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Abstract

We propose a space-time Markov Random Field (MRF)

model to detect abnormal activities in video. The nodes in

the MRF graph correspond to a grid of local regions in the

video frames, and neighboring nodes in both space and time

are associated with links. To learn normal patterns of activ-

ity at each local node, we capture the distribution of its typ-

ical optical flow with a Mixture of Probabilistic Principal

Component Analyzers. For any new optical flow patterns

detected in incoming video clips, we use the learned model

and MRF graph to compute a maximum a posteriori esti-

mate of the degree of normality at each local node. Further,

we show how to incrementally update the current model pa-

rameters as new video observations stream in, so that the

model can efficiently adapt to visual context changes over

a long period of time. Experimental results on surveillance

videos show that our space-time MRF model robustly de-

tects abnormal activities both in a local and global sense:

not only does it accurately localize the atomic abnormal ac-

tivities in a crowded video, but at the same time it captures

the global-level abnormalities caused by irregular interac-

tions between local activities.

1. Introduction

Detecting unusual activities in video is of considerable

practical interest. Algorithms able to single out abnormal

events within streaming or archival videos would serve a

range of applications—from monitoring surveillance feeds,

or suggesting frames of interest in scientific visual data that

an expert ought to analyze, to summarizing the interesting

content on a day’s worth of web-cam data. In any such case,

automatically detecting anomalies should significantly im-

prove the efficiency of video analysis, saving valuable hu-

man attention for only the most salient content.

Despite the problem’s practical appeal, abnormality de-

tection remains quite challenging technically, and intellec-

tually it can even be hard to define. The foremost challenge

is that “unusual” things naturally occur with unpredictable

variations, making it hard to discriminate a truly abnormal

event from noisy normal observations. Furthermore, the vi-

sual context in a scene tends to change over time. This im-

plies that a model of what is normal must be incrementally

updated as soon as new observations come in; a model re-

quiring batch access to all data of interest at once would be

useless in many real scenarios.

In this work, we introduce a space-time Markov Ran-

dom Field (MRF) model that addresses these two primary

challenges. To build a MRF graph, we divide a video into

a grid of spatio-temporal local regions. Each region cor-

responds to a single node, and neighboring nodes are con-

nected with links. We associate each node with continual

optical flow observations, and learn atomic motion patterns

via a Mixture of Probabilistic Principal Component Ana-

lyzers (MPPCA) [15]. Based on the learned patterns, we

compute parameters for the MRF. Finally, by carrying out

inference on the graph, we obtain probabilistic estimates of

whether each node is normal or abnormal. To efficiently

adapt the model as new video data streams in, we devise

incremental updates for the MPPCA and associated MRF

parameters. Figure 1 summarizes the approach.

The main advantages of our approach are twofold. First,

we can detect abnormal activities both in a local and global

context. Since we directly compute abnormality levels at

each local node, we can provide “high-resolution” and lo-

calized estimates. This often aids in disambiguating abnor-

mal activity within a crowded but otherwise normal scene—

events that a global representation could easily miss. At the

same time, our model accounts for space-time interactions

between local activities, due to its global maximum a pos-

teriori estimation with the MRF. This global context helps

catch unusual interactions involving multiple local activi-

ties, which a purely local model may otherwise ignore. It

also provides a smoothing effect that improves robustness

in the face of noisy flow measurements.

Secondly, we show that the model parameters can be up-
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Figure 1. Summary of our algorithm

dated incrementally whenever new observations come in.

The MPPCA parameters permit a closed-form update for

each mixture component, while the MRF parameters are

designed to allow straightforward adjustments according

to the new MPPCA values. The efficiency of the updates

means that inference and revisions to the model can both be

performed continuously in real-time.

We demonstrate the approach using hours of real videos

collected at a subway station. When learning only from past

(unlabeled) observations of the scene, our algorithm suc-

cessfully detects many situations of interest for unmanned

surveillance applications, such as loitering, passing through

the gate without payment, dropping belongings, or getting

stuck at the gate due to a malfunction.

1.1. Related work

To detect abnormal activities, most algorithms attempt

to define normal activity patterns first, and then deter-

mine how much new observations deviate. Existing ap-

proaches vary in the amount of operator supervision en-

tailed, ranging from rule-based approaches [6, 13] to un-

supervised methods that directly learn normal activity pat-

terns [19, 18, 2, 1, 16]. We take an unsupervised approach

to handle abnormal activities with unpredictable variations.

Broadly considered, previous unsupervised methods have

explored explicit tracking-based methods based on typical

trajectories [2, 14, 9], activity learning techniques based

on more implicit low-level measurements [18, 1, 16, 11],

clustering-based techniques [19, 8], and indexing-based

methods that search for previously seen activity [4].

Tracking-based algorithms [2, 14, 9] determine the ab-

normality for each object’s trajectory. While tracks directly

capture an important semantic aspect of activity (where and

how are people/vehicles moving), it is difficult to rely on

tracks in crowded scenes with occlusions.

The approach of [18] builds a multi-observation Hid-

den Markov Model (HMM) and uses iterative EM for in-

cremental updates. Similar to our approach, this work ex-

plores a graphical model and can account for where lo-

cal activities typically happen in the video. However,

while our MRF model captures space-time dependencies

between local atomic activities, the HMM used in [18] deals

with atomic activities independently due to complexity con-

straints. Furthermore, only a clip-level measure of abnor-

mality is considered, whereas we localize events. In terms

of evaluation, this is an advantage, in that we can more pre-

cisely say whether the detection is correct, or just a “lucky”

hit due to some other noise in the clip.

Approaches using Bayesian topic models [16, 11] can

also evaluate the normality of each local activity (i.e., word)

while considering interactions (i.e., topic) between them.

However, these methods do not impose explicit spatio-

temporal dependencies between local activities, and only

run in a batch mode. Clustering methods [19, 8] can au-

tomatically find outlier sequences and have shown good re-

sults, though the entire corpus is analyzed at once (in batch)

to find the normal clusters.

The above methods [19, 18, 16, 11, 8] can be considered

“global”, in the sense that they typically attempt to find the

abnormal global activity patterns in a video clip in which

several local activities can co-occur. An alternative is to fo-

cus attention on individual local activities, as in [1], where

typical flow directions and speeds are measured on a grid in

the video frame. While efficient and simple to implement,

such an approach fails to model temporal relationships be-

tween motions.

Rather than attempt to learn a model of normal varia-

tions, the method in [4] stores all previously seen spatio-

temporal local patches in a database, so as to see if any con-

figuration exists similar to a new observation. The method

shows good performance in discriminating complex and de-

tailed motions (such as a ballet performance) and makes in-

cremental updates simple, yet it faces scalability issues once

the database is very large.

Space-time MRFs have recently also been explored for

some low-level video tasks, such as stereo matching [17]



and image-denoising [5] with video sequences. The space-

time MRF model we define is particularly well-suited for

abnormality detection, as it can integrate the merits of both

local and global approaches. By capturing both spatial and

temporal interdependencies between local activity patterns,

the proposed method translates low-level cues (motion) into

a richer summary of activity. At the same time, it maintains

efficiency with incremental updates fast enough to perform

online with every frame.

2. Approach

Our goal is to infer when something unusual happens in

a streaming video. The only data used to “train” the system

is whatever initial video is captured to display the scene of

interest, which is used to automatically initialize the model

parameters. We extract optical flow features at each frame,

use MPPCA to identify the typical patterns, and construct a

space-time MRF to enable inference at each local site. For

all subsequent video, we simultaneously infer abnormality

levels, while incrementally updating the model.

2.1. Learning of local activity patterns

We use optical flow as a low-level measure of activity

in local regions. We compute the flow with a multi-scale

block-based matching between adjacent frames. Optical

flows obtained at each scale are summed into a final flow

vector, from which we compute a 9-dimensional optical

flow vector (8 orientations + 1 speed) for every pixel. To

construct a feature descriptor representing the atomic ac-

tivity in each local region (corresponding to each node in

Figure 1), we divide the region L into u by v sub-regions;

each sub-region is represented by a 9-d vector obtained by

summing the flow from all pixels within it. Finally, we con-

catenate the flow vectors of each sub-region into a 9uv di-

mensional activity descriptor for local region L. The num-

ber of sub-regions (i.e., u and v) is determined depending

on how finely we want to capture the motion details.

After extracting descriptors for all local regions in the

initial training video, we apply the Mixture of Probabilis-

tic Principal Component Analyzers (MPPCA) algorithm to

learn a generative model for local activity patterns. The di-

mensionality reduction offered by MPPCA gives us a com-

pact representation of the high-dimensional descriptors. An

MPPCA model is defined as follows:

p(t) =
∑

i

πipi(t|Ci, µi), (1)

where t is an activity descriptor, pi(t|Ci, µi) is a probability

density function of mixture component i, and Ci and µi

denote the covariance matrix and mean vector of component

i, respectively. The variable πi is a mixing coefficient for

component i. Expectation-Maximization (EM) is used to

compute all MPPCA parameters [15].

Rather than fit one model per local region, we construct

a common MPPCA over all local regions. This is due to

the fact that some local regions do not have enough sam-

ples in the initial video to allow stable convergence in EM;

that is, most of the observations are motion-free at some lo-

cal regions. Essentially, the mixture model probabilistically

encodes the “vocabulary” of low-level motions. From the

learned MPPCA, we compute two histograms: a frequency

histogram at each node, and a co-occurrence histogram at

each link. The frequency histogram represents how often

each MPPCA component is observed at each node; the co-

occurrence histogram records how often two MPPCA com-

ponents co-occur at neighboring nodes. Together these em-

pirical distributions describe the typical local activities and

their interactions, and are used to establish the space-time

MRF (to be defined in the following section).

Let Hi denote the frequency histogram at node i, and let

Hi,j denote the co-occurrence histogram for neighboring

nodes i and j, computed as follows:

Hi(l) =

n
∑

k=1

p(l|ti,k),

Hi,j(l, m) =

n
∑

k=1

p(l|ti,k)p(m|tj,k),

(2)

where Hi(l) denotes the lth bin of Hi, and Hi,j(l, m) de-

notes the (l, m)th bin of Hi,j . The terms p(l|ti,k) and

p(m|tj,k) are the posterior probabilities of the occurrence

of MPPCA components l and m respectively, given activity

descriptors ti,k and tj,k at nodes i and j at the kth frame.

Thus, Hi(l) accumulates the posterior probability of com-

ponent l over all previous activity descriptors observed at

node i, thereby representing the likelihood of that low-level

motion “type” occurring in that region of the video. Simi-

larly, Hi,j(l, m) represents the likelihood that components l

and m co-occur at neighbor nodes i and j, thereby capturing

the common interactions between nearby regions, whether

spatially or temporally.

The posteriors are defined using Eq. (1):

p(l|ti,k) =
πlpl(ti,k|Cl, µl)

∑

n πnpn(ti,k|Cn, µn)
,

p(m|tj,k) =
πmpm(tj,k|Cm, µm)
∑

n πnpn(tj,k|Cn, µn)
.

(3)

Having defined the distributions to capture local activ-

ity, we next show how to evaluate the normality of new ob-

servations using the learned MPPCA model and the estab-

lished histograms. Then we describe our incremental learn-

ing strategy in section 2.3.

2.2. Bayesian inference on the space­time MRF

Whenever a new video frame comes in, we construct a

space-time MRF in an online manner using the new frame



and a fixed-length history of recently seen frames (we use

10 in our experiments). The MRF is defined in terms of two

functions: the node evidence and the pair-wise potentials.

We compute them both in terms of the learned MPPCA

model defined above. Ultimately, inference on the graph

will yield the maximum a posteriori (MAP) labeling that

specifies which nodes are normal or abnormal, as computed

by maximizing the following:

E(x) = λ
∑

i

n(xi) +
∑

i,j∈neighbor

ρ(xi, xj), (4)

where n(·) is the node evidence function, and ρ(·, ·) is a

pair-wise potential function. The value λ is a constant to

weight the node evidence, and xi denotes the label telling

whether node i is normal or abnormal. (xi = 0 signifies

node i is abnormal; xi = 1 means it is normal.)

The node evidence function itself consists of two terms:

a frequency term nf (·) and a suitability term ns(·). The fre-

quency term measures how often an activity pattern (i.e., a

MPPCA component) similar to the current activity descrip-

tor at the given node has been observed before at that node.

The suitability term evaluates how likely it is that the cur-

rent activity descriptor was generated by the existing MP-

PCA model.

The frequency term imposes a relational constraint on

each node-component pair. Simply speaking, if the ac-

tivity descriptor detected at node i belongs to one of the

frequently observed components for node i, the value of

nf(xi = 1) becomes higher (or conversely, for a rarely ob-

served component, it becomes lower). Complementarily,

nf(xi = 0) = 1 − nf (xi = 1). We compute the frequency

term from each node’s histogram Hi:

nf(xi = 1) = Tk

(

∑

c

Hi(c)p(c|ti)

)

, (5)

where Hi(c) is a (normalized) frequency histogram for node

i defined by Eq. (2), and p(c|ti) is the posterior probability

of component c given activity descriptor ti, as defined in

Eq. (3). The function Tk(·) is a transformation function

to control the degree of sensitivity to abnormalities, and is

defined as:

Tk(x) =

{ 0.5x
k

0 ≤ x ≤ k,

1 − 0.5 log x
log k

k ≤ x ≤ 1.
(6)

Lower values of the control parameter k will lead to fewer

abnormal activity detections (i.e., less sensitivity to devi-

ations from the model). This function is similar to those

used for outlier rejection in robust statistics [3]. In sum,

nf(xi = 1) is the (transformed) normalized correlation be-

tween the frequency histogram Hi and the probability dis-

tribution of MPPCA components for a node i’s current ac-

tivity descriptor.

The suitability term reflects how well the current MP-

PCA model explains the new activity descriptor t. We com-

pute it as: ns(xi = 1) ∝ p(t), where the term p(t) denotes

the pdf given in Eq. (1). For numeric stability we directly

use the Mahalanobis distance to evaluate it. Thus, the suit-

ability is defined as follows:

ns(xi = 0) = Tk

(

∑

c

dc(ti)p(c|ti)

)

, (7)

where dc(ti) = Fc

(

(ti − µc)
TCc

-1(ti − µc)
)

is the Ma-

halanobis distance between activity descriptor ti and the

MPPCA component c, normalized to be in [0, 1]. The nor-

malization function, Fc(·) is the cumulative distribution of

distances at the component c over all previous observations,

which we implement using a cumulative histogram of the

distances for all previous descriptors. Tk(·) is defined as

above, and ns(xi = 1) = 1 − ns(xi = 0).
Finally, we have the complete node evidence function:

n(xi) =

{

(1 − τ)nf (xi) + τns(xi) if ns(xi = 0) > 0.5,

τnf (xi) + (1 − τ)ns(xi) otherwise,

(8)

where τ is a weighting constant and is always set with

τ > 0.5. Essentially, this serves to down-weight the fre-

quency term should the activity descriptor at node i de-

viate significantly from the current MPPCA model (i.e.,

ns(xi = 0) > 0.5), which is important since the frequency

term assumes that the observation can be explained well

by the current model. Otherwise, we weight the frequency

more than the suitability, as it is more discriminative in de-

tecting abnormality as long as the activity descriptor’s Ma-

halanobis distance is low. In short, the node evidence func-

tion measures the normality of an activity descriptor at each

node, and it balances the frequency and suitability terms de-

pending on how well the descriptor can be explained by the

existing MPPCA model.

The pair-wise potential function, ρ(·, ·), consists of

two terms: a co-occurrence frequency term ρf (·, ·) and a

smoothness term ρs(·, ·). The co-occurrence frequency term

evaluates how often we have observed two MPPCA compo-

nents co-occurring at neighboring nodes i and j. If xi = 1
and xj = 1, then

ρf (xi, xj) = Tk





∑

ci

∑

cj

Hi,j(ci, cj)p(ci|ti)p(cj |tj)



 .

(9)

Otherwise, ρf (xi, xj) = 1 − ρf (xi = 1, xj = 1). This

definition has a similar form to the frequency term of Eq.

(5), except it uses the normalized co-occurrence histogram

Hi,j defined in Eq. (2). Here p(ci|ti) and p(cj |tj) denote

the posterior probabilities of components ci and cj given

activity descriptors ti and tj at nodes i and j, respectively.



This term will measure how normal it is for two motions to

co-occur at neighboring nodes.

The smoothness term imposes smoothness on label as-

signments between neighboring nodes based on their mo-

tion similarity: more similar motions lead to more smooth-

ing, which is based on the fact that similar motions at neigh-

boring nodes are more likely to be involved in a common ac-

tivity, so they have higher probability of the same labeling

being assigned. We compute this term based on the normal-

ized correlation between the two activity descriptors:

ρs(xi, xj) =

{

ti·tj

|ti||tj |
if xi = xj ,

0 otherwise.
(10)

From Eqs. (9) and (10), we can now define the complete

pair-wise potential function, ρ(·, ·):

ρ(xi, xj) = ρf (xi, xj) + αρs(xi, xj), (11)

where α is a constant to weight smoothness.

Given the MRF parameters in Eqs. (8) and (11) at ev-

ery node and link of the graph, we carry out MAP infer-

ence to maximize the function defined in Eq. (4). We use

loopy belief propagation with max-sum message passing,

which provides the MAP labeling of whether each node is

normal or abnormal. By capturing the spatial and temporal

interdependency between local motion patterns, our MRF

model enhances the descriptive power of what are initially

purely local measurements.

2.3. Incremental updates for activity patterns

Having built an MPPCA model using a small amount

of initial training video (section 2.1), we can continuously

update its parameters using the new activity descriptors ex-

tracted at every video frame. All the histograms (i.e., fre-

quency histograms, co-occurrence histograms, and cumula-

tive histogram of Mahalanobis distances) and MRF param-

eters are straightforward to adjust according to the updated

MPPCA parameters.

To update the MPPCA parameters given a new activ-

ity descriptor, we first pick the most likely component

cmax = argmax
c

p(c|t) for the descriptor, and then update

the covariance matrix C and mean vector µ of that compo-

nent cmax using the algorithm given in [12]. The mixing

coefficients πi for all components are also adjusted:

πt+1,i =
Nt+1,i

Nt+1

, Nt+1 = Nt + 1,

Nt+1,i =

{

Nt,i + 1 if i = cmax,

Nt,i otherwise,

in which Nt and Nt+1 are the total numbers of activity de-

scriptors observed until times t and t + 1, and Nt,i and

Nt+1,i are the total numbers of activity descriptors belong-

ing to the component i until times t and t + 1, respectively,

and πt+1,i is the updated mixing coefficient of the compo-

nent i at time t + 1.

Our incremental algorithm is quite simple and easy to

implement. However, we should note one necessary ap-

proximation that it makes: we assume that the posterior

probability of each component is unchanged once the de-

scriptor is inserted into the model. Since the MPPCA pa-

rameters change whenever a new input comes in, the pos-

terior probabilities of all previous descriptors should also

change in response. However, re-calculating all the pos-

teriors would mean touching every previous observation,

thus defeating the purpose of an incremental update. (The

method given in [12] incrementally adjusts a single compo-

nent, without such a backward computation.) This is a well-

known issue with incremental learning and mixture models.

Following [10], we assume that the posterior probability of

an activity descriptor is fixed to the value computed at the

time when the descriptor was first introduced to the model.

To choose the number of MPPCA components automati-

cally, we empirically identify the minimum number of com-

ponents that appear to account for most of the initial dataset.

Starting with a single component, we increase the number

of components until it happens that some trivial compo-

nent is formed that accounts for only a very small number

of activity descriptors (e.g., less than 5% of overall train-

ing data). In future implementations, model selection tech-

niques for EM (such as [7]) could be used.

3. Experimental Results

We tested our algorithm using over two hours of surveil-

lance videos from a subway station: one video monitors the

entrance gates, and the other watches the exit gates. In both,

there are typically one to 10 people moving in the scene

at the same time. The videos are provided by courtesy of

Adam et al. [1]. We discuss each one in turn below.

The frame size of the videos is 512 x 384. We divide

the frames into 14 by 9 overlapping local regions of size

60 x 90 pixels each; each local region is further divided into

2 by 3 sub-regions, each of size 30 x 30 pixels. This yields

a 54 (= 2 x 3 x 9) dimensional descriptor to represent activ-

ities at each local region.

For every input frame, we build a space-time MRF using

the 10 most recent frames, and carry out MAP inference us-

ing belief propagation. After every MAP computation, the

MPPCA parameters (see Eq. (1) and section 2.3), frequency

and co-occurrence histograms (see Eq. (2)) and cumulative

histograms (see section 2.2) are updated.

For all results, we use the following parameters: λ = 1
in Eq. (4), τ = 0.85 in Eq. (8) and α = 0.5 in Eq. (11). Be-

low we evaluate the true-positive/false-positive tradeoff as

a function of the control parameter k in Eq. (6), which dic-



Ground truth Loitering No payment Wrong direction Irregular interaction Misc. Total False alarm

count (14/3) (13/-) (26/9) (4/-) (9/7) (66/19)

Incremental 13/3 8/- 24/9 4/- 8/7 57/19 6/3

Batch 14/3 7/- 24/9 3/- 8/6 56/18 3/0

Table 1. Comparison of accuracy using incremental vs. batch learning for both subway videos. Numbers in parens denote count for each

abnormal activity in the ground truth. The first number in the slash (/) denotes the entrance gate result; the second is for the exit gate result.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. Example abnormal activities detected by our algorithm.

Red rectangles indicate where abnormality is detected. (a) Loiter-

ing. (b)-(c) No payment. (d) Wrong direction. (e) Wrong direction

and loitering: A left person is moving in the wrong direction. A

person on the right is loitering as he sees the other going in the

wrong direction. (f)-(g) Irregular interaction. In (f), two people

are at the same gate. In (g), left person runs in hurry, and right

person pauses to yield. (h) Misc.: woman drops her belonging.

Both (d) and (e) illustrate detections in spite of crowded scenes

and partial occlusions. Best viewed in the electronic version.

tates how selective we want the system to be about raising

alerts for abnormalities detected.

Due to space limitations, we cannot display all of the

detected abnormal activities in the paper. Interested read-

ers may see our supplementary video which contains all of

the detection results: http://www.cs.utexas.edu/

˜jaechul/activity.html.

3.1. Entrance gate

The entrance gate video is 1 hour 36 minutes long, with

144,249 total frames. We initially train the MPPCA model

using the video clips containing normal activities in the first

15 minutes of video. The number of clusters in the initial

MPPCA was automatically selected to be 10.

Results: In this video, the following types of abnormal

activities occur: (i) Wrong direction: occasionally people

exit through the entrance gate. (ii) No payment: some peo-

ple sneak through or jump over the gate without tagging a

payment card. (iii) Loitering: some people loiter for a long

time at the station. (iv) Irregular interactions between per-

sons: e.g. two people awkwardly zigzag to avoid each other.

(v) Misc.: e.g., a person abruptly stops walking, or runs fast.

We annotated the data to form a ground truth set of abnor-

mal events, identifying a total of 66 unusual activities. We

(a) (b) (c) (d)

Figure 3. Examples of false alarms and abnormalities missed by

our algorithm. (a)-(c) are false alarms; (d) is missed. (a) A person

goes to the gate, and a person nearer to the camera is walking left

to right. While this situation happens occasionally, here the nearer

person slows down to talk, and the system raises an alert. (b) A

person is getting on the train. Optical flows are often unreliable

in the far-field areas, and it leads to a false alarm. (c) A person

walks too fast. (d) Our method misses the “no payment action”,

perhaps because the motion is very similar to passing through the

gate normally. Best viewed in the electronic version.

used the ground truth defined in [1] on the same data as a

starting point, which marks 21 occurrences of abnormali-

ties, primarily of the “wrong direction” event. We refined

this to also capture all the more subtle abnormalities, such

as “no payment” and “loitering”—in a sense, raising the bar

for our algorithm, as the wrong direction events are easily

detected. Admittedly, the very definition of abnormality is

somewhat subjective; we took every effort to come up with

the most accurate manual annotation possible.

Figure 2 shows examples of abnormal activities detected

by our algorithm. Our method can identify an abnormal

activity even within a crowded scene with significant occlu-

sions (e.g. Figure 2 (d) and (e)), or cases where both normal

activities and abnormal activities are mixed (e.g. Figure 2

(c) and (e)). Also, we can see that the algorithm captures the

abnormality caused by irregular interactions between per-

sons (e.g. Figure 2 (f) and (g)).

Table 1 summarizes the results of this experiment. Most

errors occur when detecting the “no payment” behavior;

about 40% of such actions are missed. This is largely due

to poor optical flow measurements in the far-field area from

the camera where the gate is located. Furthermore, some

“no payment” actions can be too subtle to be recognized

(see Figure 3 (d)). However, some errors are also due to our

representation, which cares about the speed of motions; for

example, our method issues a false alarm for slow walking

in Figure 3 (a) or fast walking in Figure 3 (c), actions which

deviate from existing local motions in the MPPCA model,

but the ground truth says are normal.
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Figure 4. ROC curve with varying control parameter k.

(a) (b) (c)

Figure 5. An effect of incremental learning. (a) Frame 41207. A

movement from the right entrance to the gate (indicated by a red

arrow) is detected as “normal”. (b) Frame 75381. Later, the same

type of movements are detected as “abnormal” because many of

the most recent motions were along another path, making the mo-

tion in (a) a rarer event. (c) Frame 98104. A movement from the

right entrance to the gate is again detected as “normal” because

several similar observations are accumulated between (b) and (c).

The ROC curve in Figure 4 illustrates the false-

positive/true-positive tradeoff, plotted as a function of k.

For this data, the algorithm is quite robust to how the con-

trol parameter is set. Overall, smaller values of k will result

in more selectivity in the detections (less false positives).

Incremental learning: Our method continuously up-

dates the parameters for the MPPCA components and corre-

sponding histograms using the new activity descriptors ob-

served at every frame. Qualitatively, we can see how such

an update influences the subsequent detections: Figure 5

shows how the same category of activity that is earlier de-

tected as abnormal may later be detected as normal, depend-

ing on what kind of activities prevail at each observation

period. Table 1 quantitatively compares our incremental al-

gorithm’s accuracy relative to a batch alternative, where all

normal frames are observed at once. For the batch baseline,

we trained MPPCA using all video clips containing normal

activities. There are only minor differences in detection ac-

curacy and false alarm rates, even though our incremental

method has access only to a portion of the normal data and

adjusts the model in real-time.

An “extreme” form of a batch model would re-compute

the MPPCA model from scratch after each new frame,

which is clearly not feasible computationally, since each up-

date would require at least 10 minutes.

Run-times: We implemented our algorithm using C++

with a 2.4GHz CPU, 2Gbyte RAM machine. For the first

video, the initial MPPCA training took about 10 minutes,

while a batch training of MPPCA using the entire video

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. Illustrative examples comparing our algorithm and base-

lines that are purely local or global (clustering-based). (a) - (e)

Correctly detected results using our method. (f) False alarm by

our method. (g) False alarm in the crowded scene by global base-

line. (h) Missed abnormality by both baselines. (a) An employee

cleans up the wall. (b) and (h) A person abruptly stops walking

and changes his direction, which is missed by both baselines. (c)

A person gets off the train and then gets on the train again very

soon, which is missed by the global baseline. (d) Wrong direc-

tion: a person (left) is entering through the exit gate. Rare event:

a child’s movement is observed for the first time. (e) Loitering. (f)

False alarm: a person is going from the right to the left, which is

normal but very unusual, since most people exit the station from

left to right. Best viewed in the electronic version.

took about 90 minutes. (The times were 3 vs. 26 min-

utes on the shorter second video.) Incremental parameter

updates were done about at frame rate (25 frames per sec-

ond). In the MAP computation, belief propagation usually

converges within 10 iterations, or about 100 ms.

3.2. Exit gate

The second video monitors an exit gate, and is 43 min-

utes long with 64,900 total frames. We use the first five

minutes of video to train the initial MPPCA model, obtain-

ing 8 total components.

Results: This video contains the following unusual

events: (i) Wrong direction (ii) Loitering (iii) Misc.: e.g.,

an employee of the subway station is washing the wall. The

ground truth data consists of 19 total abnormal activities.

Table 1 summarizes our detection results. Figure 6 shows

examples of detected abnormal activities and false alarms.

We should note that all of the false alarms are raised due

to the “from right exit to left exit” movement, which is

“normal”, but very rare compared to the “from left exit to

the right exit” movement. Table 1 also compares the batch

mode and incremental mode for this video. In batch mode,

there are no false alarms: the batch mode can detect the

“from right exit to left exit” movements as normal, since it

can use all data to train.

Comparison to other types of methods: Finally, we

compare against our own implementation of two existing

methods: a local monitoring algorithm modeled after [1],

and a “global” spectral clustering-based method modeled



after [19]. Our goal is to demonstrate the relative strengths

and weaknesses of local and global representations, and

to see how well our MRF-based strategy can combine the

strengths of both. Our implementation is necessarily a sim-

plified version of the representative baselines.

Both approaches provide similar results in detecting con-

spicuous abnormalities such as “wrong direction”, where

the optical flow patterns are quite easy to discriminate.

However, the local method fails to detect abnormal activ-

ities with irregular temporal orderings. In Figure 6 (b) and

(h), people abruptly stop walking and turn around. Since a

local method can only consider frame-by-frame individual

actions, these kinds of actions cannot be detected. Also, the

local method is sensitive to optical flow parameters, often

resulting in a high false alarm rate, about an order of mag-

nitude more false alarms than our method. Global MAP

inference with a smoothness constraint in our MRF model

helps reduce the number of false alarms caused by noisy

local observations.

On the other hand, the global method fails to detect ab-

normal activity happening at a fine local scale. For example,

in Figure 6 (c), the abnormal activity happens within a re-

gion so small that it is simply regarded as negligible noise in

a global sense. At the other extreme, the global method gen-

erates false alarms in crowded scenes (Figure 6 (g)), where

measurement noise accumulated over many normal activi-

ties is above the threshold. In contrast, our approach suc-

ceeds in these scenarios since we can localize individual

abnormal activities at each node while taking into account

spatio-temporal dependencies between them.

4. Conclusion

We proposed a space-time MRF for detecting abnormal

activities that combines the advantages of both local and

global approaches. Not only can the method localize abnor-

mal activities even in crowded scenes, but it can also capture

irregular interactions between local activities in a global

sense. In addition, we demonstrated incremental real-time

updates, which allow our algorithm to adapt to visual con-

text changes over a long period of time. Experimental re-

sults on long surveillance videos show that our algorithm

can work robustly in practical applications.
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