

Corollary 3 Let P be a program with signing S. If P is head-consistent, then

Cn(P)NS = N WEL(P)]|NS.

Plecovers(p)
The following theorem can be derived from Theorem 2 and the definitions.

Theorem 3 Let P be a program with signing S. The following three conditions are
equivalent.

(i) P is a consistent program.
(ii) P has a consistent cover.
(iii) Cn(P) NS is a consistent sel.

Again, since the covers of a signed program are signed nondisjunctive programs,
and since such programs are consistent whenever they are head-consistent (Corollary
2(i)), we have the following corollary to Theorem 3.

Corollary 4 FEvery signed program with at least one head-consistent cover is con-
sistent.

Notice that Corollary 4 may apply even to programs that are not themselves
head-consistent. Notice also that, as a special case of Corollary 4, we get the result
that every signed program without classical negation has at least one consistent
answer set.

Proof sketch (Theorem 2) : The chief task is to show that

Cn(P)NS = N WEL (P]| NnS.
P'egood-covers(p)

(Right-to-left): Show that every consistent answer set for P is an answer set for a
consistent cover of P. By Corollary 1, if A is a consistent answer set for a cover P’
of P, then WF (P)nSC ANS.

(Left-to-right): Show that for every consistent cover P’ of P there is a consistent
cover P" of P such that WF | (P")NS C WF L (P")nS and WF | (P")U(WF(P")N
S) is an answer set for P. There are two key lemmas. First, define candidates(P)
as follows.

candidates(P) = {WF . (P")U (WF1(P')NS) : P’ € good-covers(P)}

Define a partial order <g on candidates(P) such that X <g Y if the following two
conditions hold: (i) X NS C Y NS;(ii)if XNS =Y NS, then X CY. Show that
each chain in this partial order has a lower bound in candidates(P). Second, show
that each minimal element in this partial order is an answer set for P. Notice that
this proof sketch suggests the following additional result.

Signing Lemma. Let P be a program with signing S. The partial order
(eandidates(P), <g) has minimal elements, each of which is a consistent answer set
for P. Moreover, if A is a consistent answer set for P or any cover of P, then there
is a minimal element A’ in {candidates(P),<g) such that A’NS C ANS.

6 Restricted Monotonicity

Here we generalize and extend the restricted monotonicity theorem from [Turner,
1993].11 A signing S for a program P is a subset of the literals in the language of P.
The restricted monotonicity theorem shows, as a special case, that we can augment
program P with any subset of the set of rules {L < : L € S} without losing any
consequences of P in S. Of course even this simple monotonicity property does not
hold for arbitrary programs P and arbitrary subsets S of Lp.

In order to formulate the restricted monotonicity theorem, we first introduce an
ordering on the rules of programs, which will be used in turn to define an ordering
on programs themselves. Before defining the ordering on rules, we describe the intu-
ition underlying the definition. We have in mind three simple ways to strengthen a
rule. First, one can strengthen a rule » by removing literals from pos(r) and neg(r).
Second, one can strengthen a rule r by removing literals from head(r). Based on
these two methods for strengthening a rule, there would be a transparent formal
definition; it 1s the third method for strengthening a rule that makes the definition
less obvious, although still intuitively straightforward. So, third, one can strengthen
a rule r by removing a literal from pos(r) and adding the complementary literal to

head(r).

Definition. Given rules r and r’, we say that r is subsumed by r', and we write
r < 7', if the following three conditions hold:

(1) neg(r') C neg(r),

(i) pos(r') C pos(r),

(iii) every literal in head(r') \ head(r) appears complemented in pos(r).!?

Following are some additional observations about the < ordering for rules. First,
note that if » < ' and no literal in head(r') has its complement in pos(r), then
head(v') C head(r). On the other hand, if pos(r) U head(r’) is inconsistent, then
we may have r < v’ and yet head(r') ¢ head(r). For example, let r be the rule
b + —a and let 7’ be the rule a | b < . In this case we have r < 7/, and yet
head(r') ¢ head(r).

Clearly the < ordering for rules is reflexive. As it happens, 1t is not anti-
symmetric. For instance, let r be the rule @ < a,—a and let ' be the rule
—a + a,—a . We have r < ¢' and v’ < r yet r # /. It is not difficult to establish
also that the < ordering for rules is transitive.

Definition. Given programs P and @, we say that P is subsumed by (), and we
write P < @, if for each rule » € P there is a rule r’ € () such that r < 7/,
Because the < ordering for rules is reflexive and transitive, we can conclude that
the < ordering for programs is reflexive and transitive as well. On the other hand,
because the < ordering for rules is not anti-symmetric, neither is the < ordering for
programs.
Now we can state the restricted monotonicity theorem.

Theorem 4 Let P, () be programs in the same language, both with signing S. If
h=(P) < h5(Q) and hs(Q) = hs(P), then Cn(P)NS C Cn(Q)NS.

11The notion of restricted monotonicity is given a general definition in [Lifschitz, 1993].

12 As subsequent discussion will illustrate, this third condition makes the definition of the <
ordering for rules more general than that used in [Turner, 1993], even when we consider only
nondisjunctive rules.

10

In the interest of simplicity, Theorem 4 is stated in terms of the consequences of
signed programs; we also have the following stronger result in terms of answer sets.

Theorem 5 Let P, Q) be programs in the same language, both with signing S. If
h(P) < h(Q) and hs(Q) = hs(P), then for every consistent answer set A’ fgr
program (), there is a consistent answer set A for program P such that ANS C A'NS.

Consider for example the program P» discussed previously, along with the pro-
gram P4 obtained from P, by removing the rule b « not ¢ .

Program Ps: Program Pi:
alb « alb «
b« note ¢ ¢« nota

c — nota

The two programs share a signing S = {c¢}, and we can see that hg(P2) = hg(Ps),
while h=(P}) < hg(P»). Theorem 4 tells us that program P, is stronger in S than
program Pj. Recall that P; has a unique answer set — {b, ¢} — and so entails the
literal b from S. Program P4 has an additional answer set — {a} — and so entails
no literals from S.

Next we demonstrate that the two asymmetries in the definition of a signing
are necessary for the restricted monotonicity theorem. First, we might suppose
that for a nondisjunctive program P, a set S of literals should be a signing if
for every rule r € P, either head(r) U pos(r) C S and neg(r) C S, or head(r) U
pos(r) C S and neg(r) C S. But under this symmetric definition, the restricted
monotonicity property is lost. For instance, consider again the program P;, along
with the program P/ obtained from P; by removing the rule —a + .

Program P;: Program P;:
a <+ noth a <+ notb
b « nota b + nota
—a

Suppose that S = {a,—a} was in fact a signing for programs P; and P{. Thus
we would have Cn(P;) NS = {b} and Cn(P{)NS = 0. Yet we would also have
h(P1) = hz(P]) and hs(P]) < hg(P1), and by restricted monotonicity we could
mistakenly conclude that Cn(P) NS C Cn(P{)NS.

We might also suppose that a disjunctive program P should be signed whenever
all its covers are. Under such an alternative definition, we would say that S = {a,b}
should be a common signing for programs P, and Pj above, and from this we could
mistakenly conclude by restricted monotonicity that program Pj should be stronger
in S than program Ps.

Proof sketch (Theorem 5) : First, prove the theorem for the nondisjunctive
case. (Roughly, follow the restricted monotonicity proof in [Turner, 1993], using
the new definition of <.) Second, show that for appropriate P and @) with signing
S, for every cover Q' of @ there is a cover P’ of P such that hg(P’) < hg(Q’) and
hs(@Q') < hs(P’). Given these results, assume that A’ is a consistent answer set for
(). By the Signing Lemma (Section 5), there is a consistent answer set A” for Q
such that A” NS C A’N.S and A” is a minimal element in (candidates (Q), <s). By
the definition of candidates(Q), there is a cover Q' of @) such that A” is an answer
set for Q. It follows that there is a cover P’ of P with consistent answer set A"’
such that A”’ NS C A” NS. Again by the Signing Lemma we can conclude that
there is a consistent answer set A for P such that ANS C A”NS.

11

7 Application : Reasoning about Action

Recently Gelfond and Lifschitz [1993] defined a simple, elegant language, called A,
in which many benchmark problems of commonsense reasoning about action can be
formalized simply and (intuitively) correctly. They also specified a translation from
A into nondisjunctive logic programming, and used properties of signed normal pro-
grams to prove the translation sound. Subsequently, several sound and complete
translations from A into variants of logic programming have been proposed. De-
necker [1993] and Dung [1993] each define a version of abductive logic programming
into which they specify a translation from 4. A translation into “equational logic
programming” has also been proposed [Hélldobler and Thielscher, 1993]. In the full
version of this paper, we define a slight extension of A, called Ay, and specify a
sound and complete translation from A, into disjunctive logic programming with
classical negation. This translation produces signed programs, and our soundness
and completeness proof exploits many of the results reported in this paper, including
the restricted monotonicity property of signed programs and the close relationship
between a signed disjunctive program and its (signed) nondisjunctive covers.

Due to lack of space, here we will present informally an example of an action
domain, its representation in the syntax of Ay, and its translation into a logic
program. We also indicate in part how properties related to signings can be of use
in showing the translation correct. Full details are available in the longer version of
the paper.

We will consider yet another variant of the Yale Shooting domain [Hanks and
McDermott, 1987], which can be called the “two-guns” domain. There is a pilgrim
and a turkey. The pilgrim has two guns. Initially, the turkey 1s alive, but if the
pilgrim fires a loaded gun, the turkey dies. Furthermore, at least one of the pilgrim’s
guns is loaded initially. We can conclude that the turkey will be dead if the pilgrim
performs either of the following sequences of actions: (i) wait, shoot gun one, shoot
gun two; or (ii) wait, shoot gun two, shoot gun one.

In A4 we represent the two-guns domain as follows.

initially Alive

initially Loaded, or initially Loaded-
Shoot| causes —Alive if Loaded
Shoot, causes —Alive if Loaded

This domain has three models: one in which Loaded; holds initially and Loaded-
doesn’t, one in which Loadeds holds initially and Loaded; doesn’t, and one in which
both Loaded, and Loadeds hold initially.

The following program Pj correctly formalizes the two-guns domain.
. Holds(Alive, Sp) +
. Holds(Loadedy, Sy) | Holds(Loadeds, Sp) +
. = Holds(Alive, Result(Shooty, s)) < Holds(Loaded, s)
. Noninertial(Alive, Shooty, s) < not ~Holds(Loaded, s)
. = Holds(Alive, Result(Shoot s, s)) < Holds(Loaded s, s)

13

O QLW N =

13We point out that rules 3-9 listed in the program are “schematic rules.” In our description
of languages and programs in Section 2, we adopted an abstract view of what atoms are and said
nothing about their internal structure. But the most important case is when the set of atoms is
defined as the set of ground atoms of a first-order language; then a large (even infinite) set of rules
can be specified by a single schematic rule with variables. Thus, the atoms of £p, correspond to
the ground atoms of the appropriate many-sorted first-order language, with variables f,a,s for
sorts fluents, actions, and situations. The rules of program Ps correspond to the ground instances
in this language of the schematic rules given above.

12

. Noninertial(Alive, Shoots, s) < not ~Holds(Loadeds, s)
. Holds(f, Result(a,s)) < Holds(f,s), not Noninertial(f,a,s)
. mHolds(f, Result(a, s)) « —~Holds(f,s), not Noninertial(f, a,s)
. Holds(f,So) | ~Holds(f, So) +

Notice that the set S consisting of all the Noninertial literals is a signing for
program Ps, with hg(Ps) consisting of rules 4 and 6, and with hg(Ps) consisting
of the remaining rules. Of course we are primarily interested in the Holds literals
entailed by this program; that is, we are interested in the literals belonging to S.
Theorem 2 allows us to determine the consequences of Ps in S by considering each
of the covers of Ps, which are very much like the acyclic programs for reasoning
about action proposed by Apt and Bezem [1990], and thus relatively easy to reason
about.

Below we state (without definitions) two correctness theorems for the general

translation from a domain description D in A4 to a logic program m1). Interested
readers are referred to the full version of the paper for details.

O 0o -1 O

Theorem 6 Let D be a consistent domain description in Ay. For every atomic
value proposition V', D entails V if and only iof 7D entails wV.

Theorem 7 Let D be a consistent domain description in Ay. For all value propo-
sitions V' and all atomic value propositions Vi,..., Vi (k > 1) such that V =
Vi or...or Vi, D entails V if and only if each consistent cover of wD entails
at least one of wV1, ..., 7wVg.

8 Conclusion

The existence of a signing for a logic program is a simple syntactic criterion that
guarantees many convenient declarative properties for the program under the answer
set semantics.

One such property is the existence of a consistent answer set for signed disjunc-
tive programs with at least one head-consistent cover (Corollary 4). As a special
case of this, we have the consistency of signed disjunctive programs without classical
negation. It seems likely though that consistency may hold also for larger classes
of programs: for instance, disjunctive programs for which all covers are signed and
one cover is also head-consistent. For now though, the consistency of programs in
this larger class remains an open question.

On the other hand, without going into details, we know that the consistency
result for signed disjunctive programs with a head-consistent cover can be extended
in another direction by use of the notion of “U-components” from [Lifschitz and
Turner, 1994]. More specifically, we can show that a disjunctive program P with a
head-consistent cover is consistent whenever there is a “splitting sequence” U for P
such that every U-component of P is a signed program. Again we have as a special
case the fact that a disjunctive program without classical negation is consistent if
it has a splitting sequence U with all U-components signed. This result is strictly
more general than the corresponding result for (locally) stratified programs, since
a disjunctive program P without classical negation is (locally) stratified if and only
if 1t has a splitting sequence U such that every U-component of P is a positive
program.

Of course this generalization of the consistency result for signed programs holds
as well in the nondisjunctive case. Recall that one of the most general results on
the consistency of nondisjunctive programs belongs to Fages [1994] who showed that

13

“order-consistent” normal programs have answer sets. In Section 5 of [Lifschitz and
Turner, 1994], we show that a normal program is order-consistent if and only if
it has a splitting sequence U such that all U-components are signed. Thus Fages’
consistency theorem is a special case of the more general theorem alluded to above.'*

In contrast to the consistency results for signed programs, the examples consid-
ered in this paper suggest that it should be difficult or impossible to extend very
significantly the restricted monotonicity results for signed programs.

In general, the asymmetric nature of these results may limit their utility. But
we imagine that in many cases it may be possible to write programs for which the
literals belonging to a signing S represent auxiliary concepts, as in fact they do in
our programs for reasoning about action. In such cases, we are interested primarily
in the literals that belong to S, about which our theorems have much to say.

Acknowledgements

Special thanks to Vladimir Lifschitz. Thanks also to Michael Gelfond and Norman
McCain. This work was partially supported by the National Science Foundation
under grant IRI-9306751.

References

[Apt and Bezem, 1990] Krzysztof Apt and Marc Bezem. Acyclic programs. In
David Warren and Peter Szeredi, editors, Logic Programming: Proceedings of the
Seventh International Conference, pages 617-633, 1990.

[Chen and Warren, 1993] Weidong Chen and David S. Warren. Towards effective
evaluation of general logic programs. Technical Report 93-CSE-11, Southern
Methodist University, 1993.

[Denecker and DeSchreye, 1993] Marc Denecker and Danny DeSchreye. Represent-
ing incomplete knowledge in abductive logic programming. In Logic Program-
ming: Proceedings of the 1993 International Symposium, pages 147-163, 1993.

[Dung, 1992] Phan Minh Dung. On the relations between stable and well-founded
semantics of logic programs. Theoretical Computer Science, 105:222-238, 1992.

[Dung, 1993] Phan Minh Dung. Representing actions in logic programming and its
applications in database updates. In David S. Warren, editor, Logic Programming:
Proceedings of the Tenth International Conference, pages 7-25. MIT Press, 1993.

[Fages, 1994] Frangois Fages. Consistency of Clark’s completion and existence of
stable models. Journal of Methods of Logic in Computer Science, 1(1):51-60,
1994. To appear.

[Gelfond and Lifschitz, 1990] Michael Gelfond and Vladimir Lifschitz. Logic pro-
grams with classical negation. In David Warren and Peter Szeredi, editors, Logic
Programming: Proceedings of the Seventh International Conference, pages 579—

597, 1990.

14The underlying idea of this redefinition of order-consistency is already apparent in Kunen’s
[1989] use of signings in relation to “call-consistent” programs. He noticed, roughly speaking, that
every call-consistent program (and thus every “strict” program) has signed parts, and he explained
certain behaviors of those programs in terms of the behavior of their signed parts.

14

[Gelfond and Lifschitz, 1991] Michael Gelfond and Vladimir Lifschitz. Classical
negation in logic programs and disjunctive databases. New Generation Com-

puting, 9:365-385, 1991.

[Gelfond and Lifschitz, 1993] Michael Gelfond and Vladimir Lifschitz. Representing
action and change by logic programs. The Journal of Logic Programming, 17:301—
322, 1993.

[Gelfond et al., 1991] Michael Gelfond, Vladimir Lifschitz, Halina Przymusinska,
and Miroslaw Truszczynski. Disjunctive defaults. In James Allen, Richard Fikes,
and Erik Sandewall, editors, Principles of Knowledge Representation and Rea-
soning: Proceedings of the Second International Conference, pages 230-237, 1991.

[Hanks and McDermott, 1987] Steve Hanks and Drew McDermott. Nonmonotonic
logic and temporal projection. Artificial Intelligence, 33(3):379-412, 1987.

[Holldobler and Thielscher, 1993] Steffen Hélldobler and Michael Thielscher. Ac-
tions and specificity. In Logic Programming: Proceedings of the 1993 Interna-
tional Symposium, pages 164-180, 1993.

[Kunen, 1989] Kenneth Kunen. Signed data dependencies in logic programs. Jour-
nal of Logic Programming, 7(3):231-245, 1989.

[Lifschitz and Turner, 1994] Vladimir Lifschitz and Hudson Turner. Splitting a
logic program. In Logic Programming: Proceedings of the Eleventh International
Conference, 1994. To appear.

[Lifschitz et al., 1993] Vladimir Lifschitz, Norman McCain, and Hudson Turner.
Reasoning about actions with SLG. Manuscript, 1993.

[Lifschitz, 1993] Vladimir Lifschitz. Restricted monotonicity. In Proc. AAAI-93,
pages 432-437, 1993.

[Pereira and Alferes, 1992] Luis Pereira and Jose Alferes. Well-founded semantics
for logic programs with explicit negation. In Proceedings of the Tenth European
Conference on Artificial Intelligence, pages 102-106, 1992.

[Przymusinski, 1988] Teodor Przymusinski. On the declarative semantics of de-
ductive databases and logic programs. In Jack Minker, editor, Foundations of
Deductive Databases and Logic Programming, pages 193-216. Morgan Kaufmann,
San Mateo, CA, 1988.

[Przymusinski, 1990] Teodor Przymusinski. Extended stable semantics for normal
and disjunctive programs. In David Warren and Peter Szeredi, editors, Logic
Programming: Proceedings of the Seventh International Conference, pages 459—

477, 1990.

[Tarski, 1955] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applica-
tions. Pacific Journal of Mathematics, 5:285-309, 1955.

[Turner, 1993] Hudson Turner. A monotonicity theorem for extended logic pro-
grams. In David S. Warren, editor, Logic Programming: Proceedings of the Tenth
International Conference, pages 567-585. MIT Press, 1993.

[Van Gelder et al., 1990] Allen Van Gelder, Kenneth Ross, and John Schlipf. The
well-founded semantics for general logic programs. Journal of ACM, pages 221—

230, 1990.

15

