Classifying movements using efficient kinematic codes

Leif Johnson (leif @cs.utexas.edu) and Dana Ballard (dana@cs.utexas.edu)
Department of Computer Science
The University of Texas at Austin

Abstract

Efficient codes have been shown to perform well in image and
audio classification tasks, but the impact of sparsity—and in-
deed the entire notion of efficient coding—has not yet been
well explored in the context of human movements. This pa-
per tests several coding approaches on a movement classifi-
cation task and finds that efficient codes for kinematic (joint
angle) data perform well for classifying many different types
of movements. In particular, the best classification method re-
lied on a sparse coding algorithm combined with a codebook
that was tuned to kinematic movement data. The other ap-
proaches tested here—sparse coding with a random codebook,
and "dense" coding using PCA—provide interesting baseline
results and allow us to investigate why sparse codes appear to
work well.

Introduction
When modeling sensory data like images and sound, ef-

ficient codes were proposed [1961) as a mech-
anism for reducing statistical redundancy in natural in-
puts, thus providing a neural substrate with an effective
use of limited metabolic resources. Indeed, in the past
decades, sparse codes have been shown to yield rep-
resentations of natural sensory data that are similar to
receptive fields in living animals (Olshausen & Field,
1996; Smith & Lewicki, 2006), interpretable by humans
(Tibshirani, |1996)), and effective for computational clas-
sification tasks (Lee, Battle, Raina, & Ng| 2007; Glorot,
Bordes, & Bengio, 2011} [Le, Karpenko, Ngiam, & Ngl
2011} |Coates & Ng| 2011). However, in computer sci-
ence and machine learning, sparsity has not yet been ap-
plied widely outside visual and auditory domains; partly
this seems to be due to the ease with which photos and
sounds can be interpreted by human researchers, and
partly this might be due to the large amount of such data
available online.

At the same time, sparsity seems ideal for coding
movement information because, like sensory data sam-
pled from the natural world, human movements ap-
pear to lie along a low-dimensional manifold embed-
ded within the space of all possible movements
& Schoner, [1999; [Latash, Scholz, & Schoner, 2002).
Recent ideas in coding (Olshausen & Field, 2004) and
feature learning (Bengio, 2013) suggest that sparse
codes are effective for representing data along low-
dimensional manifolds because the basis vectors that are
used to represent a particular data element can be spread
out along the manifold, with only a few basis elements
representing any particular location in space.

This paper explores the use of efficient codes for
classifying kinematic data derived from human move-

Figure 1: The articulated skeleton in the CMU mocap
database consists of 30 rigid "bone" segments joined to-
gether with a total of 59 angular degrees of freedom.
The joint angles in each frame are computed by the
motion capture system, which combines the observed
marker positions with a fitted skeleton to compute an
angular kinematic representation of the pose.

ments. We first describe the data source and our com-
putational model for movement classification, and then
briefly present the coding approaches that we evaluated
for the classification task. The paper concludes by dis-
cussing the results of our experiments and comparing
them with similar, existing research.

Data Processing

We used motion-capture data available online through
the CMU Mocap Database El; the database contains
motion-capture recordings from more than 100 subjects
performing a variety of actions, ranging from simple
walking to complex acrobatic stunts and even common
household activities like washing up. The database is
not uniformly covered, however: some subjects only
performed one type of action, while others performed
several; likewise, some actions were only performed
once, while others were repeated multiple times. In ad-
dition, some motion-capture recordings are quite long
(tens of seconds), while many are very brief (just two or
three seconds).

Thttp://mocap.cs.cmu.edu
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Figure 2: The data processing pipeline consists of five
stages: windowing, whitening, encoding, pooling, and
classification. Each stage reduces the size of the data;
overall, we wish to preserve as much information as pos-
sible at each of these steps, in order to maximize the
classification performance at the end.

In addition to the complexity of the mocap data itself,
the labels in the database are somewhat free-form; for
example, movement labels containing the word "jump"
are quite varied, including "180 degree jump", "2 foot
jump," and "jump up to grab, reach for, tiptoe." This
labeling variability actually highlights a problem with
"classifying" movement in general, particularly long
recordings of movement—what is the correct way to de-
scribe a complex motion? Rather than attempt to pro-
vide an answer here, we follow an approach that other
researchers have used when working with this dataset,
namely to restrict analysis to a limited subset of the
available movement data (Taylor, Hinton, & Roweis,
2007). Instead of focusing on types of walks, how-
ever, we simplified the labeling for our task by focus-
ing solely on recordings of people mimicking different
animals; the recordings of such mimicking movements

were all labeled "some-animal-name (human subject),"
all lasted approximately the same amount of time, and
seemed to be consistently labeled. We further reduced
the scope of the data to labels for which at least two
humans performed a given imitation, yielding a dataset
of 102 recordings spanning 20 different types of move-
ment.

Having isolated a dataset of movements that looked
reasonably challenging for classification, we designed
a data processing pipeline that consisted of five stages:
windowing, whitening, encoding, max-pooling, and
classification (see Figure [Z). We describe the computa-
tional encoding and classification stages in the next sec-
tion, but first we briefly describe the three stages com-
mon across the experiments. These stages (window-
ing, whitening, and max-pooling) were performed in the
same way for all movements and all coding strategies.

Windowing

Each movement in the database can be represented as a
matrix
Ai: [al...aTi]

whose columns a; = [aji...a jD]T represent the angles
of each of the D = 59 degrees of freedom of the ar-
ticulated human model (see Figure at each frame
0<j<T.

Because each recording might be a different duration
T;, we needed a simple way to normalize the length of
time across movement examples, while preserving the
ability to evaluate different encoding methods. We ac-
complished this normalization by windowing the move-
ment data, and then "pooling" across the windows. For
the experiments reported here, we selected a window
length of L = 60 frames (500 ms) and applied a hanning
envelope along the time dimension of each window so
that movements could be decomposed into overlapping
windows without introducing significant ringing from
the windowing process.

Whitening

Because kinematic representations are highly redun-
dant, especially over short time spans, we whitened
all windowed segments of movement information, so
that global, lower—order correlations among joint angles
within each window would be removed from the data
before attempting to encode anything. For sparse codes,
whitening is furthermore thought to improve the encod-
ing process by ensuring that variables are approximately
the same scale.

To compute the whitening transform, we extracted
and mean-centered 100000 randomly selected win-
dows of movement information from the CMU mo-
cap database, and used the covariance X of these win-
dows to compute a standard PCA whitening transform.
Briefly, because the covariance is positive semi-definite,
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Figure 3: Learned codebook elements. The top row of plots shows a spectrogram of joint angles for all degrees of
freedom over one time window; the bottom row of plots shows several specific channels from the corresponding
codebook atom to demonstrate patterns across multiple degrees of freedom.

we compute the real-valued eigendecomposition EA =
YA, where the columns of E are eigenvectors and A
is a diagonal matrix with eigenvalues corresponding to
each eigenvector, arranged in decreasing order of mag-
nitude. Given this decomposition, the whitening trans-
form W = SgEg is the product of the first K eigenvec-
tors (an orthonormal rotation matrix) and a diagonal ma-
trix S whose elements are the inverse square roots of
the first K eigenvalues, s;; = ﬁ (a scaling matrix).

We selected K for our data such that 99% of the vari-
ance in the windowed angle data was preserved. This
process confirmed that the joint angle windows were
highly redundant. For example, for a window length
of 60 samples, the raw data length of 3540 variables
compressed down to the first 34 principal components (a
compression of more than 99%); the first principal com-
ponent in the joint angle windows typically explained
more than 50% of the variance in the data!

Max-Pooling

When classifying a segment of movement information,
we extracted contiguous windows from the movement,
whitened them, and encoded them using one of the cod-
ing techniques described below. However, due again

to the variability in lengths of the different movement
recordings, this process still resulted in a variable num-
ber of encoded windows per movement. To remove
time from these movement representations, we adopted
a "max-pooling" technique that is common in neural
network models (Lee, Grosse, Ranganath, & Ng,[2009)).
Formally, if z; = [z 1 ...zjK]T represents the encoded
form of window j, then the max-pooled representation

.
z=|max(z;1)...max(z;k)
J J

consists of the maximum values taken by each variable
across time. By taking the maximum of the encodings in
this way, the final representation that gets passed to the
classifier (a) is a standard size, and (b) contains any fea-
ture that was present in any of its constituent windows—
that is, at any point in time during the movement.

Computational Models

Because we wished to evaluate the effect of encoding
when trying to classify movements, we used the "raw"
whitened movement windows as an encoding baseline.
However, because the windows were already whitened



using PCA, which encodes data points according to their
projections onto the principal components of the data,
we could test the effect of reducing the dimensionality
of the movement data by simply varying K.

Sparse Coding

PCA is widely used for data preprocessing, but using it
as an encoding technique often results in "dense" repre-
sentations of data that are difficult for humans to inter-
pret. In contrast, sparse coding explicitly seeks a repre-
sentation of data Z that uses as few elements of a given
codebook D as possible to reconstruct the data X. This
goal can be formulated as an optimization problem:

Z = argmin || DA — X||3 +AJ|A|;
A

We used the "lasso" (Tibshirani, [1996) implementation
of sparse coding provided by the scikit-learn Python
package (Pedregosa et al., [2011) to perform the encod-
ings. For the experiments reported here, we followed
best practices from the literature (Mairal, Bach, Ponce,
& Sapiro, [2009) and set A = ﬁ where n is the number

of variables in the whitened, windowed movement data.

Codebook Learning

Some existing evidence (Coates & Ng| 2011) sug-
gests that the sparse coding algorithm itself is critical
in the performance of sparse-coded classification sys-
tems, and that codebooks constructed from even ran-
dom vectors can yield classifiers with good, although
not necessarily state-of-the-art, performance. We tested
this phenomenon with our datasets by constructing ran-
dom codebooks and using them in conjunction with the
sparse coding algorithm above.

Even though random codebooks might be effective
for some tasks, all available evidence also indicates that
the best performance is obtained by using a codebook
specifically tuned to the problem at hand. Several al-
gorithms have been proposed to learn the optimal code-
book for sparse coding using just a dataset X (Smith &
Lewicki, [2006; [Mairal et al., [2009); for this work we
adopted a formulation of the problem that factors the
codebook D into the product of a matrix W with itself
(Le et al.,[2011):

D = argmin |[[WW ' X —X||3 +A|W X
W

This formulation is particularly easy to optimize be-
cause of the linear coding and decoding process, and in
our experiments it seems relatively robust to the choice
of sparsity regularizer A. We used the theanets Python
package || for defining and optimizing the appropriate
losses.

Zhttp://github.com/lmjohns3/theano-nets
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Figure 4: Classifier accuracy versus feature set size; in
general, more features improve classifier accuracy. PCA
is limited in its feature set size due to orthonormality
constraints. Random codebooks (blue diamonds) are not
well tuned to the dataset. Overcomplete codebooks with
sparse—coded features are able to improve significantly
on both baselines. Shaded regions show +1 standard
error using a 9-fold cross validation.

Classification

In preliminary experiments, we evaluated three separate
classifiers—support vector machines (Boser, Guyon, &
Vapnik, 1992), logistic regression, and random forests
(Breiman, [2001)—for mapping from encoded move-
ment data to movement labels. However, the three clas-
sifiers performed so similarly that we decided to focus
on the logistic regression classifier, since its features
are extremely easy to analyze after training. Briefly,
a logistic regression uses a dataset X with labels Y to
optimize parameters ® so that the probability of the
dataset is maximized, under the model logp(y;|x) o<
0;x. We used the classifier implementation provided by
scikit-learn for our experiments. Once the model is
trained, the features with the largest weights 0;; are the
most indicative of class /.

Results

We first examined the effects of varying the coding al-
gorithm and codebook size on overall classification per-
formance; the results of these experiments are shown
in Figure @ Some features of these results were ex-
pected; in particular, the fact that PCA only discards
information from the data results in a significant drop
in performance as K shrinks, in addition to putting an
upper bound on performance when K = n. Reducing K
also hurt the other two coding strategies—sparse cod-
ing with a random codebook, and sparse coding with a
learned codebook—at about the same rate. Similarly, in



Random/512 PCA/32 Sparse/512

Movement Samples | P R F1 P R F1 P R F1
bear 6| 0846 0.579 0.688 | 0.647 0.579 0.611 | 0.857 0.632 0.727
cat 510546 0400 0.462 | 0.667 0.400 0.500 | 1 0.933  0.966
chicken 10 | 0.844 1 0.916 | 0.857 0.790 0.822 | 1 0.921 0.959
dinosaur 211 0.600 0.750 | 1 0.400 0.571 |1 0.800 0.889
dog 510875 0.700 0.778 | 0.583 0.700 0.636 | 0.583 0.700 0.636
dragon 311 0.300 0.462 | 0.889 0.800 0.842 | 0.909 1 0.952
elephant 511 0.625 0.769 | 0.900 0.563 0.692 | 0.889 1 0.941
ghost 211 0.333  0.500 | 0.857 1 0.923 | 0.500 0.500 0.500
hummingbird 311 1 1 1 1 1 1 1 1
insect 211 0.167 0.286 | 0.833 0.833 0.833 | 1 0.833  0.909
monkey 11 1 0.585 0.939 0.721 | 0.649 0.727 0.686 | 0.838 0.939 0.886
mouse 511 0.368 0.539 | 0.700 0.368 0.483 | 0.938 0.790 0.857
penguin 311 0.909 00952 |1 1 1 1 1 1
prairie dog 910521 0962 0.676 | 0.544 0.962 0.694 | 0.867 1 0.929
pterosaur 410636 0.875 0.737 | 0.857 0.750 0.800 | 0.889 1 0.941
roadrunner 211 0.800 0.889 | 1 1 1 1 1 1
snake 510667 1 0.800 | 0.600 0.750 0.667 | 0.833 0.833 0.833
squirrel 211 1 1 0.667 1 0.800 | 1 0.833  0.909
t-rex 311 0.250 0.400 | 1 0.500 0.667 | 1 1 1
whale 411 0.818 0.900 | 0.846 1 0917 | 0917 1 0.957
Average 0.661 0.725 0.848

Table 1: Summary of model performance in each of the 20 movement categories. The best F1 score for each category
is highlighted in bold text. Average values are weighted by the size of each movement category.

agreement with existing research (Johnson, Cooper, &
Ballard, 2013), the sparse coding algorithm seemed to
benefit from being able to use an overcomplete, learned
codebook. However, an unexpected finding from this
experiment was that the sparse coding algorithm per-
formed drastically worse when paired with a random
codebook, even when the codebook was allowed to be
more than 10x overcomplete.

The full results from the best sample of each coding
strategy are presented in Table[I] These results provide
some insight into the performance of each coder with
respect to specific types of movement data. "Humming-
bird" was the easiest category to predict for all mod-
els. "Dog" and "ghost" were the most difficult for the
sparse coded features, but PCA features performed well
on "ghost," while sparse coding with a random code-
book performed well on "dog."

Random features tended to yield classification perfor-
mance with high precision but low recall. This result is
somewhat expected, since in high—dimensional spaces,
and particularly when using a sparse coding algorithm,
features from random codebooks will tend to be or-
thogonal to the data, thus only "firing" when a particu-
lar whitened movement window happens to fall nearby.

This behavior provides high specificity for certain types
of movements, but somewhat erroneously does not re-
spond to most data. In contrast, the sparse coding al-
gorithm had very high recall when paired with a learned
codebook. This similarly provides support for the notion
that the codebook learning process was able to identify
the relevant manifolds in movement space; not only do
the features in the tuned codebook fire often when pre-
sented with real movement data, an inspection of the
most indicative features of each class revealed that the
sparse features with a tuned codebook were able to par-
tition the types of movement into distinct subspaces.

Unfortunately, there is no standard train/test dataset
for motion recognition using the CMU database. How-
ever, the most recent research with comparable results
(Parameswaran & Chellappa, [2006; Han, Wu, Liang,
Hou, & Jial 2010; [Junejo, Dexter, Laptev, & Pérez,
2011} [Shotton et al.l 2011)) indicates that, qualitatively,
the performance of the encodings and classifier de-
scribed here is competitive with other approaches. Since
our work relies solely on kinematic (i.e., joint angle)
representations of movement, comparing with human
performance on the same classification task would be
difficult.



While the results presented here hold promise that
sparse codes might indeed be effective tools when deal-
ing with kinematic action representations, there remains
much work to be done in this area. In particular, sparse
codes might effectively be combined with data from
multiple modalities (e.g., depth-sensor readings) for ac-
tion recognition. In addition, this work has touched
only on kinematic representations of movement. Move-
ments are generated by applying forces to a skeleton us-
ing muscles, but we know little about how this process
is implemented. The question of whether efficient cod-
ing applies equally to dynamics is quite interesting and
could reveal important new insights into how humans
and animals move in their environments.
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