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Abstract

There has been evidence that least-commitment planners can e�ciently handle planning
problems that involve di�cult goal interactions. This evidence has led to the commonbelief
that delayed-commitment is the \best" possible planning strategy. However, we recently
found evidence that eager-commitment planners can handle a variety of planning problems
more e�ciently, in particular those with di�cult operator choices. Resigned to the futility
of trying to �nd a universally successful planning strategy, we devised a planner that can
be used to study which domains and problems are best for which planning strategies.
In this article we introduce this new planning algorithm, flecs, which uses a FLExible
Commitment Strategy with respect to plan-step orderings. It is able to use any strategy
from delayed-commitment to eager-commitment. The combination of delayed and eager
operator-ordering commitments allows flecs to take advantage of the bene�ts of explicitly
using a simulated execution state and reasoning about planning constraints. flecs can vary
its commitment strategy across di�erent problems and domains, and also during the course
of a single planning problem. flecs represents a novel contribution to planning in that it
explicitly provides the choice of which commitment strategy to use while planning. flecs
provides a framework to investigate the mapping from planning domains and problems to
e�cient planning strategies.

1. Introduction

General-purpose planning has a long history of research in Arti�cial Intelligence. Several
di�erent planning algorithms have been developed ranging from the pioneering GPS (Ernst
& Newell, 1969) to a variety of recent algorithms in the SNLP (McAllester & Rosenblitt,
1991) family. At the most basic level, the purpose of planning is to �nd a sequence of
actions that change an initial state into a state that satis�es a goal statement. Planners use
the actions provided in their domain representations to try to achieve the goal. However
di�erent planners use di�erent means to this end.

Faced with a variety of di�erent planning algorithms, some planning researchers, includ-
ing these authors, have been increasingly curious to compare di�erent planning methodolo-
gies. Although general-purpose planning is known to be undecidable (Chapman, 1987), it
has been a common belief that least-commitment planning is the \best," i.e., the most ef-
�cient planning strategy for most planning problems. This belief is based on evidence that
least-commitment planners can e�ciently handle planning problems that involve di�cult
plan step interactions (Barrett & Weld, 1994; Kambhampati, 1994; Minton, Bresina, &
Drummond, 1991). Delayed commitments, in particular to step orderings, allow the plan
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steps to remain unordered until the interactions are visible.1 In similar situations, eager-
commitment planners may encounter severe e�ciency problems with early commitments to
incorrect orderings.

Recently we engaged in an investigation of other sorts of planning problems which would
be handled e�ciently by other planning strategies. Since all planning is driven by heuristics,
we identi�ed di�erent sets of heuristics that correspond to di�erent planning methods. We
designed sets of planning domains and problems to test di�erent planning strategies. While
studying the impact of these di�erent strategies in di�erent kinds of planning problems,
we came across evidence that eager-commitment planners can e�ciently handle a variety
of planning problems, in particular those with di�cult operator choices (Stone, Veloso,
& Blythe, 1994). The up-to-date state allows them to make informed planning choices,
particularly in terms of the operator alternatives available. In similar situations, delayed-
commitment planners may need to backtrack over incorrect operator choices (Veloso &
Blythe, 1994). We came to believe that no planner was consistently better than all others
across di�erent domains and problems.

Resigned to the futility of trying to �nd a universally successful planning strategy, we
felt the need to study which domains and problems were best suited to which planning
methods.2 In order to do so, we devised and implemented a planner that can use any
operator-ordering commitment strategy along the continuum between, on the one extreme
delayed commitment, and on the other, eager commitment. This planner is completely

exible along one dimension of planning heuristics: operator-ordering commitments. Our
main contribution in this paper is to completely describe this planning algorithm and to
put it forth as a tool for studying the mapping between heuristics and domains or problems.
Rather than risking the possibility that the planner itself might get overlooked if it were
relegated to an \architecture" section of a future paper, we present flecs and its underlying
philosophy as a contribution in its own right.

The continuum of heuristics that can be explored by our planning algorithm lies between
the operator-ordering commitment strategies of delayed-commitment and eager-commitment
backward-chaining planners, which we now situate within a broad range of planning and
problem solving methods. One possible planning strategy is to search all the possible states
that can be reached from the initial state to �nd one that satis�es the goal. This method,
called progression or forward-chaining, can be very impractical. There are often too many
accessible states in the world to e�ciently search the complete state space. As an alter-
native, several planners constrain their search by using regression, or backward-chaining.
Rather than considering all possible actions that could be executed in the initial state and
searching recursively forward through the state space, they search backwards from the goal.
Their search is driven by the set of actions that can directly achieve the goal.

There are two main ways of performing backward-chaining. Several planners do re-
gression by searching the space of possible plans. Planners, such as noah, tweak, snlp,

1. Least-commitment planners really delay commitments to plan step orderings and to variable bindings.
Throughout this article we use the term delayed commitment to contrast with eager commitment in the
context of step orderings.

2. Similar concerns regarding di�erent constraint satisfaction algorithms have led recently to the design
of the Multi-Tac architecture (Minton, 1993). This system investigates a given problem to �nd a
combination of heuristics from a collection of available ones to solve the problem in an e�cient way.
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and their descendants (Chapman, 1987; McAllester & Rosenblitt, 1991; McDermott, 1978;
Sacerdoti, 1977; Tate, 1977; Wilkins, 1984) are plan-space planners that use a delayed-
commitment strategy. In particular, they delay the decision of ordering operators as long
as possible. Consequently, the planner reasons from the initial state and from a set of
constraints that are regressed from the goal. On the other hand, planners such as gps,
strips, and the prodigy family (Carbonell, Knoblock, & Minton, 1990; Fikes & Nilsson,
1971; Rosenbloom, Newell, & Laird, 1990) use an eager-commitment strategy.3 They use
backward-chaining to select plan steps relevant to the goals. These eager-commitment plan-
ners make explicit use of an internal representation of the state of the world (their internal
state) and order operators when possible so that they can reason from an updated version
of this state. They trade the risk of eager commitment for the bene�ts of using an explicit
updated planning state.

In this article we introduce a planning algorithm, flecs, that uses a FLExible Com-
mitment Strategy with respect to operator orderings. flecs is designed to provide us and
other planning researchers with a framework to investigate the mapping from domains and
problems to e�cient planning strategies. This algorithm represents a novel contribution
to planning in that it introduces explicitly the choice of the commitment strategy. This
ability to change its commitment strategy makes it useful for studying the tradeo�s between
delayed and eager commitments. flecs is a descendant of prodigy4.0 and its current
implementation is directly on top of prodigy4.0. It extends prodigy4.0 by reasoning
explicitly about ordering alternatives and by having the ability to change its commitment
strategy across di�erent problems and domains, and also during the course of a single
planning problem.4

This article gradually introduces flecs. Section 2 gives a top-level view of the algorithm
and describes the di�erent ways in which flecs makes use of a uniquely speci�ed state of
the world. Section 3 introduces the concepts used by the flecs algorithm. We provide
an annotated example to illustrate the details of the planning concepts de�ned. Section 4
presents flecs's planning algorithm in full detail and explains the algorithm step by step.
We discuss di�erent heuristics to guide flecs's choices, in particular the 
exible choice of
commitment strategy. We analyze the advantages and disadvantages of delayed and eager
plan step ordering commitments. Section 5 shows speci�c examples of planning domains and
problems that we devised, which support the need for the use of flecs's 
exible commitment
strategy. We performed an empirical analysis on planning performance in these domains.
The corresponding empirical results demonstrate the tradeo�s discussed and show evidence
that 
exible commitment is necessary. Finally Section 6 draws conclusions from this work.

3. Planners in the prodigy family include prodigy2.0 (Minton, Knoblock, Kuokka, Gil, Joseph, & Car-
bonell, 1989), NoLimit (Veloso, 1989), and prodigy4.0 (Carbonell, Blythe, Etzioni, Gil, Joseph, Kahn,
Knoblock, Minton, P�erez, Reilly, Veloso, & Wang, 1992). NoLimit and prodigy4.0, as opposed to
prodigy2.0, do not require the linearity assumption of goal independence and their search spaces are
complete (Fink & Veloso, 1994). They also have some control over their commitment choices as opposed
to the other earlier total-order planners.

4. We found that we needed a new name for our algorithm as flecs represents a signi�cant change in
philosophy and implementation from prodigy4.0.
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2. A Top-Level View of flecs

prodigy4.0 and flecs di�er most signi�cantly from other state-of-the-art planning systems
in that they search for a solution to a planning problem by combining backward-chaining (or
regression) and simulation of plan execution (Fink & Veloso, 1994). While back-chaining,
they can commit to a total-ordering of plan steps so as to make use of a uniquely speci�ed
world state. These planners maintain an internal representation of the state and update it by
simulating the execution of operators found relevant to the goal by backward-chaining. Note
that simulating execution while planning di�ers from interleaving planning and execution,
since the option of \un-simulating," or rolling back, must remain open. Interleaved planning
and execution is generally done by separate modules for planning, monitoring, executing,
and replanning (Ambros-Ingerson & Steel, 1988). flecs can either delay or eagerly carry
out the plan simulation. In this way, our planning algorithm has the 
exibility of both being
able to delay operator-ordering commitments and being able to use the e�ects of previously
selected operators to help determine which goals to plan for next and which operators to
use to achieve these goals. In short, it can emulate both delayed-commitment planners and
eager-commitment planners.

Table 1 shows the top-level view of the flecs algorithm.

1. Initialize.

2. Terminate if the goal statement has been satis�ed.

3. Compute the pending goals and applicable operators.

� Pending goals are the yet-to-be-achieved preconditions of operators that have been
selected to be in the plan.

� Applicable operators are those that have all their preconditions satis�ed in the
current state.

5. Choose to subgoal or apply: (backtrack point)

� To subgoal, go to step 6.
� To apply, go to step 7.

6. Select a pending goal (no backtrack point) and an operator that can achieve it (back-
track point); go to step 3.

7. Change the state as speci�ed by an applicable operator (backtrack point); go to step 2.

Table 1: A top-level view of flecs. The step numbers here are made to correspond with
the step numbers in the detailed version of the algorithm presented in Table 2
(Section 4), which re�nes these steps and adds an additional necessary step 4.

All the terms used in this table are fully described along with the detailed version of the
algorithm in Section 4. In this section we focus on two main characteristics of this algorithm,
namely its use of an internal state and its 
exibility with respect to commitment strategies.
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2.1 The Use of a Simulated Planning State

flecs uses its internal state for at least four purposes. First, it terminates when every goal
from the given problem is satis�ed in the current version of the state (the current state):
at this point, a complete plan (the sequence of operators that transformed the initial state
into the current state) has been created and the planning process can stop. Second, in every
cycle, the algorithm uses the internal state to determine which goals need to be planned for
and which have already been achieved by following a means-ends analysis strategy. Unlike
some other planners which analyze all of the possible e�ects of the operators that may have
changed the initial state, flecs simply checks if a particular goal is true in the current
state.5 Third, the planner uses the state to determine which operators may now be applied:
i.e., those whose preconditions are all true in the state. Fourth, flecs can use its state to
choose an operator and bindings that are most likely to achieve a particular goal with a
minimum of planning e�ort (Blythe & Veloso, 1992). In summary, and with reference to
the algorithm in Table 1, flecs uses the state to determine:

� if the goal statement has been satis�ed (step 2);

� which goals still need to be achieved (step 3);

� which operators are applicable (step 3);

� which operators to try �rst while planning (step 6).

In planners that do not keep an internal state, all four of these steps require considerable
planning e�ort when they are even attempted at all. In contrast, flecs can perform
these steps in sub-quadratic time. Furthermore, other planners do not have any particular
methods for choosing among possible operators to achieve a goal. This particular use of
state has been shown to provide signi�cant e�ciency gains in prodigy4.0 (Veloso & Blythe,
1994).

Since flecs does use the state, it makes a big di�erence whether or not it chooses to
change its state (apply an operator) at a given time. The advantage of applying an operator
is that more informed planning results during each of the above four steps. However, the
choice to apply an operator involves a commitment to order this operator before all other op-
erators that have not yet been applied. This commitment is only temporary since if no plan
can be found with the operator in this position, the operator can be \un-applied" by simply
changing the internal state back to its previous status. One may argue that the require-
ment that operators be applied in an explicit order opens up the possibility of exponential
backtracking. However this argument is vacuous, as planning is undecidable (Chapman,
1987). Due to the use of state, flecs can reduce the likelihood of requiring backtracking at
the operator choice point. In so doing, it may increase the likelihood of backtracking at the
operator-ordering choice point. However, it has the 
exibility of being able to come down
on either side of this tradeo�.

5. Note that since the goal and the state are fully instantiated, this matching can be accomplished in
constant time for each goal by using a hash table of literals.
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2.2 The Choice of Commitment Strategies

In order to control the tradeo� between eager and delayed state changes, flecs has a
toggle which determines whether the algorithm prefers subgoaling or applying an operator
in step 5. Which option flecs considers �rst may a�ect its path through the search space
and consequently its planning e�ciency. This ability to accommodate di�erent types of
search is the most novel part of our algorithm. Its signi�cance lies in the di�erence between
subgoaling and applying.

The di�erence between subgoaling and applying is illustrated in Figure 1. Subgoaling
can be best understood as regressing one goal, or backward chaining, using means-ends
analysis. It includes the choices of a goal to plan for and an operator to achieve this goal.
As seen in Section 2.1, both of these choices are a�ected by flecs's internal state. Thus,
subgoaling without ever updating the internal state (applying an operator) can lead to
uninformed planning decisions. On the other hand, by subgoaling extensively, flecs can
select a large set of operators that will appear in the plan before deciding in which order
to apply them. Then flecs takes into account the con
icts, or \threats," among operators
and orders them appropriately when applying them.

Subgoaling Applying

Operator t achieves a precondition  of
operator y that is not true in state C.

All preconditions of operator x are true in state C.
Applying x changes the state to C’.

I
x

y
zs

I Cs G

x

y
z

t
I s zx y

C G

C’ G

Figure 1: This diagram from (Fink & Veloso, 1994) illustrates the di�erence between sub-
goaling and applying. A search node consisting of a \head-plan" and a \tail-
plan." The head-plan contains operators that have already been applied and
have changed the initial state \I" to the current state \C." The tail-plan consists
of operators that have been selected to achieve goals in the goal statement \G"
and operators that have been selected to achieve preconditions of these operators,
etc. The �gure shows how the planner could either subgoal or apply at a given
search node.

Applying an operator is flecs's way of changing the current internal state so that
future subgoaling decisions can be more informed. However, applying an operator is a com-
mitment (temporary since backtracking is possible) that this operator should be executed
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before any other. This is the essential tradeo� between eagerly subgoaling and eagerly
applying: eagerly subgoaling delays ordering commitments (delayed commitment), while
eagerly applying facilitates more informed subgoaling (eager commitment).

flecs has a switch (toggle) that can change its behavior from eager subgoaling to
eager applying and vice versa at any time. This feature is the most signi�cant improve-
ment in flecs over prodigy4.0 and its predecessors. Since we saw evidence that nei-
ther delayed-commitment nor eager-commitment search strategies were consistently e�ec-
tive (Stone et al., 1994), we felt the need to provide flecs with the toggle. Thus, flecs
can combine the advantages of delayed commitments and eager commitments.6

3. An Illustrative Example

In this section we present an example that illustrates in detail most of the planning situations
that can arise in a general planning problem. Although planning may be well understood in
general, past descriptions of planning algorithms have not directly addressed most of these
situations in full detail. The flecs algorithm is designed to handle all of these situations.

In order to describe flecs completely, we need to de�ne several variables that are
maintained as the algorithm proceeds. Since it is much easier to understand the algorithm
once one is familiar with the concepts that these variables denote, we present an annotated
example in Figures 2 through 9 before formally presenting flecs. We further recommend
following how each of the variables and functions C, G, P , O, A, a, and c change throughout
the annotated example, according to their de�nitions:

� C represents the current internal state of the planner. Its uses are summarized in
Section 2.1.

� G is the set of goals and subgoals that the planner is aiming to achieve. These are the
goals that are on the fringe of the subgoal tree. Goals in G may be goals that have not
yet been planned for, or goals that have been achieved (perhaps trivially) but not yet
used by the operator that needs them as one of its preconditions (i.e., this operator
has not been applied yet).

� P is the set of pending goals: goals in G that may need to be planned for in the current
state.

� O stands for the set of instantiated operators that have been selected to achieve goals
and subgoals.

� A is the set of applicable operators: operators in O whose preconditions are all satis�ed
in the current state and which are needed in the current state to achieve some goal.

� For a goal G, a(G) is the set of its ancestor goal sets { the sequences of goals that
caused G to become a member of G. Trivially, a goal is an ancestor of each of the
preconditions of the operator selected to achieve this goal. a(G) is a set of sets because
G can have di�erent sets of ancestors. This concept will become clearer through the
example.

6. In Section 5 we discuss di�erent heuristics to guide this choice and we discuss our view of toggle as a
perfect focus for learning.
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� For an operator O, c(O) is the set of goals which O was selected to achieve { its causes.
Applying O establishes each member of c(O). As illustrated below, the functions a

and c are needed to determine which goals are pending and which operators are
applicable. They are analogous to causal links used to determine threats in other
planners (Chapman, 1987; McAllester & Rosenblitt, 1991).

The sequence of planning decisions in this example (Figure 2 through Figure 9) is de-
signed to illustrate the uses of all of flecs's variables and functions. We recommend
becoming familiar with them by spending some time carefully tracing their values and re-
turning to the above de�nitions throughout this example. Note that the �gures show only
the tail-plan while we mention applied operators and state changes in the text. Goals are
in circles: solid circles if they are not true and dashed circles if they are true in the current
state. Operators are in boxes with arrows pointing to the goals which they \produce,"
i.e., the goals which the operators have been selected to achieve (their causes). In turn,
the preconditions of these operators are goals with arrows pointing to the operators which
\consume" them. Operators that are applicable in the current state appear in bold boxes.
Changes to the functions c and a are underlined in the captions.

We present now the example. Figure 2 shows the initial planning situation, in which we
consider a planning problem with three literals in the goal statement, G1, G2, and G3, i.e.,
G = fG1; G2; G3g. There is one literal in the initial state, G7, i.e., C = fG7g. As none of
the goals is true in the initial state, P = G. There are no operators selected, i.e., O = ;,
and therefore also no operators applicable, i.e., A = ;. At this point, since they are all
top-level goals, none of the goals has any ancestors: a(G1) = a(G2) = a(G3) = ;. As there
are no applicable operators, the next step must be to subgoal on one of the pending goals.

G

G

G

1

2

3

C = fG7g
G = fG1; G2; G3g
O = ;
P = fG1; G2; G3g
A = ;

Figure 2: An example: The initial speci�cation of a planning situation.

Figure 3 shows the planning situation after flecs subgoals on G1 andG2. Suppose that
operator O1, with preconditions G6 and G7, is selected to achieve G1, while O2 is chosen
to achieve G2 as indicated below. Note that the operators' preconditions replace their
causes in the set of fringe goals G; since G7 is true in the current state, it is NOT included
in the set of pending goals P . Here G1 is the cause of O1, so c(O1) = fG1g; similarly,
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c(O2) = fG2g. The new goals all have nonempty ancestor sets: a(G6) = a(G7) = ffG1gg,
and a(G4) = ffG2gg. There are still no applicable operators: O1 cannot be applied because
G6 62 C and O2 cannot be applied because G4 62 C. Therefore, flecs subgoals again.

G

G

G

G
4

G
6

1

2

3

1

27
G

O

O

C = fG7g
G = fG3; G6; G7; G4g
O = fO1; O2g
P = fG3; G6; G4g
A = ;

Figure 3: Resulting planning situation after subgoaling on G1 and G2.

Figure 4 shows the planning situation after flecs subgoals on G3. Suppose that the
operator selected to achieve G3 has preconditions G4 and G5. We now have c(O3) = fG3g,
and a(G5) = ffG3gg. The causes of operators O1 and O2 do not change, so c(O1) = fG1g
and c(O2) = fG2g as in the previous step. Similarly, a(G6) and a(G7) remain unchanged.
However, G4 now has two sets of ancestor goals: a(G4) = ffG2g; fG3gg. To understand
the need to keep both ancestor sets, consider the possibility that G2 could be achieved
unexpectedly as a side-e�ect of some unrelated operator instead of being achieved by O2

as planned for. In this case, G4 would remain a pending goal since it would be needed to
achieve G3. Again, since there are no applicable operators, flecs must subgoal on one of
the pending goals, i.e., G6, G4, or G5.

G

G

GG

G
4

G
6

1

2

3

1

2

35

7
G

O

O

O

C = fG7g
G = fG6; G7; G4; G5g
O = fO1; O2; O3g
P = fG6; G4; G5g
A = ;

Figure 4: Resulting planning situation after subgoaling on G3.
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Figure 5 shows the planning situation after flecs subgoals on G4. Suppose that O4

| an operator with precondition G7 | is selected to achieve G4. Since G7 is true in the
current state, O4 is our �rst applicable operator. Note that it is necessarily ordered before
O2 and O3 since its cause is a precondition of these operators. As usual, the cause of the
new operator is stored: c(O4) = fG4g. In addition, the ancestors of G7 must be augmented
to include two new ancestor sets: a(G7) = ffG1g; fG4; G2g; fG4; G3gg. Although there is
now an applicable operator, let us assume that flecs chooses to delay its commitment to
order O4 as the �rst step in the plan and subgoals again on a pending goal.

G

G

GG

G
6

G

1

2

3

1

2

35

47
G

4
O

O

O

O

C = fG7g
G = fG6; G7; G5g
O = fO1; O2; O3; O4g
P = fG6; G5g
A = fO4g

Figure 5: Resulting planning situation after subgoaling on G4.

Figure 6 shows the planning situation after flecs subgoals on G5. Suppose that oper-
ator O4 can also achieve G5 and that it is selected to do so. We now need to update both
the causes of this operator and the ancestors of its precondition: c(O4) = fG4; G5g and
a(G7) = ffG1g; fG4; G2g, fG4; G3g; fG5; G3gg. Now rather than subgoaling on the last re-
maining pending goal (G6), let us apply O4. Note that this decision corresponds to an early
commitment in terms of ordering the operators O1, O4, and any operators later selected to
achieve G6 which are unordered by the current planning constraints. flecs changes here
from its delayed-commitment strategy to an eager-commitment strategy.

G

G

GG

G
4

G
6

1

2

3

1

2

35

47
G O

O

O

O

C = fG7g
G = fG6; G7g
O = fO1; O2; O3; O4g
P = fG6g
A = fO4g

Figure 6: Resulting planning situation after subgoaling on G5.
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Figure 7 shows the planning situation after flecs applied O4. Since operator O4 was
applied in order to achieve goals G4 and G5, they are both true in the current state and
back on the fringe of the goal tree, i.e., they are in C and G. Notice that they stay in G
until eventually they have been \consumed" by O2 and O3. However, since they are true
in the current state, they are not pending goals. Since G7 is once again the precondition
of only one selected operator, a(G7) = ffG1gg as before. O2 and O3 are now applicable
as their preconditions are all true in the current state thanks to O4. Let us assume that
flecs maintains the eager-commitment strategy and continues applying applicable oper-
ators. flecs orders O2 before O3, since O3 deletes a precondition of O2 (e�ects are not
shown).

G

G

G

G
6

1

2

3

1

2

35

7 4
G

G

G

O

O

O

C = fG7; G4; G5g
G = fG6; G7; G4; G5g
O = fO1; O2; O3g
P = fG6g
A = fO2; O3g

Figure 7: Resulting planning situation after applying O4 from Figure 6.

Figure 8 shows the planning situation after flecs applied O2. Suppose that, although
it was not selected to do so, operator O2 achieves G1 as a side-e�ect. Perhaps O2 has a
conditional e�ect that was not visible to the planner, or perhaps O1 simply looked more
promising than O2 as an operator to achieve G1 at the time when it was selected. In any

G

G
6

1

2

3

1

35

7 4
G

G

G

G

G

O

O

C = fG7; G4; G5; G1; G2g
G = fG6; G7; G4; G5; G2g
O = fO1; O3g
P = ;
A = fO3g

Figure 8: Resulting planning situation after applying O2 from Figure 7.
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case, G1 is now in C and the planning done for it is no longer needed: G6 is no longer a
pending goal, since its sole ancestor is already in C. This fortuitous achievement of a goal
is the reason that we need to use the functions c and a to adjust the sets of pending goals
P and applicable operators A: it would be wasted e�ort for flecs to plan to achieve G6.
Note that were G6 a precondition of O3 as well as O1, it would be a pending goal since it
would still be relevant to achieving G3. At this point, only the ancestors of G4 must be
reset: a(G4) = ffG3gg. Since there are no more pending goals, flecs must now apply the
last remaining applicable operator, O3.

Figure 9 shows the �nal planning situation after flecs applied O3. At this point all of
the top level goals are true in the current state. Despite the fact that some of the planning
tree remains, flecs recognizes that there is no more work to be done and terminates. The
�nal plan is O4, O2, O3, which is the sequence of operators applied in the head-plan (not
shown) corresponding to the steps in Figures 7, 8, and 9. An a posteriori algorithm (Veloso,
P�erez, & Carbonell, 1990) can convert the sequence into a partially ordered plan capturing
the dependencies: O4; fO2; O3g.
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C = fG7; G4; G5; G1; G2; G3g
G = fG6; G7; G2; G3g
O = fO1g
P = ;
A = ;

Figure 9: Final planning situation after applying O3 from Figure 8.

4. FLECS: The Detailed Description

Aside from the variables and functions introduced in the preceding section, we need to
de�ne only four more things before presenting the complete algorithm. First, Initial State
and Goal Statement are the corresponding ground literals from the problem de�nition. Sec-
ond, for a given operator O, pre(O), add(O), and del(O) are its instantiated preconditions,
add-list, and delete-list respectively. flecs takes these values straight from the domain rep-
resentation, which may include disjunctions, negations, existentially and universally quan-
ti�ed preconditions and e�ects, and conditional e�ects (Carbonell et al., 1992). When O

has conditional e�ects, add(O) and del(O) are determined dynamically, using the state at
the time O is applied. Third, the \relevant instantiated operators that could achieve G"
(step 6) are all the instantiated operators O (operators with fully-speci�ed bindings) which
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have G 2 add(O) if G is a positive goal or G 2 del(O) if G is a negative goal. Fourth, toggle
is a variable that determines the 
avor of search, as described later.

4.1 The Planning Algorithm

We present the flecs planning algorithm in full detail in Table 2.7 While examining the al-
gorithm, notice that the fringe goals G, the selected operators O, the ancestor function a(G),
the cause function c(O), and the current state C are maintained incrementally. On the other
hand, the pending goals P , the applicable operators A, and toggle are recomputed on every
pass through the algorithm.

Step 1 initializes most of these variables. At the beginning of the planning process, the
only goals in G are those in the goal statement, the current state C is the same as the initial
state, and since no operators have yet been selected, O is empty. Both the ancestor function
a and the cause function c are initialized to the constant function that maps everything to ;.
In practice, the domain of a is the set of goals and the domain of c is the set of operators
that appear in the problem. However, since most of these goals and all of these operators
have not been determined when the algorithm is �rst called, we must initialize the functions
with unrestricted domains.

Step 2 is the termination condition. It is called after each time a new operator is
applied. The algorithm terminates successfully if every goal G in the goal statement is true,
or satis�ed, in the current state C, i.e., G 2 C.

In step 3, the sets of pending goals and applicable operators are computed based on the
current state. Pending goals are the goals that the planner may need to plan for. Initially,
the pending goals are the fringe goals that are not currently true or that were true in the
initial state.8 The applicable operators are the selected operators whose preconditions are
true in the state.

Then, step 4 computes the pending goals P and applicable operators A that are active
in the current state. A pending goal is active as long as it is on the fringe of the subgoal tree
and it still needs to be planned for. A goal is no longer active if every one of its ancestor sets
has at least one goal that has already been achieved: then all purposes for which the goal
was selected no longer exist (as was the case for G6 in Figure 8). An applicable operator is
active in the current state as long as it would achieve a goal that is still useful to the plan.
An applicable operator is no longer active if each of its causes is either true in the current
state or no longer active.

Step 5 is the most novel part of our algorithm. It allows for a 
exible search strategy
within a single planning algorithm. Since at this step, flecs has not yet terminated, there
must be either some active pending goals or active applicable operators, i.e., P or A must
be non-empty. However, if there is only one or the other, then there is no choice to be
made. If, on the other hand, both P and A are non-empty, then we can either proceed to
step 6 or to step 7. For the sake of completeness, we must keep both options open; but
which option flecs considers �rst may a�ect the amount of search required. By changing

7. The detail of this algorithm allows the reader to carefully study and re-implement flecs.
8. Since the planner cannot backtrack beyond the initial state, we must keep goals from the initial state as

pending goals for the sake of completeness.
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1. Initialize:

a. G = Goal Statement.
b. C = Initial State.
c. O = ;.
d. 8G:a(G) = ;.
e. 8O:c(O) = ;.

2. Terminate if Goal Statement � C.

3. Compute applicable operators A and pending goals P:

a. P = fG 2 G j G 62 C _G 2 Initial Stateg.
b. A = fA 2 O j pre(A) � Cg.

4. Adjust P and A to contain only active members:

a. P = P � fP 2 P j 8S 2 a(P ):9G 2 S s.t. G 2 Cg.
b. A = A� fA 2 A j 8G 2 c(A):[(G 2 C) _ (8S 2 a(G):9G0 2 S s.t. G0 2 C)]g.

5. Subgoal or Apply:

a. Set or reset toggle to sub or app, i.e. Set default to delayed or eager commitment.
b. If A = ;, go to step 6.
c. If P = ;, go to step 7.
d. Choose to apply or to subgoal (backtrack point):

� If toggle = sub ^ P 6� C, subgoal �rst: go to step 6.
� If toggle = app, apply �rst: go to step 7.

6. Choose a goal P from P (not a backtrack point).

� Choose a goal not true in the Current State using means-ends analysis.

a. Get the set R of relevant instantiated operators that could achieve P .
b. If R = ; then

i. P = P � fPg.
ii. If P = ; then fail (i.e., backtrack).
iii. Go to step 6.

c. Choose an operator O from R (backtrack point).
� Choose the operator with minimum conspiracy number, i.e. the operator which
appears to be achievable with the least amount of planning.

d. O = O [ fOg.
e. G = (G � fPg)[ pre(O).
f. c(O) = c(O) [ fPg.
g. 8G 2 pre(O):a(G) = a(G) [ ffPg [ S j S 2 a(P )g.
h. Go to step 3.

7. Choose an operator A from A (backtrack point for interactions).

� Use a heuristic to �nd operators with fewer interactions { similar to the one used by
the SABA heuristic.

a. Apply A: C = (C [ add(A))� del(A)
b. O = O � fAg.
c. 8G 2 pre(A):a(G) = a(G)� fS 2 a(G) j S \ c(A) 6= ;g.
d. G = (G [ c(A)) � fG 2 pre(A) j a(G) = ;g.
e. c(A) = ;.
f. Go to step 2.

C: current state

G: fringe goals

P: pending goals

O: instantiated operators

A: applicable operators

a: ancestor goal sets

c: causes

Table 2: The full description of flecs.
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the value of toggle, which can be done on any pass through the loop, flecs can change the
type of search as it works on a problem.

Each pass through the body of the algorithm visits either step 6 or step 7. When
subgoaling (step 6), an active pending goal P is chosen from P . Note that unlike the
corresponding choice in step 7, this choice of subgoals is not a backtrack point. However, if
there are no operators that could achieve this goal, then another goal is chosen (step 6b).
Means-ends analysis is used as a heuristic to prefer subgoaling on goals that are not currently
true. Next, an operator O is chosen that could achieve the chosen goal (step 6c). It can
either be a new operator or an existing one as in Figure 6 (O4, which had already been
selected to achieve G4, is also selected to achieve G5). The choice of operator is a backtrack
point. Unless some other heuristic is provided, the minimum conspiracy number heuristic
is used to determine which operator should be tried �rst (Blythe & Veloso, 1992). In short,
this heuristic selects the instantiated operator that appears to be achievable with the least
amount of planning.

Before returning to the top of the loop, all of the a�ected variables are updated. First,
O is added to O using set union so that the same operator never appears twice (step 6d).
Second, O's preconditions are added to G, while P is removed (step 6e): once P has an
operator selected to achieve it, it is no longer on the fringe of the subgoal tree. Third, the
cause ofO is augmented to include P (step 6f). Fourth, the ancestor sets ofO's preconditions
are augmented to include all sets of goals comprised of P and its ancestors (step 6g). As
explained in Figure 4, all ancestor sets must be included. Finally, since the state is not
changed at all, the termination condition cannot be met. The algorithm returns to step 3.

When applying an operator (step 7), an applicable operator A is chosen from A.
A heuristic that analyzes the applicable operators can be used to choose the best possi-
ble operator. One such heuristic analyzes interactions between operators by identifying
negative threats, similarly to the saba heuristic in (Stone et al., 1994). In short, this
heuristic prefers operators that do not delete any preconditions of, and whose e�ects are
not deleted by, other operators. This choice of an applicable operator is a backtrack point
where all orderings of interacting applicable operators are considered. Di�erent orderings
of completely independent operators need not be considered. Completely independent op-
erators are those with interactions neither between themselves nor among their ancestor
sets. Since the application of one such operator can make no di�erence to the application
of another, we only need to consider one ordering of these operators.

Once A is chosen, it is promptly applied (step 7a). This application involves changing the
current state as prescribed by A. Note that if A has conditional e�ects, they are expanded at
this point. Next, the relevant variables are updated. First, updating involves removing A

from the set of selected operators (step 7b). Second, the ancestors of A's preconditions
are only those ancestor sets which did not include A (step 7c): A does not need further
planning. Figure 7 shows an example in which a precondition (G7) does still have an
ancestor remaining. Third, since A has been applied, its preconditions that are not goals
for any other reason are no longer on the fringe, but its causes are (step 7d): if they are
unachieved they must be re-achieved. Fourth, in case A is ever selected again as an operator
to achieve some goal, c(A) is reset to ; (step 7e). Finally, since the current state has been
altered, the algorithm returns to step 2 where the termination condition is checked.
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4.2 Discussion: Backtracking, Heuristics, and Properties

One should pay close attention to the placement of backtrack points in the algorithm. In
particular, there are only three: the subgoal/apply choice in step 5, the choice of operator
to achieve a goal in step 6, and the choice of applicable operator in step 7. However, the
choice of goal on which to subgoal in step 6, which is a backtrack point in the prodigy
algorithm, is not a backtrack point here. flecs does not need this backtrack point because
the choice to apply or not to apply an operator at a given time is left open in step 5 and
all signi�cantly di�erent orders of applying applicable operators are considered in step 7.
As explained in the previous subsection, di�erent orderings of completely independent op-
erators are not considered. Nevertheless, all orderings that could lead to a solution are
considered. Therefore, backtracking on the choice of subgoal would only cause redundant
search. This elimination of a backtrack point is a signi�cant improvement in flecs over
previous implementations, namely NoLimit and prodigy4.0. Note that no new backtrack
points are added to o�set the eliminated backtrack point.

flecs's only explicit failure point is in step 6 and occurs when the algorithm has chosen
to subgoal, but none of the pending goals have any relevant operators. All other failures
are implicit. That is, at a backtrack point, if all choices have been unsuccessfully tried
then the algorithm backtracks. As presented, the algorithm only terminates unsuccessfully
if the entire search space has been exhausted. Other causes for failure, such as goal loops,
state loops, depth bounds, and time limits, are incorporated in the same manner as in
prodigy4.0 (Carbonell et al., 1992).

At each choice point, there is some heuristic to determine which branch to try (�rst). In
step 6, the goal is chosen using means-ends analysis, and the operator with the minimum
conspiracy number is chosen to achieve that goal. In step 7, the choice mechanism from
the saba heuristic is used to determine which applicable operator to try �rst. In step 5,
toggle, which can be changed at any time, determines whether the default commitment
strategy should be eager subgoaling or eager applying. Note that if all of the pending goals
are true in the Current State (or if there are no pending goals), the planner may apply an
applicable operator regardless of the value of toggle. Similarly, if there are no applicable
operators, the planner must subgoal even if toggle indicates to prefer applying. toggle is a
new variable to guide heuristic search at an existing choice point with a branching factor of
two: it does not represent the addition of a new backtrack point. As discussed throughout,
it provides flecs with the ability to change its commitment strategy. As suggested by its
name, toggle can be one of two values: sub and app indicating eager subgoaling and eager
applying respectively.

Here we describe a domain-independent heuristic that could be used to guide changes to
the value of toggle. Such a heuristic should allow eager commitments when there is reason to
believe that there will not be a need to backtrack over the resulting operator linearization.
In this case, setting toggle to app will increase the planning e�ciency by converting a
partially-ordered set of operators into a sequence that leads to a single possible state, which
can then be used to guide subsequent planning. This process is equivalent to starting a new
and smaller planning problem as all the previous choices will be embedded in the state.

The situation described above is similar to that which arises in the alpine system which
constructs e�cient abstraction hierarchies (Knoblock, 1994). alpine can guarantee that
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planning hierarchically using its generated abstraction hierarchies will not lead to back-
tracking across re�nement spaces. Figure 10 illustrates how flecs can use this abstraction
planning information to control the value of toggle. If toggle changes to app when a par-
ticular abstract planning step is completely re�ned and the abstraction hierarchies preserve
alpine's ordered monotonicity property, then there should be no need to backtrack over the
resulting operator ordering. Then toggle can change back to sub, and flecs can continue
planning with updated state information.

0S

0S 1S

1S

Abstraction level

2. Set 

Commit to an ordering and 

compute the new state.

toggle=app.

4. After another

step in the abstract

plan, commit again:

toggle=app.

toggle=sub.
1. Begin with 

Build a partial

order plan for the

first step in the 

abstract plan

2S

3. Continue planning:
toggle=sub.

5. Continue 

until done...

Figure 10: Using abstraction information to guide changes to toggle.

The abstraction-driven heuristic is one method for exploiting this choice point. Similarly,
the minimum conspiracy number heuristic and the saba heuristic are not the only ways
to guide the choices of instantiated operator and applicable operator respectively. The
heuristics used can always be changed, and we do not claim that the ones we provide as
defaults are the best possible: no heuristic will work all the time.

The planning algorithm we present is both sound and complete if it searches the entire
search space, using a technique such as iterative deepening (Korf, 1985). flecs is sound
because it only terminates when it has reached the goal statement as a result of applying
operators. That is, the application of the operator sequence returned as the �nal plan has
been entirely simulated by the time the planner terminates. Thus the preconditions of each
operator will all be true at the time the operator is executed, and after all operators have
been executed, the goal statement will be satis�ed. Consequently, flecs is sound.

Since no step in the algorithm prunes any of the search space, flecs with an iteratively
increasing depth bound is also complete: if there is a solution to a planning problem, flecs
will �nd one. To insure this property, we need only show that flecs can consider all possible
operators that may achieve a goal as well as all orderings of interacting applicable operators.
flecs does so by maintaining backtracking points at the choice of operator (step 6c) and
at both points at which the operator ordering could be a�ected: the choice of applicable
operator itself (step 7) and the choice of whether to subgoal or apply (step 5d). Selecting
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\apply" commits to ordering all operators that are not currently applicable after at least
one of the currently applicable operators. Note that completeness is achieved even without
maintaining the choice of goals to subgoal on as a backtrack point (step 6), since regardless
of the order in which the operators are chosen, they are applied according to their possible
interactions (i.e., similarly to resolving negative threats). Thus flecs's search space is
signi�cantly reduced from that of prodigy4.0, while still preserving completeness. (See
Appendix A for formal proofs of flecs's soundness and completeness.)

5. Empirical Analysis of Heuristics to Control the Commitment Strategy

As we have seen, flecs introduces the notion of a 
exible choice point between delayed and
eager operator-ordering commitments. To appreciate the need for this 
exibility, consider
the two extreme heuristics: always eagerly subgoaling (delaying commitment) and always
eagerly applying (eager commitment). The former heuristic chooses to subgoal as long as
there is at least one active pending goal (Subgoal Always Before Applying or saba); the
latter chooses to apply as long as there are any active applicable operators (Subgoal After
eVery Try to Apply or savta). In this section we show empirical results that demonstrate
that both of these extremes can lead to highly sub-optimal search in particular domains.
Indeed, we believe that no single domain-independent search heuristic can perform well
in all domains (Stone et al., 1994). It is for this reason that we have equipped flecs

with the ability to use either extreme domain-independent heuristic or any more moderate
heuristic \in between" the two: during every iteration through our algorithm, there is an
opportunity to change from eagerly subgoaling to eagerly applying or vice versa. One could
de�ne di�erent heuristics to guide this choice, or one could leave the choice up to the user
interactively.

This 
exibility in search method provides our algorithm with the ability to search sen-
sibly in a wide variety of domains. Any algorithm that is not so 
exible is susceptible to
coming across domains which it cannot handle e�ciently (Barrett & Weld, 1994; Veloso &
Blythe, 1994; Kambhampati, 1994). flecs's 
exibility makes it possible to study which
heuristics work best in which situations. In addition, this 
exible choice is a perfect learning
opportunity. Since no single search method will solve all planning problems, we will use
learning techniques to help us determine from experience which search strategies to try.

To illustrate the need for di�erent search strategies, we provide one real world situation
in which eagerly subgoaling leads directly to the optimal solution, one in which eagerly
applying does so, and one in which an intermediate policy is best. These examples are not
intended to be an exhaustive demonstration of flecs's capabilities. Rather, our examples
are intended to illustrate the need to consider problems other than traditional goal ordering
problems and to motivate the potential impact of flecs.

5.1 Eagerly Subgoaling Can Be Better

First, consider the class of tasks in which the following is true: all operators are initially
executable, but they must be performed in a speci�c order because each operator deletes
the preconditions of the operators that were supposed to be executed earlier. For instance,
suppose that there is a single paint brush and several objects which need to be painted
di�erent colors. The paint brush can be washed fairly well, but it never comes completely
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clean. For this reason, if we ever use a lighter paint after a darker paint, some of the darker
paint will show up on the painted object and our whole project will be ruined. Perhaps the
shade of red is darker than the shade of green. Then to paint a chair with a red seat and
green legs, we had better paint the legs �rst.

Consider a range of colors ordered from light to dark: white, yellow, green, : : : , and
black. Initially, we could paint an object any color. However, if we start by painting
something black, then no other paint can be used. In order to represent this situation to a
planner, we created a domain with the operators shown in Table 3.

Operator: paint-white <obj> paint-yellow <obj> � � � paint-black <obj>
preconds: (usable white) (usable yellow) � � � (usable black)

adds: (white <obj>) (yellow <obj>) � � � (black <obj>)
deletes: (usable white) � � � (usable white)

� � � (usable yellow)
...

...
(usable brown)

Table 3: Example domain for which delayed step-ordering commitment results in e�cient
planning.

Assume that all the colors are usable in the initial state. Since painting an object a certain
color deletes the precondition of painting an object a lighter color, and since this precon-
dition cannot be re-achieved (no operator adds the predicate \usable"), the colors must be
used in a speci�c order.

This painting domain is a real-world interpretation of the arti�cial domain DmS1 intro-
duced in (Barrett & Weld, 1994). The operators in DmS1 look like:

Operator: Ai

preconds: fIig
adds: fGig

deletes: fIj jj < ig

Since each operator deletes the preconditions of all operators numerically before it, these
operators can only be applied in increasing numerical order. Thus, A1 corresponds to the
operator paint-white, A2 corresponds to paint-yellow, etc. We used this domain for our
experiments, all of which were run on a SPARC station. We generated random problems
having one to �fteen goals: ten problems with each number of goals. We used these same
150 problems to test both of the extreme heuristics. To get our data points, we averaged
the results for the ten problems with the same number of goals. All of the raw data is
contained in the online appendix. We graph the average time that flecs took to solve the
problems versus the number of goals.

As shown in (Stone et al., 1994),9 eagerly applying leads to exponential behavior (as
a function of the number of goals) in this domain, while eagerly subgoaling, when using

9. We began the study of our new planning algorithm | now named flecs| on prodigy4.0. We consider
the version of prodigy used in (Stone et al., 1994) to be a preliminary implementation of flecs.

43



Veloso & Stone

an operator choice heuristic from the same study, leads to approximately linear behavior
and no backtracking. The problem with eagerly applying is that, for example, if goal G7

is solved before G4, then flecs will immediately apply A7 and have to backtrack when
it unsuccessfully tries to apply A4. Eagerly subgoaling allows flecs to build up the set
of operators that it will need to apply and then order them appropriately by selecting an
application order that avoids con
icts or threats. Figure 11 shows a graphic comparison of
the two di�erent behaviors.
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Figure 11: flecs's performance with di�erent heuristics in domains DmS1. Eager subgoal-
ing and applying correspond to delayed commitments and eager commitments
respectively.

5.2 Eagerly Applying Can Be Better

Next, consider the class of tasks in which the following is true: several operators could
be used to achieve any goal, but each operator can only be used once. To use a similar
example, suppose we are trying to paint di�erent parts of a single object di�erent colors.
However, now suppose that we are using multiple brushes that never come clean: once we
use a brush for one color, we can never safely use it again. For instance, if we painted the
green parts using brush1, we would need to use brush2 (or any brush besides brush1) to
paint the red parts. Table 4 represents the operators in this new domain.

Operator: paint-with-brush1 : : : paint-with-brush8

<parts> <color> � � � <parts> <color>
preconds: (unused brush1) � � � (unused brush8)

adds: (painted <parts> <color>) � � � (painted <parts> <color>)
deletes: (unused brush1) � � � (unused brush8)

Table 4: Example domain for which eager step-ordering commitment and use of the state
results in e�cient planning.

Note that each operator can be used for any color, but since it deletes its own precondition,
it can only be used once. We capture the essential features of this domain in an arti�cial
domain called D1-use-once. The operators in D1-use-once look like:
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Operator: Ai

preconds: fIig
adds: f< g >g

deletes: fIig

Any operator can achieve any goal, but since each operator deletes its own precondition, it
can only be used once. Each operator corresponds to painting with a di�erent brush.

In this domain, it is better to eagerly apply than it is to eagerly subgoal. Eagerly
subgoaling causes flecs to select the same operator to achieve all of its goals. With a
deterministic method for selecting operators (such as minimum conspiracy number with
order of appearance in the domain speci�cation as a tie-breaker), it selects operator A1 to
achieve two di�erent goals. However, since it could only apply A1 once, it would need to
backtrack to select a di�erent operator for one of the goals. As shown in Figure 12, eagerly
applying outperforms eagerly subgoaling in this case. We generated these results in the
same way as the results in the previous subsection.
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Figure 12: flecs's performance with di�erent heuristics in domains D1-use-once.

5.3 An Intermediate Heuristic

Were it always possible to �nd good solutions either by always eagerly subgoaling, as in the
�rst example, or by always eagerly applying, as in the second, there would be no need to
include the variable toggle in flecs: we could simply have an eager-subgoal mode and an
eager-apply mode. However, there are cases when neither of the above alternatives su�ces.
Instead, we need to eagerly subgoal during some portions of the search and eagerly apply
during others. One heuristic for changing the commitment strategy is the abstraction-driven
method described in Section 4.2. Here we present a domain which can use a form of this
heuristic.

This time consider the class of tasks in which the following is true: top-level goals take at
least three operators to achieve, one of which is irreversible, can only be executed a limited
number of times, and restricts the bindings of the other operators. One representative of
this class is the one-way rocket domain introduced in (Veloso & Carbonell, 1993). For the
sake of consistency, however, we will present a representative of this class of domains in
the painting context. Suppose that we are painting walls with rollers. To paint a wall we
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need to �rst \ready" the wall, which for the purpose of this example means to decide that
the wall needs to be painted and to designate a color and roller to paint the wall. Next we
must �ll the selected roller with the appropriately colored paint. Then we can paint the
wall. Unfortunately, our limited supply of rollers can never become clean after they have
been �lled with paint, but they must be clean when they are selected to paint a wall. For
this reason, we must ready all the walls that we want to paint with the same roller before
we can �ll the roller with paint. For the reader familiar with the one-way rocket domain,
the \�ll-roller" operator here is analogous to the \move-rocket" operator in that domain:
it can only be executed once due to a limited supply of fuel, and it must be executed after
it has been fully loaded. Table 5 shows a possible set of operators in this painting domain.

Operator: designate-roller �ll-roller paint-wall

<wall> <roller> <color> <roller> <color> <wall> <roller> <color>
preconds: (clean <roller>) (clean <roller>) (ready

(needs-painting <wall>) (chosen <wall> <roller> <color>)
<roller> <color>) (�lled-with-paint

<roller> <color>)
adds: (ready (�lled-with-paint (painted <wall> <color>)

<wall> <roller> <color>) <roller> <color>)
(chosen <roller> <color>)

deletes: (clean <roller>) (ready
<wall> <roller> <color>)
(needs-painting <wall>)

Table 5: Example domain for which the 
exibility of commitments results in e�cient plan-
ning.

When given this domain representation, flecs has a di�cult time with some appar-
ently simple problems if it uses the same search strategy throughout its entire search. For
example, consider the problem with �ve walls and two rollers (equivalent to a problem in
the one-way rocket domain with �ve objects and two destinations):

Initial State Goal Statement An Optimal Solution
(needs-painting wallA) (painted wallA red) <Designate-Roller wallA roller1 red>
(needs-painting wallB) (painted wallB red) <Designate-Roller wallB roller1 red>
(needs-painting wallC) (painted wallC red) <Designate-Roller wallC roller1 red>
(needs-painting wallD) (painted wallD green) <Fill-Roller roller1 red>
(needs-painting wallE) (painted wallE green) <Paint-Wall wallA roller1 red>
(clean roller1) <Paint-Wall wallB roller1 red>
(clean roller2) <Paint-Wall wallC roller1 red>

<Designate-Roller wallD roller2 green>
<Designate-Roller wallE roller2 green>
<Fill-Roller roller2 green>
<Paint-Wall wallD roller2 green>
<Paint-Wall wallE roller2 green>
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flecs does not directly �nd this solution when always eagerly subgoaling or when always
eagerly applying. To search e�ciently, it must subgoal until it has considered all the walls
that need to be painted the same color; then it must apply all applicable operators before
continuing. There is no explicit information in the domain telling it to use one roller for red
and one roller for green.10 For this reason, when flecs eagerly subgoals, it initially selects
the same roller to paint all the walls. It extensively backtracks before �nding the correct
bindings. flecs also does not realize that it should \ready" all the walls that are going
to be painted the same color before �lling the roller. Thus, when flecs eagerly applies
operators, it tries �lling a roller as soon as it has one wall \readied." Note that planning
with variables would not solve this problem since the planner would still need to make
binding selections before subgoaling beyond \paint-wall," hence facing the same problems.

When flecs tries to solve the above problem using either strategy described, it does
not succeed in a reasonable amount of time. Since flecs is complete, it would certainly
succeed eventually, but eventually can be a long time away when dealing with an NP-hard
problem: neither of these commitment strategies leads to a solution to the above problem
in under 500 seconds of search time. But all is not lost. By changing the value of toggle
at the appropriate times, flecs can easily �nd a solution to the above problem. In fact, it
can do so in just 4 seconds when toggle is manually changed at the appropriate times.

time(sec) solution

eager applying 500 no
eager subgoaling 500 no
variable strategy 4 yes

If flecs eagerly subgoals until it has decided to paint wallA, wallB, and wallC with
roller1, then it can begin eagerly applying. Once the three walls are painted red, flecs
can begin subgoaling again without any danger of preparing the other walls with the wrong
roller: only roller2 is still clean. This is an example in which the change in state allows the
minimum conspiracy number heuristic to select the correct instantiated operator.

The general heuristic here is that toggle should be set to sub until all walls that need
to be painted the same color have been considered. Then toggle should be set to app until
all the applicable operators have been applied. Then toggle should be set back to sub as
the process continues. In this way, flecs will need to do very little backtracking and it
can quickly reach a solution. This heuristic corresponds to using an abstraction hierarchy
to deal separately with the interactions between the di�erent colors and the di�erent walls.

6. Conclusion

We have presented a planner that is intended for studying the correspondence between plan-
ning problems and the search heuristics that are most suited to those problems. flecs has
the ability to eagerly subgoal, thus delaying operator-ordering commitments; eagerly apply,
thus maximizing the advantages of maintaining an internal state; or to 
exibly interleave
these two strategies. Thus it can operate at any point in the continuum of operator-ordering
heuristics { one important dimension of planning.

10. This problem is very common in planning as there is often no syntactically correct way to restrict bindings
in a domain representation while maintaining the intended 
exibility and generality in the domain.
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In this paper, we explained the advantages and disadvantages of delayed and eager
commitments. We presented the flecs algorithm in full detail, carefully motivating the
concepts and illustrating them with clear examples. We discussed di�erent heuristics to
guide flecs in its choice points and discussed its properties. We showed examples of
speci�c planning tasks and corresponding empirical results which support our position that
a general-purpose planner must be able to use a 
exible commitment strategy. Although
all planning problems are solvable by complete planners, flecs may solve some of the
problems more e�ciently than other planners that do not have the ability to change their
commitment strategy and may fall into a worst case of their unique commitment strategy.

flecs provides a framework to study the characteristics of di�erent planning strategies
and their mapping to planning domains and problems. flecs represents our view that
there is no domain-independent planning strategy that is uniformly e�cient across di�er-
ent domains and problems. flecs addresses the particular operator-ordering choice as a

exible planning decision. It allows the combination of delayed and eager operator-ordering
commitments to take advantage of the bene�ts of explicitly using a simulated execution
state and reasoning about planning constraints.

We are currently continuing our work on understanding the tradeo�s among di�erent
planning strategies along di�erent dimensions. We plan to study the e�ects of eager versus
delayed commitments at the point of operator instantiations. We are also investigating the
e�ects of combining real execution into flecs. Finally, we plan to use machine learning
techniques on flecs's choice points to gain a possibly automated understanding of the
mapping between e�cient planning methods and planning domains and problems.

Appendix A. Proofs

We prove that flecs is sound and that with iterative deepening it is complete. Consider
the flecs algorithm as presented in Table 2. A planning problem is determined by the
initial state, the goal statement, and the set of operators available in the domain. A plan
is a (totally-ordered) sequence of instantiated operators. The returned plan generated by
flecs for a planning problem is the sequence of applied operators upon termination. A
solution to a planning problem is a plan whose operators can be applied to the problem's
initial state so as to reach a state that satis�es the Goal Statement. A justi�ed solution is
a solution such that no subsequence of operators in the solution is also a solution. flecs
terminates successfully when the termination condition is met (step 2).

Theorem 1. flecs is sound.

We show that the flecs algorithm is sound; that is, if the algorithm terminates suc-
cessfully, then the returned plan is indeed a solution to the given planning problem.

Assume that flecs terminates successfully and that S = O1; O2; :::On is the returned
plan. flecs applies an operator only when the preconditions of the operator are satis�ed
in the Current State C (step 7). Hence, by construction, after operators O1; O2; : : :Ok for
any k < n have been applied, the preconditions of operator Ok+1 are satis�ed in C. At the
point of termination, the Current State C satis�es the Goal Statement (step 2). But C was
reached from the initial state by applying the operators of S. Therefore S is a solution.
QED.
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Theorem 2. flecs with iterative deepening is complete.

Recall that completeness, informally, means that if there is a solution to a particular
problem, then the algorithm will �nd it. We show that flecs's search space is complete and
that flecs's search algorithm is complete as long as it explores all branches of the search
space, for example using iterative deepening (Korf, 1985).11 Iterative deepening involves
searching with a bound on the number of search steps that may be performed before a
particular search path is suspended from further expansion; if no solution is found for a
particular depth bound, the search is repeated with a larger depth bound.

For a planning problem, assume that S = O1; O2; :::On is a justi�ed solution. We will
show that if flecs searches with iterative deepening, it will �nd a solution.

The flecs algorithm has four choice points. Three of these choice points are backtrack
points: the choice between subgoaling and applying (step 5d), the choice of which operator
to use to achieve a goal (step 6c), and the choice of which applicable operator to apply
(step 7). One choice point is not a backtrack point: the choice of goal on which to subgoal
(step 6).

To prove completeness, we must show that at each backtrack point, there is some possible
choice that will lead flecs towards �nding the plan S, no matter what choices flecs makes
at the non-backtrack choice point. Then if flecs explores all branches of the search space
by searching with iterative deepening, it must eventually �nd S unless it �nds some other
solution (of length � n) �rst.

The proof involves constructing oracles that tell flecs which choices to make at the
backtrack points so as to �nd S. Then no matter what choices it makes at the other choice
point, it �nds solution plan S.

Consider the point in the search at which operators O1; O2; O3; : : : ; Ok for some k (and
no others) have already been applied. Then let there be oracles at the backtrack points
which operate as follows.

At the choice of subgoaling or applying (step 5d), the �rst oracle makes flecs choose to
apply if and only if Ok+1 is applicable (i.e., is in A); otherwise it makes flecs subgoal. If
flecs chooses to apply (Ok+1 2 A), then it reaches another choice point, namely the choice
of operator to apply (step 7). Another oracle makes flecs select precisely the step Ok+1.

If flecs chooses to subgoal (Ok+1 62 A), then let flecs choose any goal P from the
set of pending goals P (step 6). Since step 6 is not a backtrack point, we cannot have an
oracle determine the choice at this point. Instead we have to show that, independently from
the choice made at this point, flecs will still �nd the solution S. It can �nd this solution
as a consequence of the construction of the next oracle that controls the �nal choice point
(below). That oracle guarantees that any P selected must either be a member of the goal
statement or a precondition of some operator of S.

The �nal choice point is the selection of an operator to achieve P (step 6c). The third
oracle makes flecs choose an operator of S to achieve P . Since S is a solution to the
planning problem and since P is either a member of the Goal Statement or a precondition
of some operator of S, there must be some operator of S that achieves P . If there is more
than one such operator, any one can be chosen. Since only operators from S are selected,

11. As opposed to breadth �rst search, iterative deepening does not harm e�ciency. It combines the e�ciency
of searching depth �rst with the completeness of searching breadth �rst.
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the condition that all pending goals are from the Goal Statement or are preconditions of
operators of S is maintained.

These three oracles will lead flecs to the justi�ed solution S. Since S is justi�ed, every
operator of S is necessary to achieve either some goal in the goal statement or some pre-
condition of another operator. Consequently, since the third oracle only chooses operators
of S, every such operator will eventually be chosen and then applied as prescribed by the
�rst two oracles. Once every operator of S has been applied, the termination condition will
be met (since S is a solution) and flecs will terminate successfully. QED.
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