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Abstract

Quadratic program relaxations are proposed as
an alternative to linear program relaxations and
tree reweighted belief propagation for the met-
ric labeling or MAP estimation problem. An ad-
ditional convex relaxation of the quadratic ap-
proximation is shown to have additive approx-
imation guarantees that apply even when the
graph weights have mixed sign or do not come
from a metric. The approximations are extended
in a manner that allows tight variational relax-
ations of the MAP problem, although they gen-
erally involve non-convex optimization. Experi-
ments carried out on synthetic data show that the
quadratic approximations can be more accurate
and computationally efficient than the linear pro-
gramming and propagation based alternatives.

1. Introduction

Undirected graphical models, or Markov random fields
(MRFs), are natural tools in many domains, from image
processing to social network modeling. A key inference
problem for MRFs is to compute the maximum a poste-
riori (MAP) configuration—the most probable labeling—
which is used in multiple applications such as image de-
noising, protein folding and error control coding. For ar-
bitrary graphs and parameter settings this problem is NP-
hard, but various approximate techniques have been pro-
posed that have enabled the application of MRFs to a range
of practical problems.

For tree-structured distributions, the MAP estimate for ran-
dom fields can be computed efficiently by dynamic pro-
gramming. It can also be computed in polynomial time
using graph cuts (Greig et al., 1989) when the parameter
settings yield a submodular energy function. In the gen-
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eral setting, a widely used approximation technique is max-
product belief propagation (Pearl, 1988). The algorithm is
convergent on trees, and its fixed point configuration upon
convergence can be shown to be locally optimal with re-
spect to a large set of moves (Weiss & Freeman, 2001).
A similar message passing algorithm, tree-reweighted max
product (Wainwright et al., 2005), has stronger correctness
and convergence guarantees. Boykov et al. (2001) have
proposed graph-cut based algorithms that efficiently find a
local energy minimum with respect to two types of large
moves. A different direction has been taken in recent work
on linear program relaxations for the MAP problem in the
specific setting of metric labeling. In the metric labeling
formulation, a weighted graph and a metric on labels spec-
ifies the energy or cost of different labelings of a set of
objects, and the goal is to find a minimum cost labeling.
Casting this as an integer linear program, Kleinberg and
Tardos (1999) proposed linear relaxations for specific met-
rics. Chekuri et al. (2005) recently extended these tech-
niques using the natural linear relaxation of the metric la-
beling task, and obtained stronger approximation guaran-
tees.

In this paper, we propose a quadratic programming (QP)
relaxation to the MAP or metric labeling problem. While
the linear relaxations haveO(|E|k2) variables, where|E|
is the number of edges in the graph andk is the number of
labels, in our QP formulation there arekn variables, and
yet we show that the quadratic objective function more ac-
curately represents the energy in the graphical model. In
particular, we show that the QP formulation computes the
MAP solution exactly. Under certain conditions the relax-
ation results in a non-convex problem however, which re-
quires an intractable search over local minima. This mo-
tivates an additional convex approximation to the relax-
ation, which we show satisfies an additive approximation
guarantee. We also extend the relaxation to general varia-
tional “inner polytope” relaxations which we also show to
compute the MAP exactly. Experiments indicate that our
quadratic relaxation with the convex approximation out-
performs or is comparable to existing methods under many
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settings.

In the following section, we establish some notation and
recall the relevant background. In Section 2.1 we review
linear relaxations for MAP estimation. In Section 3, we
describe the quadratic relaxation, prove that it is tight, and
detail its convex approximation. In Section 4, we then ex-
tend the above relaxation to show the tightness of various
variational inner polytope relaxations. Finally, in Section 5
and Section 6, we present our experimental results and con-
clusions.

2. Notation and Background

Consider a graphG = (V,E), whereV denotes the set of
nodes andE denotes the set of edges. LetXs be a random
variable associated with nodes, for s ∈ V , yielding a ran-
dom vectorX = {X1, . . . ,Xn}, and letφ = {φα, α ∈ I}
denote the set of potential functions (or sufficient statistics)
for a setI of cliques in G. Associated withφ is a vector of
parametersθ = {θα, α ∈ I}. With this notation, the expo-
nential family of distributions ofX, associated withφ and
G is given by

p(x; θ) = exp

(

∑

α

θαφα − Ψ(θ)

)

.

As discussed in (Yedidia et al., 2001), at the expense of
increasing the state space one can assume without loss of
generality that the graphical model is a pairwise Markov
random field,i.e., the set of cliquesI is the set of edges
{(s, t) ∈ E}, so that

p(x; θ) ∝ exp





∑

s∈V

θsφs(xs) +
∑

(s,t)∈E

θstφst(xs, xt)



 .

If each Xs takes values in a discrete setXs, we can
represent any potential function as a linear combination
of indicator functions,φs(xs) =

∑

j φs(j) Ij(xs) and
φst(xs, xt) =

∑

jk φst(j, k) Ij,k(xs, xt) where

Ij(xs) =

{

1 xs = j

0 otherwise

and

Ij,k(xs, xt) =

{

1 xs = j andxt = k

0 otherwise .

We thus consider pairwise MRFs with indicator potential
functions as

p(x|θ) ∝ exp





∑

s,j

θs;jIj(xs) +
∑

s,t;j,k

θs,j;t,kIj,k(xs, xt)



 .

The MAP problem is then given by

x∗ = argmax
x

∑

s,j

θs;jIj(xs) +
∑

s,t;j,k

θs,j;t,kIj,k(xs, xt).

(1)

2.1. Linear Relaxations

MAP estimation in the discrete case is essentially a combi-
natorial optimization problem, and it can be cast as an inte-
ger program. Recent work has studied approximate MAP
estimation using linear relaxations (Bertsimas & Tsitsik-
lis, 1997). Letting variablesµ(s; j) andµ(s, j; t, k) cor-
respond to the indicator variablesIj(xs) andIj,k(xs, xt),
we obtain the following integer linear program (ILP),

max
∑

s;j

θs;j µ1(s; j) +
∑

s,t;j,k

θs,j;t,k µ2(s, j; t, k)

such that
∑

k

µ2(s, j; t, k) = µ1(s; j)

∑

j

µ1(s; j) = 1

µ1(s; j) ∈ {0, 1}

µ2(s, j; t, k) ∈ {0, 1}.

This ILP can then be relaxed to the following linear pro-
gram (LP),

max
∑

s;j

θs;j µ1(s; j) +
∑

s,t;j,k

θs,j;t,k µ2(s, j; t, k)

(2)

such that
∑

k

µ2(s, j; t, k) = µ1(s; j)

∑

j

µ1(s; j) = 1

0 ≤ µ1(s; j) ≤ 1

0 ≤ µ2(s, j; t, k) ≤ 1.

Chekuri et al. (2005) propose the above LP relaxation as
an approximation algorithm for the metric labeling task,
which is the MAP problem with spatially homogeneous
MRF parameters; thus,θs,j;t,k = wst d(j, k), wherewst

is a non-negative edge weight andd is a metric that is the
same for all the edges. Kleinberg and Tardos (1999) pro-
posed related linear relaxations for specific metrics. The
above LP relaxation was also proposed for the general pair-
wise graphical model setting by Wainwright and Jordan
(2003). Lettingθ andφ(x) denote the vectors of parameters
and potential functions, respectively, and letting〈θ, φ(x)〉
denote the inner product

〈θ, φ(x)〉 =
∑

s;j

θs;jIj(xs)+
∑

(s,t)∈E; j,k

θs,j;t,kIj,k(xs, xt)
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the MAP problem is then given by

x∗ = argmax
x

〈θ, φ(x)〉 = sup
µ∈M

〈θ, µ〉

whereM is the set of moment parameters

M =

{

µ :
∑

x

p(x)φ(x) = µ for some distributionp

}

.

The polytopeM can be seen to be upper-bounded by the
set LOCAL(G) of all single and pairwise vectorsµ1 andµ2

that satisfy the local consistency constraints
∑

k µ2(s, j; t, k) = µ1(s; j)
∑

j µ1(s, j) = 1

0 ≤ µ1(s; j) ≤ 1

0 ≤ µ2(s, j; t, k) ≤ 1.

Wainwright and Jordan (2003) thus proposed the upper-
bounding relaxation of usingLOCAL(G) as an outer
bound for the polytopeM,

µ∗ = sup
µ∈LOCAL(G)

〈θ, µ〉 , (3)

which is the same LP formulation as in equation (2). Fur-
thermore, Wainwright et al. (2005) show that under certain
conditions, the tree-reweighted belief propagation updates
solve the dual of the LP in equation (3); since strong du-
ality holds, the tree updates also give the optimal primal
value for the LP.

3. Quadratic Relaxation

In the linear relaxation of equation (2), the variables
µ2(s, j; t, k) are relaxations of the indicator variables
Ij,k(xs, xt), with a value of one indicating that for edge
(s, t) ∈ E, variablexs is labeledj and variablext is
labeledk. These pairwise variables are constrained by
demanding that they be consistent with the correspond-
ing “marginal” variablesµ1(s, j). Note, however, that the
binary indicator variables satisfy the additional “indepen-
dence” constraint

Ij,k(xs, xt) = Ij(xs) Ik(xt).

This then suggests that constraining the relaxation vari-
ables in a similar manner,µ2(s, j; t, k) = µ1(s; j)µ(t; k),
might yield a tighter relaxation. This leads to the following
quadratic program

max
∑

s;j

θs;jµ(s; j) +
∑

s,t;j,k

θs,j;t,k µ(s; j)µ(t; k)

subject to
∑

j

µ(s; j) = 1 (4)

0 ≤ µ(s; j) ≤ 1

The following result shows that the relaxation is in fact
tight; the proof uses the probabilistic method.

Theorem 3.1. The optimal value of problem(4) is equal
to the optimal value of the MAP problem(1).

Proof. Let the optimal MAP energy be

eMAP = max
x

∑

s;j

θs;jIj(xs) +
∑

s,t;j,k

θs,j;t,k Ij,k(xs, xt)

and let the optimal value of the relaxed problem be

e∗ = max
µ

∑

s;j

θs;jµ(s; j) +
∑

s,t;j,k

θs,j;t,k µ(s; j)µ(t; k)

where
∑

j µ(s; j) = 1 andµ(s; j) ∈ [0, 1]. Clearly,e∗ ≥
eMAP since problem (4) is a relaxation of problem (1). We
now show thateMAP ≥ e∗.

Let µ∗ be an optimal solution of problem (4), and consider
the following randomized rounding scheme. For each node
s, assign it valuej with probabilityµ(s; j). The expected
energy of such a rounding is

eR =
∑

s;j

θs;j µ(s; j)) +
∑

s,j;t,k

θs,j;t,k µ(s; j)µ(t; k)

= e∗

But there has to exist some discrete assignmenty whose en-
ergy is greater than the expected energy;e(y) ≥ e∗. Since
eMAP is the energy of the optimal configurationeMAP ≥
e(y), which thus giveseMAP ≥ e∗. 2

Note that the randomization in the proof just shows the ex-
istence of a discrete solution with the same energy as that
of the optimal real relaxation. The problem of obtaining
such a discrete solution efficiently is considered next.

Theorem 3.2. Any solution of the MAP problem(1) ef-
ficiently yields a solution of the relaxation(4) and vice
versa. Thus the relaxation(4) is equivalent to the MAP
problem(1).

Proof. From theorem 3.1, the optimal values of
problems (1) and (4) are equal; lete∗ denote this maxi-
mum energy. Let̂x be an optimal solution of the MAP
problem (1). As problem (4) is a relaxation of the MAP
problem,µ(s; j) = I(x̂; j) is also a feasible and optimal
solution for (4).

For the converse, letµ∗ be an optimal solution of prob-
lem (4). Its energy is given by

e∗ =
∑

s;j

θs;jµ
∗(s; j) +

∑

(s,t)∈E;j,k

θs,j;t,kµ∗(s; j)µ∗(t; k)

(5)
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If eachµ∗(s; j) is integer valued, that is, in{0, 1}, then
we can useµ∗ itself as the feasible optimal solution for the
MAP problem (1). Otherwise, considerµ∗ to be real val-
ued; we (efficiently) construct a labelingy with the maxi-
mum energye∗.

Consider an unlabeled nodes. Assign it labelys =
argmaxj θs;j +

∑

t:(s,t)∈E;k θs,j;t,kµ∗(t; k). Now, set
µ∗(s; ys) = 1 and µ∗(s; k) = 0 ; k 6= ys. Continue
with this labeling process until all nodes are labeled. It can
be shown that the energy of this assignmenty is equal to
the energye∗ of the optimal MAP assignment. In particu-
lar, each time we take up an unlabeled nodet, we select a
labeling that does not decrease the expected energy of the
unlabeled nodes given the labelings of the labeled nodes.
Given that the initial expected energy of all unlabeled nodes
wase, the energy at the end of the process, that is, of the
assignmenty, is thus at leaste∗. 2

3.1. Convex Approximation

The previous section showed that the relaxation in equa-
tion (4), while a simple extension of the LP in equation (2),
is actually equivalent to the MAP problem. This yields the
interesting result that the MAP problem is solvable in poly-
nomial time if the edge parameter matrixΘ = [θs,j;t,k] is
negative definite, since in this case the QP (4) is a convex
program. Note also that the quadratic program has a simple
set of constraints (only linear and box constraints), which
are also small in number, and is thus a simple problem in-
stance of general convex optimization. It should also be
stressed that for ann node graph, the QP has onlykn vari-
ables while the LP hasO(k2|E|) variables.

The case where the edge parameter matrixΘ is not nega-
tive definite yields a non-convex program. While one could
carry out an iterative search procedure up to a local maxi-
mum as in the max-product algorithm, we now describe a
convex approximation that provides a polynomial time so-
lution with additive bound guarantees.

Consider the quadratic integer program (QIP) correspond-
ing to the QP, given by

max
µ

∑

s;j

θs;j µ(s; j) +
∑

s,t;j,k

θs,j;t,k µ(s; j)µ(t; k)

subject to
∑

j

µ(s; j) = 1 (6)

µ(s; j) ∈ {0, 1}

µ(s, j; t, k) ∈ {0, 1}.

This is clearly equivalent to the MAP problem in equa-
tion (1). Let Θ = [θs,j;t,k] be a parameter matrix that
is not negative semi-definite. Letd(s, i) be the (positive)
diagonal terms that need to be subtracted from the matrix
to make it negative semi-definite. An upper bound ford

is d(s, i) ≤
∑

(t,k) |θs,j;t,k|, since the negative of a di-
agonally dominant matrix is negative semi-definite. Let
Θ′ = Θ − diag{d(s; i)} be the negative semi-definite ma-
trix obtained by subtracting off diagonal elementsd(s; i).
Also, let

θ′s;j = θs;j + d(s; j). (7)

Now, for binaryµ(s; i) ∈ {0, 1}, we have thatµ(s; i)2 =
µ(s; i); in particular,d(s; i)µ(s; j) − d(s; i)µ(s; j)2 = 0.
We thus get that the following QIP is equivalent to the
QIP (6),

max
µ

∑

s;j

θ′s;j µ(s; j) +
∑

s,t;j,k

θ′s,j;t,k µ(s; j)µ(t; k)

such that
∑

j

µ(s; j) = 1

µ(s; j) ∈ {0, 1}

Relaxing this QIP as before, we obtain the following opti-
mization problem.

max
µ

∑

s;j

θ′s;j µ(s; j) +
∑

s,t;j,k

θ′s,j;t,kµ(s; j)µ(t; k)

such that
∑

j

µ(s; j) = 1

µ(s; j) ∈ [0, 1]

This is a convex program solvable in polynomial time. The
optimality results of the previous section do not follow,
however, and the relaxation (8) is not always tight. But as
shown next, we can get an additive approximation bound
for the discrete solution obtained using the rounding proce-
dure described in the previous section.

Theorem 3.3. Let µ∗ be the optimal solution for the con-
vex QP (8), and lete∗ be the optimal MAP energy. Then
there is a discrete configurationy (from µ∗) with energy
E(y) satisfying

E(y) ≥ e∗ −
∑

s,i

d(s; i)µ∗(s; i)(1 − µ∗(s; i))

≥ e∗ −
1

4

∑

s,i

d(s; i).

This result shows that if eitherΘ is close to negative defi-
nite, so that

∑

s,i d(s; i) is small, or if the solution is close
to integral, so thatµ∗(s; i) is close to zero or one, then the
convex relaxation achieves a solution that is close to the
optimal MAP solution.

Proof. Just as in the proof of Theorem 3.2, givenµ∗,
the optimal solution to the convex relaxation, we can effi-
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ciently obtain a discrete solutiony whose energy is

E(y) =
∑

s;j

θs;jµ
∗(s; j)+

∑

(s,t)∈E;j,k

θs,j;t,kµ∗(s; j)µ∗(t; k).

On the other hand, the optimal value of the convex QP is
given by

e∗CQP =
∑

s;j

(θs;j + d(s; i)) µ∗(s; j)

+
∑

s,t;j,k

θs,j;t,k µ∗(s; j)µ∗(t; k)

−
∑

(s,i)

d(s; i)µ∗(s; i)2.

We then have that

E(y) = e∗CQP −
∑

(s,i)

d(s; i)µ∗(s; i)[1 − µ∗(s; i)]

≥ e∗ −
∑

s,i

d(s; i)µ∗(s; i) (1 − µ∗(s; i))

≥ e∗ −
∑

s,i

d(s; i)

4

and the result follows. 2

3.2. Iterative Update Procedure

Just as tree-reweighted max product gives a set of iterative
updates for solving the LP in equation (3), we might ask
if there is an iterative update counterpart for the QP. Max-
product is a co-ordinate ascent algorithm in the dual (La-
grangian) space for the LP; however, since the dual space
of the QP (4) is more complicated, we look at a set of fixed
point co-ordinate ascent updates in its primal space.

The QP is given by

µ∗ = max
µ

∑

s;j

θs;jµ(s; j)

+
∑

s,t;j,k

θs,j;t,k µ(s; j)µ(t; k) (8)

subject to
∑

j

µ(s; j) = 1

µ(s; j) ∈ [0, 1].

Consider nodes, and suppose that values forµ(t; .) are
fixed for other nodest 6= s. Then the optimal parameter
valuesµ(s; .) for nodes are given by

µ(s; .) = max
µ(s;.)

∑

j

θs;jµ(s; j)

+
∑

t;j,k

θs,j;t,k µ(s; j)µ(t; k)

subject to
∑

j µ(s; j) = 1. This is easily seen to be solved
by taking

j∗(s) = argmax
j

θs;j +
∑

t;j,k

θs,j;t,kµ(t; k)

and settingµ(s, j) = Ij∗(s)(j). This is essentially the it-
erative conditional modes algorithm (Besag, 1986), which
iteratively updates each node with a labeling that most in-
creases the energy, holding fixed the labels of the other
nodes.

A better iterative procedure, with stronger and faster
convergence properties, albeit for convex programs, is
projected conjugate gradient ascent (Axelsson & Barker,
2001). Thus, another advantage of our convex approxima-
tion is that we can use conjugate gradient ascent as a sim-
ple iterative procedure that is guaranteed to converge (un-
like co-ordinate ascent for max product). This makes the
convex approximation to the QP applicable to large scale
problems.

4. Inner Polytope Relaxations

In the previous section, we obtained a quadratic relaxation
by imposing an “independence” constraint on the parame-
tersµ(s, j; t, k) in equation (4). We also showed that this
relaxation is actually tight, and is equivalent to the MAP
problem. In this section, we show how one can think of
this relaxation as the counterpart of mean-field for MAP,
and how any of the corresponding relaxation counterparts
of structured mean-field are also tight.

Consider Wainwright and Jordan (2003)’s polytope formu-
lation of MAP in equation (3), given by

µ∗ = max
x

〈θ, φ〉 = sup
µ∈M

〈θ, µ〉

whereM is the convex hull of all configuration potentials
φ(x). The second equality follows from the fact that in a
linear program, the optimum occurs at an extremal point
φ(x∗). Thus, if MI ⊂ M is any subset of the marginal
polytope that includes all of the vertices, then the equations

µ∗ = max
x

〈θ, φ〉 = sup
µ∈MI

〈θ, µ〉

still hold. In other words, any relaxation of the indicator
variables toµ(s, j; t, k) ∈ MI would lead to a tight re-
laxation, as long asMI contains all vertices. In contrast,
tree-reweighted max product is not tight, since the domain
set for its relaxed parameters isLOCAL(G) ⊇ M; see
Section 2.1.

As described in (Wainwright & Jordan, 2003), one can
think of structured mean field methods as inner polytope
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approximations. For the given graphG and a subgraphH,
let

E(H) = {θ′ | θ′st = θst 1(s,t)∈H}

where θst is the vector of natural parameters associated
with edge(s, t). Thus, the parameters not included in the
subgraph are set to zero. Now for the subgraphH, we can
define the following set of moment parameters:

M(G;H) = {µ |µ = Eθ[φ(x)] for someθ ∈ E(H)} .

In essence, the moment parameters inM(G;H) must be
realizable by a distribution that respects the structure ofH.
For anyH ⊆ G, the relationM(G;H) ⊆ M(G) thus
always holds, andM(G;H) is an inner polytope approxi-
mation toM. In particular, takingH to be the completely
disconnected graph (i.e. no edges)H0, we have,

M(G;H0) = {µ(s; j), µ(s, j; t, k) |

0 ≤ µ(s; j) ≤ 1

µ(s, j; t, k) = µ(s; j)µ(t; k)}

which can be seen to be equal to the feasible set of the QP
relaxation (4). For this subgraphH = H0, the mean field
relaxation thus becomes

sup
µ∈M(G;H0)

〈θ, µ〉

= sup
µ∈M(G;H0)

∑

s;j

θs;jµ(s; j) +
∑

st;jk

θs,j;t,kµ(s, j; t, k)

= sup
µ∈M(G;H0)

∑

s;j

θs;jµ(s; j) +
∑

st;jk

θs,j;t,kµ(s; j)µ(t; k)

which is equivalent to the quadratic relaxation in equa-
tion (4). Thus, we can, in principle, use any “structured
mean-field” relaxation of the formsupµ∈M(G;H) 〈θ, µ〉 to
solve the MAPexactly. The caveat is that this problem, like
structured mean field, is a non-convex problem. However,
while structured mean field only solves for an approximate
value of the log-partition function, the results from Sec-
tion 3 show that its counterpart for the MAP problem is
exact, if the global optimum can be found.

5. Experiments

The quadratic relaxation with the convex approximation
was evaluated by comparing it against three competing
methods: the linear programming relaxation (Chekuri
et al., 2005), the tree-reweighted max product algo-
rithm (Wainwright et al., 2005), and iterative conditional
modes (ICM) (Besag, 1986). For tree-reweighted max
product, we use the sequential update variant detailed in
(Kolmogorov, 2005), which has better convergence proper-
ties than the originally proposed algorithm.

The approximate MAP algorithms were compared on dif-
ferent potential functions and coupling types for 2D near-
est neighbor grid graphs with 100 nodes and a label set
of size four. The node potentials were generated uni-
formly U(−1, 1), while the edge potentials were gen-
erated as a product of an edge weight and a distance
function on labels. For different settings of an edge
coupling-strength parameter,dcoup, the edge weight was
selected fromU(−dcoup, dcoup) for the mixed coupling,
from U(0, 2 dcoup) for the positive coupling, and from
U(−2 dcoup, 0) for the negative coupling. The follow-
ing four commonly used distances were used for the dis-
tance function: Ising,φ(l,m) = lm; uniform, or Potts,
φ(l,m) = I(l = m); quadratic,φ(l,m) = (l−m)2; linear
φ(l,m) = |l − m|.

Figures 1 and 2 show plots of the value (energy) of the
MAP estimates using the different algorithms for a range
of model types. For any given setting of parameters and
potential functions, a higher value is closer to the MAP es-
timate and is thus better. As the plots show, the quadratic
relaxation slightly outperforms tree-reweighted max prod-
uct for mixed and positive couplings, and is comparable or
slightly worse for negative coupling. The quadratic approx-
imation typically beats both ICM and the linear relaxation.

0 500 1000 1500 2000 2500
0

500

1000

1500

2000

2500

3000

Number of Nodes

E
ne

rg
y

Ising Mixed Coupling

 

 

 ICM
 TRW
 QP Convex

0 500 1000 1500 2000 2500
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Number of Nodes

R
el

at
iv

e 
E

ne
rg

y 
w

rt
 Q

P

Ising Mixed Coupling

 

 

 ICM
 TRW

Figure 3.Comparison of ICM and TRW on larger graphs, us-
ing Ising potentials with mixed coupling. The right plot shows
(eICM − eQP)/eICM and(eTRW − eQP)/eTRW.
In Figure 3 we compare the MAP estimates from different
algorithms on larger graphs, using the Ising potential func-
tion with mixed coupling. The quadratic relaxation is seen
to outperform ICM and tree-reweighted max product, even
as the number of nodes increases.

We note that since the convex approximation to the QP is a
convex program, it can be solved (in polynomial time) us-
ing standard QP solvers for small problems, and for larger-
scale problems one can use iterative projected conjugate
gradient, which provides a fast iterative method that is
guaranteed to converge. In our experiments, the compu-
tation time for the QP method was comparable to that re-
quired by tree-reweighted max product, which in turn re-
quired much less time to solve than the linear programming
relaxation. This is due primarily to the fact that the linear
program has|E|k2 variables, while the convex quadratic
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Figure 1.Comparison of linear relaxation (LP), iterative conditional modes (ICM), tree-reweighted max product (TRW), and quadratic
programming relaxation (QP) on10× 10 grid graphs using Ising potentials (top row) and uniform potentials (bottom)with mixed (left),
positive (center) and negative (right) couplings. A better MAP estimate has a higher value.

relaxation has onlynk variables, wheren is the number of
nodes in the graph,|E| is the number of edges, andk is the
number of labels.

6. Conclusions

This paper has proposed a quadratic programming relax-
ation to the MAP problem for random fields, or the metric
labeling problem. The quadratic objective function more
accurately represents the energy in the graphical model
while using fewer variables than the linear relaxation. It
was shown that the QP relaxation is tight and computes the
MAP solution exactly. However, under certain conditions
the relaxation results in a non-convex problem, which re-
quires an intractable search over local minima. This led
to an additional convex approximation to the relaxation,
for which there is an additive approximation guarantee.
The quadratic programming approximation was also ex-
tended to general variational “inner polytope” relaxations
that also compute the MAP exactly. Experiments demon-
strated that the quadratic relaxation, with the convex ap-
proximation, can outperform existing methods under many
settings, while also being computationally attractive.
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