
Signed Logic ProgramsHudson TurnerDepartment of Computer SciencesUniversity of Texas at AustinAustin, TX 78712 USAhudson@cs.utexas.eduAbstractIn this paper we explore the notion of a \signing" of a logic program, in the frame-work of the answer set semantics. In particular, we generalize and extend the notionof a signing, and show that even for programs with classical negation and disjunc-tion the existence of a signing is a simple syntactic criterion that can guaranteeseveral di�erent sorts of good behavior: consistency, coincidence of consequencesunder answer set and well-founded semantics, existence of \standard" answer setsexpressible in terms of the well-founded model and a signing for the program, and arestricted monotonicity property. The key technical result in this paper is a theoremrelating the consequences of a signed disjunctive program with classical negation tothe consequences of the members of a closely related family of signed nondisjunc-tive programs. These nondisjunctive programs are the \covers" of the disjunctiveprogram, where a cover is any program that can be obtained by removing all butone literal from the head of each rule in the disjunctive program. To illustrate theusefulness of these results, we apply them to a family of programs for reasoningabout action.1 IntroductionIn this paper we explore the notion of a \signing" of a logic program, in the frame-work of the answer set (or stable model) semantics [Gelfond and Lifschitz, 1991].In particular, we generalize and extend the notion of a signing, and show that evenfor programs with classical negation and disjunction the existence of a signing is asimple syntactic criterion that guarantees several di�erent sorts of good behavior.The notion of a signing for a normal logic program (that is, a program withoutclassical negation and disjunction) was introduced by Kunen [1989], who used it asa tool in his proof that two-valued and three-valued completion semantics coincideon the class of \strict" normal programs. For Kunen, the notion was de�ned onthe predicate dependency graph of a �nite �rst-order program, so when Gelfondand Lifschitz [1993] recast the de�nition to apply directly to the rules of in�nitepropositional normal programs, the notion of a signing was made strictly moregeneral. In [Turner, 1993] the de�nition was extended to the class of nondisjunctiveprograms with classical negation. In this paper it is generalized slightly and furtherextended to apply to programs with disjunction as well as classical negation.For a normal program P , a signing S is a set of atoms such that for every rulein P either (i) the head and the positive atoms in the body belong to S and thenegated atoms do not, or (ii) the head and the positive atoms in the body do notbelong to S and the negated atoms do. From the perspective of answer sets fornormal programs, signings are already known to be interesting for the followingfour reasons. 1

1. Signed normal programs are consistent. This is a special case of a more gen-eral theorem by Fages [1994], who has shown that \order-consistent" normalprograms are consistent.2. If S is a signing for a normal program P , then P has two \standard" answersets that are expressible in terms of S and the well-founded model of P .[Turner, 1993]3. The consequences of a signed normal program under the answer set semanticscoincide with its consequences under the well-founded semantics. This is aspecial case of a more general result due to Dung [1992], who has shown thatthe answer set and well-founded semantics coincide for \bottom-strati�ed &top-strict" programs. Notice that this result shows that interpreters such asSLG [Chen and Warren, 1993], which compute the well-founded semantics,can also be used to compute the consequences of such programs under theanswer set semantics.14. There is a monotonicity theorem for signed normal programs. [Turner, 1993]In [Turner, 1993] we showed that some of these results can be extended to nondis-junctive programs with classical negation. In this paper we generalize these previousresults slightly, and also extend them in various ways to signed programs with dis-junction as well as classical negation.For a disjunctive program P with classical negation, a signing S is a subset ofthe literals of the language of P , satisfying several simple syntactic conditions. (Theprecise de�nition appears in Section 3.) We show that under this extension of thenotion of a signing, the following properties hold.1. Signed disjunctive programs without classical negation are consistent. (Corol-lary 4.) A similar result is known for \locally strati�ed" disjunctive programswithout classical negation.2 Since some signed disjunctive programs withoutclassical negation are not locally strati�ed, the consistency of such disjunctiveprograms is a new result.2. If S is a signing for a consistent nondisjunctive program P with classicalnegation, then P has a \standard" answer set expressible in terms of S and anaive extension of the well-founded semantics.3 (Theorem 1(iii).)3. If S is a signing for a consistent nondisjunctive program P with classical nega-tion, then the consequences of P in the complement of S are also expressible interms of a naive extension of the well-founded semantics. (Corollary 1.) Thisresult corresponds to Lemma 8 of [Turner, 1993]. Similarly, if S is a signingfor a disjunctive program P with classical negation, then the consequencesof P in the complement of S can be characterized in terms of a syntacticallydetermined family of signed nondisjunctive programs with classical negation.(Theorem 2, Corollary 3.)1In [Lifschitz et al., 1993] we show that SLG can also be used, under certain quali�cations, tocorrectly compute the consequences of signed nondisjunctive programs with classical negation.2The de�nitionof \local strati�cation" is due to Przymusinski [1988]. The consistencyof locallystrati�ed disjunctive programs without classical negation under the answer set semantics is clearfrom Przymusinski's similar result under the perfect model semantics.3This result is implicit in [Turner, 1993]. 2

4. A generalization of the monotonicity theorem from [Turner, 1993] applies toall signed programs.4 (Theorem 4.)The key technical result in this paper is a theorem (Theorem 2) relating the con-sequences of a signed disjunctive program to the consequences of the members ofa closely related family of signed nondisjunctive programs. These nondisjunctiveprograms are the \covers" of the disjunctive program, where a cover is any pro-gram that can be obtained by removing all but one literal from the head of eachrule in the disjunctive program. The notion of a cover was introduced in the paper\Disjunctive Defaults" [Gelfond et al., 1991] in order to explore the possibility ofreducing a \disjunctive default theory" to a family of (nondisjunctive) default the-ories. The authors showed by counterexample that in general this cannot be donein any straightforward manner. On the other hand, it follows from their results(Theorems 6.2, 6.3 and 7.2) that for any disjunctive logic program P with classicalnegation: (i) every answer set for P is a minimal member of the set of answer setsfor covers of P , and (ii) if P is positive (that is, includes no negation as failure),then X is an answer set for P if and only if X is a minimal member of the set ofanswer sets for covers of P . From (ii) it follows that the consequences of a positivedisjunctive program P with classical negation coincide with the intersection of theconsequences of all covers of P . In this paper we extend this result by showingthat if S is a signing for a disjunctive program P with classical negation, then theconsequences of P in the complement of S coincide with the intersection of theconsequences, in the complement of S, of the covers of P .To illustrate the usefulness of these results, we apply them to a family of pro-grams for reasoning about action. Gelfond and Lifschitz [1993] de�ned a high-levellanguage A for reasoning about action, and a sound translation from A to nondis-junctive logic programs with classical negation. We de�ne in this paper a slightextension Ad of the language A, in which disjunctive information about the valuesof uents can be expressed, and we specify a translation from Ad into signed dis-junctive logic programs with classical negation. We use our results on the propertiesof signed programs, along with the Splitting Sequence Theorem from [Lifschitz andTurner, 1994], to prove this translation sound and complete.Section 2 consists of preliminary de�nitions and observations, after which wede�ne the notion of a signing and give some examples (Section 3), and characterizeuseful properties of nondisjunctive programs with signings (Section 4). The theoremrelating a signed disjunctive program to its signed nondisjunctive covers is discussedin Section 5, along with results on the existence of consistent answer sets for signeddisjunctive programs. In Section 6 we discuss the restricted monotonicity theoremfor signed programs. These various results are applied to a family of signed programsfor reasoning about actions (Section 7), and �nally we conclude with a few additionalremarks (Section 8). Proofs are omitted due to lack of space.2 Answer SetsWe begin with a brief review of the syntax and semantics of logic programs.To specify a language L for logic programs, we can begin with a nonempty setof symbols called atoms. A literal of L is an atom of L possibly preceded by theclassical negation symbol :. A rule in L is determined by three �nite subsets of4In [Turner, 1993] the monotonicity theorem is applied to nondisjunctive programs only, andeven in this special case it is slightly less general than the monotonicity theorem in this paper.3

the literals of L|the set of head literals, the set of positive subgoals and the set ofnegated subgoals. The rule with the head literals L1; : : : ; Ll, the positive subgoalsLl+1; : : : ; Lm and the negated subgoals Lm+1; : : : ; Ln is written asL1 j : : : j Ll Ll+1; : : : ; Lm; not Lm+1; : : : ; not Ln :We will denote the three parts of a rule r by head (r), pos(r) and neg(r). A programis a set of rules in a language L. For convenience, we often use LP to denote theset of all literals of the language of a program P .A program P is positive if, for every rule r 2 P , neg(r) is empty. The notion ofan answer set is �rst de�ned for positive programs, as follows. Let P be a positiveprogram and let X be a subset of LP . We say that X is closed under P if, for everyrule r 2 P such that pos(r) � X, head (r)\X is nonempty. (We write X � Y whenX is a subset of Y , not necessarily proper.) We say that X is logically closed (withrespect to LP) if X is consistent or X = LP . An answer set for P is a minimal setof literals that is both closed under P and logically closed (with respect to LP).Now let P be an arbitrary program, with X a subset of LP . For each ruler 2 P such that neg(r) \ X is empty, consider the rule r0 de�ned by head (r0) =head(r); pos(r0) = pos(r); neg(r0) = ;: The positive program consisting of all rulesr0 obtained in this way is the reduct of P relative to X, denoted by PX . We saythat X is an answer set for P if X is an answer set for PX .A program P entails exactly those literals from LP that are included in everyanswer set for P . By Cn(P) we denote the set of literals entailed by program P .Finally, P is consistent if Cn(P) is consistent, and inconsistent otherwise.We will at times be interested in the following classes of programs. A programP is constraint-free if for every rule r 2 P , head (r) is nonempty. A program Pis nondisjunctive if for every rule r 2 P , head (r) is a singleton.5 Notice thatnondisjunctive programs are constraint-free. A program is basic if it is positive andnondisjunctive.Traditionally, programs without classical negation have been of great interest.In particular, nondisjunctive programs without classical negation (that is, \normal"programs) have been extensively studied. In this paper, instead of making stipu-lations about the presence of classical negation, we'll generally prefer the followingmore general condition.De�nition. For any program P , Head (P) = Sr2P head (r). We say that P ishead-consistent if Head (P) is a consistent set.Observe that if a set X of literals is closed under a positive program P , then sois X \ Head (P). It follows that every minimal set closed under a head-consistentprogram is consistent. For our purposes, this is the most salient property possessedby programs without classical negation but not possessed by programs in general.So we'll usually speak about head-consistent programs instead of programs withoutclassical negation, and about head-consistent nondisjunctive programs instead ofnormal programs.5Nondisjunctive programs are also known as extended programs [Gelfond and Lifschitz, 1990].The objects we here call logic programs are also known as extended disjunctive programs [Gelfondand Lifschitz, 1991]. 4

3 SigningsDe�nition. Let P be a constraint-free program, with S a subset of LP such thatno literal in S \ Head (P) appears complemented in Head(P). We say that S is asigning for P if each rule r 2 P satis�es the following two conditions:� head (r) [pos(r) � S and neg(r) � S, orhead (r) [pos(r) � S and neg(r) � S,� if head (r) � S, then head(r) is a singleton,where S = LP n S. If a program has a signing, we say that it is signed.6Notice that every constraint-free positive program has the signing S = ;. Wealso observe that for programs without classical negation, the class of signed pro-grams and the class of locally strati�ed programs overlap, and neither contains theother.Consider the following program P1.a not bb not a:a Program P1 has a signing S = fbg. Observe that neither fa;:ag nor fag is a signingfor P , since we have a;:a 2 Head(P). So we see that the de�nition of a signingis asymmetric. That is, if a program P with signing S is not head-consistent, thenS is not a signing for P , because there is a literal in S \ Head(P) that appearscomplemented in Head (P).We will want the following de�nition in order to describe a second asymmetryin the de�nition of a signing.De�nition. Let P be a program. If S is a signing for P , thenhS(P) = fr 2 P : head (r) � Sg ;hS(P) = fr 2 P : head (r) � Sg :Let r be a rule in a program P with signing S. Since signed programs areconstraint-free, the set head (r) is nonempty. Thus, either head (r) � S or head (r) �S, but not both. It follows that a signing S divides a program P into a pair ofdisjoint subprograms: hS(P) and hS(P).Consider the following program P2.a j b b not cc not aProgram P2 has a signing S = fcg. So the last rule of P2 belongs to hS(P2), andhS(P2) consists of the �rst two rules of P2. Because of the second condition in the6Even in the special case of nondisjunctive programs, this de�nition is more general than theone proposed in [Turner, 1993]. There, a signing for a nondisjunctive program P is de�ned as a setS of atoms that satis�es condition (i) above and also includes no atom whose complement appearsin P . 5

de�nition of a signing, the set fa; bg is not a signing for P2. And in general, if Sis a signing for a program P , then hS(P) is a nondisjunctive program. So we seea second asymmetry in the de�nition of a signing. That is, if a program P withsigning S is not nondisjunctive, then S is not a signing for P , because hS(P) is nota nondisjunctive program.In later discussion we will indicate why these asymmetries in the de�nition of asigning are necessary.4 Signed Nondisjunctive ProgramsFor the most part, the results in this section can also be found, in a slightly lessgeneral form, in [Turner, 1993], either explicitly or implicitly.De�nition. Let P be a basic program. By �(P) we denote the least subset of LPthat is closed under P .For any basic program P , it's clear that if �(P) is a consistent set, then �(P)is the unique answer set for P and �(P) = Cn(P). On the other hand, if �(P) isinconsistent, then LP is the unique answer set for P . Observe that �(P) � Head(P).De�nition. Let P be a nondisjunctive program. For every X � LP , �PX =�(PX) :Observe that the answer sets for a nondisjunctive program P are the �xpointsof �P . It is easy to verify that �P is anti-monotone. Consequently, �2P is monotone.Because �2P is monotone, we know by the Knaster{Tarski theorem [Tarski, 1955]that �2P has a least and a greatest �xpoint.De�nition. Let P be a nondisjunctive program. By WF?(P) we denote the least�xpoint of �2P , and by WF>(P) the greatest.If P is a normal program, then these two sets | WF?(P) and WF>(P) |capture essential information about the well-founded semantics of P [Van Gelderet al., 1990]. That is, under the well-founded semantics, when an atom L 2 LP issubmitted as a query: the answer should be \yes" when L 2WF?(P); \unknown"when L 2WF>(P) nWF?(P); and \no" when L =2WF>(P).Even when a nondisjunctive program P includes classical negation, the setsWF?(P) and WF>(P) provide lower and upper bounds on the consistent answersets for P . Thus, if X is a consistent answer set for P , thenWF?(P) � X �WF>(P) ;because each �xpoint of �P is also a �xpoint of �2P .7Theorem 1 Let P be a nondisjunctive program with signing S. The following threeconditions are equivalent.(i) P is a consistent program.(ii) WF?(P) \ S is a consistent set.(iii) WF?(P) [(WF>(P) \ S) is a consistent answer set for P .7The reader may notice that the sets WF?(P) and WF>(P) correspond, essentially, to aproposal by Przymusinski [1990], extending the well-founded semantics to nondisjunctiveprogramswith classical negation. Further work in this direction can be found in [Pereira and Alferes, 1992].6

This theorem shows, for instance, that if a nondisjunctive program P with sign-ing S is consistent, then P has a \standard" answer set expressible in terms ofWF?(P), WF>(P) and S.We also have the following corollary.Corollary 1 Let P be a nondisjunctive program with signing S. If P is consistent,then Cn(P) \ S = WF?(P) \ S.The right to left direction is clear, since we've seen that every answer set fora nondisjunctive program P contains WF?(P). For the other direction, we knowby Theorem 1(iii) that WF?(P) [(WF>(P) \ S) is an answer set for P . Theintersection of this answer set with S coincides with WF?(P) \ S, and it followsthat Cn(P) \ S �WF?(P) \ S.Consider, for example, program P1 from the previous section. Since P1 is �nite,and very small, we can conveniently calculate WF?(P1) as follows.�P1; = f:a; a; bg�2P1; = f:ag�3P1; = f:a; a; bgWe see that �2P1; is the least �xpoint of �2P1 , so WF?(P1) = f:ag. Recall thatS = fbg is a signing for P1, so WF?(P1) \ S = f:ag. Since WF?(P1) \ S isa consistent set, we can conclude by Theorem 1 that P1 is a consistent program.For any nondisjunctive program P , it follows from the anti-monotonicity of �Pthat WF>(P) = �P (WF?(P)), so we have WF>(P1) = �3P1; = f:a; a; bg. ThusWF>(P1) \ S = fbg, and we can conclude by Theorem 1 that f:a; bg is an answerset for P1.8 Finally, since program P1 is consistent and WF?(P1) \ S = f:ag, wecan conclude by Corollary 1 that Cn(P1) \ S = f:ag.Observe that for any head-consistent basic programP , the set �(P) is consistent,since �(P) � Head(P). From this it follows easily that if P is a head-consistentnondisjunctive program, then WF>(P) is consistent. Furthermore, if such a pro-gram P has a signing S, then S is also a signing for P . These observations yieldthe following corollary to the previous results.Corollary 2 Let P be a head-consistent nondisjunctive program with signing S.The following three conditions hold:(i) P is a consistent program;(ii) WF?(P)[(WF>(P)\S) and WF?(P)[(WF>(P)\S) are consistent answersets for P ;(iii) Cn(P) = WF?(P).In particular, Corollary 2 applies when P is a normal program with signing S.8Note that the set WF?(P1) [(WF>(P1) \ S) = f:ag [f:a;ag = f:a;ag is not an answerset for P1; so the asymmetry in the de�nition of a signing for a nondisjunctive program is neededfor Theorem 1. 7

5 Signed Disjunctive ProgramsOur subsequent results rely on the close relationship between a signed disjunctiveprogram and the set of its (signed nondisjunctive) covers, de�ned as follows.De�nition. Let P be a constraint-free program. A nondisjunctive program P 0(in the language of P) is a cover of P if P 0 can be obtained from P by replacingeach rule r 2 P with a rule r0 such that head (r0) is a singleton, head (r0) � head (r),pos(r0) = pos(r), and neg(r0) = neg(r).Of course we're particularly interested in the covers of signed programs, so noticethat if P is a program with signing S, then each cover of P is a nondisjunctiveprogram with signing S.For example, the following two programs are the only covers of program P2 fromSection 3. Program P3:a b not cc not a Program P4:b b not cc not aDe�nition. Let P be a constraint-free program. By covers(P) we denote theset of all covers of P , and by good-covers(P) we denote the consistent programs incovers(P).Thus, covers(P2) = fP3; P4g = good-covers(P2), since programs P3 and P4 areboth consistent.9Now we state our main theorem relating a signed program to its covers.Theorem 2 Let P be a program. If S is a signing for P , thenCn(P) \ S = 0@ \P 02covers (P)Cn(P 0)1A \ S= 0@ \P 02good-covers (P)WF?(P 0)1A \ S :For example, we've already noted that S = fcg is a signing for program P2,and that covers(P2) = fP3; P4g = good-covers(P2). It's not hard to check thatWF?(P3) = fa; bg and WF?(P4) = fb; cg. So by Theorem 2 we can conclude thatCn(P2) \ S = WF?(P3) \WF?(P4) \ S = fbg.10Recall that if S is a signing for a program P , then hS(P) is a nondisjunctiveprogram. Without this asymmetry, Theorem 2 can fail to hold even in very simplecases. For example, program hS(P2) is not nondisjunctive, so S is not a signing forP2. And we can see that\P 02good-covers (P2)WF?(P 0) \ S = WF?(P3) \WF?(P4) \ S = ;and yet Cn(P2) \ S = fcg.If a program P is signed and head-consistent, each of its covers is a signed head-consistent nondisjunctive program. It follows by Corollary 2(i) that every cover9Program P3 has the unique answer set fa; bg, and program P4 has the unique answer set fb; cg.10The unique answer set for program P2 is fb; cg, so Cn(P2) = fb; cg.8

of P is consistent, and thus that covers(P) = good-covers(P). This gives us thefollowing corollary to Theorem 2.Corollary 3 Let P be a program with signing S. If P is head-consistent, thenCn(P) \ S = 0@ \P 02covers(P)WF?(P 0)1A \ S :The following theorem can be derived from Theorem 2 and the de�nitions.Theorem 3 Let P be a program with signing S. The following three conditions areequivalent.(i) P is a consistent program.(ii) P has a consistent cover.(iii) Cn(P)\ S is a consistent set.Again, since the covers of a signed program are signed nondisjunctive programs,and since such programs are consistent whenever they are head-consistent (Corollary2(i)), we have the following corollary to Theorem 3.Corollary 4 Every signed program with at least one head-consistent cover is con-sistent.Notice that Corollary 4 may apply even to programs that are not themselveshead-consistent. Notice also that, as a special case of Corollary 4, we get the resultthat every signed program without classical negation has at least one consistentanswer set.Proof sketch (Theorem 2) : The chief task is to show thatCn(P) \ S = 0@ \P 02good-covers (P)WF?(P 0)1A \ S :(Right-to-left): Show that every consistent answer set for P is an answer set for aconsistent cover of P . By Corollary 1, if A is a consistent answer set for a cover P 0of P , then WF?(P 0) \ S � A \ S.(Left-to-right): Show that for every consistent cover P 0 of P there is a consistentcover P 00 of P such thatWF?(P 00)\S �WF?(P 0)\S andWF?(P 00)[(WF>(P 00)\S) is an answer set for P . There are two key lemmas. First, de�ne candidates(P)as follows.candidates(P) = fWF?(P 0) [(WF>(P 0) \ S) : P 0 2 good-covers(P)gDe�ne a partial order �S on candidates(P) such that X �S Y if the following twoconditions hold: (i) X \ S � Y \ S; (ii) if X \ S = Y \ S, then X � Y . Show thateach chain in this partial order has a lower bound in candidates(P). Second, showthat each minimal element in this partial order is an answer set for P . Notice thatthis proof sketch suggests the following additional result.Signing Lemma. Let P be a program with signing S. The partial orderhcandidates(P);�Si has minimal elements, each of which is a consistent answer setfor P . Moreover, if A is a consistent answer set for P or any cover of P , then thereis a minimal element A0 in hcandidates(P);�Si such that A0 \ S � A \ S.9

6 Restricted MonotonicityHere we generalize and extend the restricted monotonicity theorem from [Turner,1993].11 A signing S for a program P is a subset of the literals in the language of P .The restricted monotonicity theorem shows, as a special case, that we can augmentprogram P with any subset of the set of rules fL : L 2 Sg without losing anyconsequences of P in S. Of course even this simple monotonicity property does nothold for arbitrary programs P and arbitrary subsets S of LP .In order to formulate the restricted monotonicity theorem, we �rst introduce anordering on the rules of programs, which will be used in turn to de�ne an orderingon programs themselves. Before de�ning the ordering on rules, we describe the intu-ition underlying the de�nition. We have in mind three simple ways to strengthen arule. First, one can strengthen a rule r by removing literals from pos(r) and neg(r).Second, one can strengthen a rule r by removing literals from head (r). Based onthese two methods for strengthening a rule, there would be a transparent formalde�nition; it is the third method for strengthening a rule that makes the de�nitionless obvious, although still intuitively straightforward. So, third, one can strengthena rule r by removing a literal from pos(r) and adding the complementary literal tohead(r).De�nition. Given rules r and r0, we say that r is subsumed by r0, and we writer � r0, if the following three conditions hold:(i) neg(r0) � neg(r),(ii) pos(r0) � pos(r),(iii) every literal in head (r0) n head (r) appears complemented in pos(r).12Following are some additional observations about the � ordering for rules. First,note that if r � r0 and no literal in head (r0) has its complement in pos(r), thenhead(r0) � head (r). On the other hand, if pos(r) [head (r0) is inconsistent, thenwe may have r � r0 and yet head (r0) 6� head (r). For example, let r be the ruleb :a and let r0 be the rule a j b . In this case we have r � r0, and yethead(r0) 6� head (r).Clearly the � ordering for rules is reexive. As it happens, it is not anti-symmetric. For instance, let r be the rule a a;:a and let r0 be the rule:a a;:a . We have r � r0 and r0 � r, yet r 6= r0. It is not di�cult to establishalso that the � ordering for rules is transitive.De�nition. Given programs P and Q, we say that P is subsumed by Q, and wewrite P � Q, if for each rule r 2 P there is a rule r0 2 Q such that r � r0.Because the � ordering for rules is reexive and transitive, we can conclude thatthe � ordering for programs is reexive and transitive as well. On the other hand,because the � ordering for rules is not anti-symmetric, neither is the � ordering forprograms.Now we can state the restricted monotonicity theorem.Theorem 4 Let P;Q be programs in the same language, both with signing S. IfhS(P) � hS(Q) and hS(Q) � hS(P), then Cn(P) \ S � Cn(Q) \ S.11The notion of restricted monotonicity is given a general de�nition in [Lifschitz, 1993].12As subsequent discussion will illustrate, this third condition makes the de�nition of the �ordering for rules more general than that used in [Turner, 1993], even when we consider onlynondisjunctive rules. 10

In the interest of simplicity, Theorem 4 is stated in terms of the consequences ofsigned programs; we also have the following stronger result in terms of answer sets.Theorem 5 Let P;Q be programs in the same language, both with signing S. IfhS(P) � hS(Q) and hS(Q) � hS(P), then for every consistent answer set A0 forprogram Q, there is a consistent answer set A for program P such that A\S � A0\S.Consider for example the program P2 discussed previously, along with the pro-gram P 02 obtained from P2 by removing the rule b not c .Program P2:a j b b not cc not a Program P 02:a j b c not aThe two programs share a signing S = fcg, and we can see that hS(P2) = hS(P 02),while hS(P 02) � hS(P2). Theorem 4 tells us that program P2 is stronger in S thanprogram P 02. Recall that P2 has a unique answer set | fb; cg | and so entails theliteral b from S. Program P 02 has an additional answer set | fag | and so entailsno literals from S.Next we demonstrate that the two asymmetries in the de�nition of a signingare necessary for the restricted monotonicity theorem. First, we might supposethat for a nondisjunctive program P , a set S of literals should be a signing iffor every rule r 2 P , either head (r) [pos(r) � S and neg(r) � S, or head (r) [pos(r) � S and neg(r) � S. But under this symmetric de�nition, the restrictedmonotonicity property is lost. For instance, consider again the program P1, alongwith the program P 01 obtained from P1 by removing the rule :a .Program P1:a not bb not a:a Program P 01:a not bb not aSuppose that S = fa;:ag was in fact a signing for programs P1 and P 01. Thuswe would have Cn(P1) \ S = fbg and Cn(P 01) \ S = ;. Yet we would also havehS(P1) = hS(P 01) and hS(P 01) � hS(P1), and by restricted monotonicity we couldmistakenly conclude that Cn(P1) \ S � Cn(P 01) \ S.We might also suppose that a disjunctive program P should be signed wheneverall its covers are. Under such an alternative de�nition, we would say that S = fa; bgshould be a common signing for programs P2 and P 02 above, and from this we couldmistakenly conclude by restricted monotonicity that program P 02 should be strongerin S than program P2.Proof sketch (Theorem 5) : First, prove the theorem for the nondisjunctivecase. (Roughly, follow the restricted monotonicity proof in [Turner, 1993], usingthe new de�nition of �.) Second, show that for appropriate P and Q with signingS, for every cover Q0 of Q there is a cover P 0 of P such that hS(P 0) � hS(Q0) andhS(Q0) � hS(P 0). Given these results, assume that A0 is a consistent answer set forQ. By the Signing Lemma (Section 5), there is a consistent answer set A00 for Qsuch that A00\S � A0\S and A00 is a minimal element in hcandidates (Q);�Si. Bythe de�nition of candidates(Q), there is a cover Q0 of Q such that A00 is an answerset for Q0. It follows that there is a cover P 0 of P with consistent answer set A000such that A000 \ S � A00 \ S. Again by the Signing Lemma we can conclude thatthere is a consistent answer set A for P such that A \ S � A000 \ S.11

7 Application : Reasoning about ActionRecently Gelfond and Lifschitz [1993] de�ned a simple, elegant language, called A,in which many benchmark problems of commonsense reasoning about action can beformalized simply and (intuitively) correctly. They also speci�ed a translation fromA into nondisjunctive logic programming, and used properties of signed normal pro-grams to prove the translation sound. Subsequently, several sound and completetranslations from A into variants of logic programming have been proposed. De-necker [1993] and Dung [1993] each de�ne a version of abductive logic programminginto which they specify a translation from A. A translation into \equational logicprogramming" has also been proposed [H�olldobler and Thielscher, 1993]. In the fullversion of this paper, we de�ne a slight extension of A, called Ad, and specify asound and complete translation from Ad into disjunctive logic programming withclassical negation. This translation produces signed programs, and our soundnessand completeness proof exploits many of the results reported in this paper, includingthe restricted monotonicity property of signed programs and the close relationshipbetween a signed disjunctive program and its (signed) nondisjunctive covers.Due to lack of space, here we will present informally an example of an actiondomain, its representation in the syntax of Ad, and its translation into a logicprogram. We also indicate in part how properties related to signings can be of usein showing the translation correct. Full details are available in the longer version ofthe paper.We will consider yet another variant of the Yale Shooting domain [Hanks andMcDermott, 1987], which can be called the \two-guns" domain. There is a pilgrimand a turkey. The pilgrim has two guns. Initially, the turkey is alive, but if thepilgrim�res a loaded gun, the turkey dies. Furthermore, at least one of the pilgrim'sguns is loaded initially. We can conclude that the turkey will be dead if the pilgrimperforms either of the following sequences of actions: (i) wait, shoot gun one, shootgun two; or (ii) wait, shoot gun two, shoot gun one.In Ad we represent the two-guns domain as follows.initially Aliveinitially Loaded1 or initially Loaded2Shoot1 causes :Alive if Loaded1Shoot2 causes :Alive if Loaded2This domain has three models: one in which Loaded1 holds initially and Loaded2doesn't, one in which Loaded2 holds initially and Loaded1 doesn't, and one in whichboth Loaded1 and Loaded2 hold initially.The following program P5 correctly formalizes the two-guns domain.131. Holds(Alive; S0) 2. Holds(Loaded1; S0) j Holds(Loaded2; S0) 3. :Holds(Alive;Result(Shoot1; s)) Holds(Loaded 1; s)4. Noninertial(Alive; Shoot1; s) not :Holds(Loaded1; s)5. :Holds(Alive;Result(Shoot2; s)) Holds(Loaded 2; s)13We point out that rules 3{9 listed in the program are \schematic rules." In our descriptionof languages and programs in Section 2, we adopted an abstract view of what atoms are and saidnothing about their internal structure. But the most important case is when the set of atoms isde�ned as the set of ground atoms of a �rst-order language; then a large (even in�nite) set of rulescan be speci�ed by a single schematic rule with variables. Thus, the atoms of LP5 correspond tothe ground atoms of the appropriate many-sorted �rst-order language, with variables f; a; s forsorts uents, actions, and situations. The rules of program P5 correspond to the ground instancesin this language of the schematic rules given above.12

6. Noninertial(Alive; Shoot2; s) not :Holds(Loaded2; s)7. Holds(f;Result(a; s)) Holds(f; s); not Noninertial(f; a; s)8. :Holds(f;Result(a; s)) :Holds(f; s); not Noninertial(f; a; s)9. Holds(f; S0) j :Holds(f; S0) Notice that the set S consisting of all the Noninertial literals is a signing forprogram P5, with hS(P5) consisting of rules 4 and 6, and with hS(P5) consistingof the remaining rules. Of course we are primarily interested in the Holds literalsentailed by this program; that is, we are interested in the literals belonging to S.Theorem 2 allows us to determine the consequences of P5 in S by considering eachof the covers of P5, which are very much like the acyclic programs for reasoningabout action proposed by Apt and Bezem [1990], and thus relatively easy to reasonabout.Below we state (without de�nitions) two correctness theorems for the generaltranslation from a domain description D in Ad to a logic program �D. Interestedreaders are referred to the full version of the paper for details.Theorem 6 Let D be a consistent domain description in Ad. For every atomicvalue proposition V , D entails V if and only if �D entails �V .Theorem 7 Let D be a consistent domain description in Ad. For all value propo-sitions V and all atomic value propositions V1; : : : ; Vk (k � 1) such that V =V1 or : : :or Vk, D entails V if and only if each consistent cover of �D entailsat least one of �V1; : : : ; �Vk.8 ConclusionThe existence of a signing for a logic program is a simple syntactic criterion thatguarantees many convenient declarative properties for the programunder the answerset semantics.One such property is the existence of a consistent answer set for signed disjunc-tive programs with at least one head-consistent cover (Corollary 4). As a specialcase of this, we have the consistency of signed disjunctive programs without classicalnegation. It seems likely though that consistency may hold also for larger classesof programs: for instance, disjunctive programs for which all covers are signed andone cover is also head-consistent. For now though, the consistency of programs inthis larger class remains an open question.On the other hand, without going into details, we know that the consistencyresult for signed disjunctive programs with a head-consistent cover can be extendedin another direction by use of the notion of \U -components" from [Lifschitz andTurner, 1994]. More speci�cally, we can show that a disjunctive program P with ahead-consistent cover is consistent whenever there is a \splitting sequence" U for Psuch that every U -component of P is a signed program. Again we have as a specialcase the fact that a disjunctive program without classical negation is consistent ifit has a splitting sequence U with all U -components signed. This result is strictlymore general than the corresponding result for (locally) strati�ed programs, sincea disjunctive program P without classical negation is (locally) strati�ed if and onlyif it has a splitting sequence U such that every U -component of P is a positiveprogram.Of course this generalization of the consistency result for signed programs holdsas well in the nondisjunctive case. Recall that one of the most general results onthe consistency of nondisjunctive programs belongs to Fages [1994] who showed that13

\order-consistent" normal programs have answer sets. In Section 5 of [Lifschitz andTurner, 1994], we show that a normal program is order-consistent if and only ifit has a splitting sequence U such that all U -components are signed. Thus Fages'consistency theorem is a special case of the more general theorem alluded to above.14In contrast to the consistency results for signed programs, the examples consid-ered in this paper suggest that it should be di�cult or impossible to extend verysigni�cantly the restricted monotonicity results for signed programs.In general, the asymmetric nature of these results may limit their utility. Butwe imagine that in many cases it may be possible to write programs for which theliterals belonging to a signing S represent auxiliary concepts, as in fact they do inour programs for reasoning about action. In such cases, we are interested primarilyin the literals that belong to S, about which our theorems have much to say.AcknowledgementsSpecial thanks to Vladimir Lifschitz. Thanks also to Michael Gelfond and NormanMcCain. This work was partially supported by the National Science Foundationunder grant IRI-9306751.References[Apt and Bezem, 1990] Krzysztof Apt and Marc Bezem. Acyclic programs. InDavid Warren and Peter Szeredi, editors, Logic Programming: Proceedings of theSeventh International Conference, pages 617{633, 1990.[Chen and Warren, 1993] Weidong Chen and David S. Warren. Towards e�ectiveevaluation of general logic programs. Technical Report 93-CSE-11, SouthernMethodist University, 1993.[Denecker and DeSchreye, 1993] Marc Denecker and Danny DeSchreye. Represent-ing incomplete knowledge in abductive logic programming. In Logic Program-ming: Proceedings of the 1993 International Symposium, pages 147{163, 1993.[Dung, 1992] Phan Minh Dung. On the relations between stable and well-foundedsemantics of logic programs. Theoretical Computer Science, 105:222{238, 1992.[Dung, 1993] Phan Minh Dung. Representing actions in logic programming and itsapplications in database updates. In David S. Warren, editor, Logic Programming:Proceedings of the Tenth International Conference, pages 7{25. MIT Press, 1993.[Fages, 1994] Fran�cois Fages. Consistency of Clark's completion and existence ofstable models. Journal of Methods of Logic in Computer Science, 1(1):51{60,1994. To appear.[Gelfond and Lifschitz, 1990] Michael Gelfond and Vladimir Lifschitz. Logic pro-grams with classical negation. In David Warren and Peter Szeredi, editors, LogicProgramming: Proceedings of the Seventh International Conference, pages 579{597, 1990.14The underlying idea of this rede�nition of order-consistency is already apparent in Kunen's[1989] use of signings in relation to \call-consistent" programs. He noticed, roughly speaking, thatevery call-consistent program (and thus every \strict" program) has signed parts, and he explainedcertain behaviors of those programs in terms of the behavior of their signed parts.14

[Gelfond and Lifschitz, 1991] Michael Gelfond and Vladimir Lifschitz. Classicalnegation in logic programs and disjunctive databases. New Generation Com-puting, 9:365{385, 1991.[Gelfond and Lifschitz, 1993] Michael Gelfond and Vladimir Lifschitz. Representingaction and change by logic programs. The Journal of Logic Programming, 17:301{322, 1993.[Gelfond et al., 1991] Michael Gelfond, Vladimir Lifschitz, Halina Przymusi�nska,and Miroslaw Truszczy�nski. Disjunctive defaults. In James Allen, Richard Fikes,and Erik Sandewall, editors, Principles of Knowledge Representation and Rea-soning: Proceedings of the Second International Conference, pages 230{237, 1991.[Hanks and McDermott, 1987] Steve Hanks and Drew McDermott. Nonmonotoniclogic and temporal projection. Arti�cial Intelligence, 33(3):379{412, 1987.[H�olldobler and Thielscher, 1993] Ste�en H�olldobler and Michael Thielscher. Ac-tions and speci�city. In Logic Programming: Proceedings of the 1993 Interna-tional Symposium, pages 164{180, 1993.[Kunen, 1989] Kenneth Kunen. Signed data dependencies in logic programs. Jour-nal of Logic Programming, 7(3):231{245, 1989.[Lifschitz and Turner, 1994] Vladimir Lifschitz and Hudson Turner. Splitting alogic program. In Logic Programming: Proceedings of the Eleventh InternationalConference, 1994. To appear.[Lifschitz et al., 1993] Vladimir Lifschitz, Norman McCain, and Hudson Turner.Reasoning about actions with SLG. Manuscript, 1993.[Lifschitz, 1993] Vladimir Lifschitz. Restricted monotonicity. In Proc. AAAI-93,pages 432{437, 1993.[Pereira and Alferes, 1992] Luis Pereira and Jose Alferes. Well-founded semanticsfor logic programs with explicit negation. In Proceedings of the Tenth EuropeanConference on Arti�cial Intelligence, pages 102{106, 1992.[Przymusinski, 1988] Teodor Przymusinski. On the declarative semantics of de-ductive databases and logic programs. In Jack Minker, editor, Foundations ofDeductive Databases and Logic Programming, pages 193{216.Morgan Kaufmann,San Mateo, CA, 1988.[Przymusinski, 1990] Teodor Przymusinski. Extended stable semantics for normaland disjunctive programs. In David Warren and Peter Szeredi, editors, LogicProgramming: Proceedings of the Seventh International Conference, pages 459{477, 1990.[Tarski, 1955] Alfred Tarski. A lattice-theoretical �xpoint theorem and its applica-tions. Paci�c Journal of Mathematics, 5:285{309, 1955.[Turner, 1993] Hudson Turner. A monotonicity theorem for extended logic pro-grams. In David S. Warren, editor, Logic Programming: Proceedings of the TenthInternational Conference, pages 567{585. MIT Press, 1993.[Van Gelder et al., 1990] Allen Van Gelder, Kenneth Ross, and John Schlipf. Thewell-founded semantics for general logic programs. Journal of ACM, pages 221{230, 1990. 15

