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Many machine learning and data mining tasks depend on aimcthat estimate similarity
between instances. Similarity computations are partityuianportant in clustering and
information integration applications, where pairwisetaises play a central role in many
algorithms. Typically, algorithms for these tasks rely or-gefined similarity measures,
such as edit distance or cosine similarity for strings, arliliean distance for vector-space
data. However, standard distance functions are frequeuatigptimal as they do not capture
the appropriate notion of similarity for a particular domailataset, or application.

In this thesis, we present several approaches for addgetiss problem by em-

ploying learnable similarity functions. Given supervision in the form of slari or dis-
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similar pairs of instances, learnable similarity funcaran be trained to provide accurate
estimates for the domain and task at hand. We study the pnobfeadapting similarity
functions in the context of several tasks: record linkagiestering, and blocking. For each
of these tasks, we present learnable similarity functiorbteaining algorithms that lead to
improved performance.

In record linkage, also known as duplicate detection anityematching, the goal
is to identify database records referring to the same uyidegrientity. This requires esti-
mating similarity between corresponding field values obrds, as well as overall simi-
larity between records. For computing field-level similafietween strings, we describe
two learnable variants of edit distance that lead to impmeets in linkage accuracy. For
learning record-level similarity functions, we employ $opt Vector Machines to combine
similarities of individual record fields in proportion toetin relative importance, yielding
a high-accuracy linkage system. We also investigate giestdfor efficient collection of
training data which can be scarce due to the pairwise nafuleoecord linkage task.

In clustering, similarity functions are essential as theyedmine the grouping of
instances that is the goal of clustering. We describe a frariefor integrating learnable
similarity functions within a probabilistic model for sersupervised clustering based on
Hidden Markov Random Fields (HMRFs). The framework accomates learning vari-
ous distance measures, including those based on Bregrmemelices (e.g., parameterized
Mahalanobis distance and parameterized KL-divergenseledl as directional measures
(e.g., cosine similarity). Thus, it is applicable to a widage of domains and data repre-
sentations. Similarity functions are learned within the RM-KMEANS algorithm derived
from the framework, leading to significant improvementslustering accuracy.

The third application we consider, blocking, is critical nmaking record linkage
and clustering algorithms scalable to large datasets, fasiiitates efficient selection of
approximately similar instance pairs without explicitigrsidering all possible pairs. Pre-

viously proposed blocking methods require manually coiesitng a similarity function or



a set of similarity predicates, followed by hand-tuning afgmeters. We propose learning
blocking functions automatically from linkage and sempaiyised clustering supervision,
which allows automatic construction of blocking methodat thre efficient and accurate.
This approach yields computationally cheap learnablelaiityi functions that can be used
for scaling up in a variety of tasks that rely on pairwise aliste computations, including

record linkage and clustering.
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Chapter 1

Introduction

1.1 Motivation

Similarity functions play a central role in machine leamiand data mining tasks where
algorithms rely on estimates of distance between objeaisas€quently, a large number of
similarity functions have been developed for differentadigipes, varying greatly in their
expressiveness, mathematical properties, and assumsptidowever, the notion of simi-
larity can differ depending on the particular domain, detasr task at hand. Similarity
between certain object features may be highly indicativevetall object similarity, while
other features may be unimportant.

Many commonly used functions make the assumption thatrdiiteinstance fea-
tures contribute equally to similarity (e.g., edit distarar Euclidean distance), while oth-
ers use statistical properties of a given dataset to tremstioe feature space (e.g., TF-IDF
weighted cosine similarity or Mahalanobis distance) (Qudart, & Stork, 2001). These
similarity functions make strong assumptions regardirgdbtimal representation of data,
while they may or may not be appropriate for specific datasetstasks. Therefore, it is
desirable tdearn similarity functions from training data to capture the emtrnotion of dis-

tance for a particular task in a given domain. While learrgimgilarity functions via feature



selection and feature weighting has been extensively edduidi the context of classifica-
tion algorithms (Aha, 1998; Wettschereck, Aha, & Mohri, I99use of adaptive distance
measures in other tasks remains largely unexplored. IrntbiEs, we develop methods for
adapting similarity functions to provide accurate simiflaestimates in the context of the

following three problems:

e Record Linkage
Record linkage is the general task of identifying syntadlycdifferent object de-
scriptions objects that refer to the same underlying erftit§nkler, 2006). It has
been previously studied by researchers in several areagoisale detection, entity
resolution, object identification, and data cleaning, agnseveral other coreferent
names for this problem. Examples of record linkage inclu@gciring of coreferent
bibliographic citations (Giles, Bollacker, & Lawrence,9B), identifying the same
person in different Census datasets (Winkler, 2006), arking different offers for
the same product from multiple online retailers for comgami shopping (Bilenko,
Basu, & Sahami, 2005). In typical settings, performing rddinkage requires two
kinds of similarity functions: those that estimate simtiabetween individual object
attributes, and those that combine such estimates to obteirall object similarity.
Object similarities are then used by matching or clusteatgprithms to partition
datasets into groups of equivalent objects, or performnpsé record matching be-

tween distinct data sources.

e Semi-supervised Clustering
Clustering is an unsupervised learning problem in whichotbiective is to partition
a set of objects into meaningful groups (clusters) so thggotdwithin the same clus-
ter are more similar to each other than to objects outsideltister (Jain, Murty, &
Flynn, 1999). In pure unsupervised settings, this objeat&n take on many forms
depending on the semantics of “meaningful” in a specificextrdnd on the choice of

the similarity function. In semi-supervised clusteringopinformation is provided

2



to aid the grouping either in the form of objects labeled dsrimgng to certain cate-
gories (Basu, Banerjee, & Mooney, 2002), or in the form ofyese constraints indi-
cating preference for placing them in same or differentteliss(Wagstaff & Cardie,
2000).

e Blocking
Blocking is the task of efficiently selecting a minimal subegapproximately sim-
ilar object pairs from the set of all possible object pairsigiven dataset (Kelley,
1985). Because computing similarity for all object pairs@nputationally costly
for large datasets, to be scalable, record linkage andecingtalgorithms that rely
on pairwise distance estimates require blocking methaatsefficiently retrieve the
subset of object pairs for subsequent similarity compaomatBlocking can be viewed
as applying a computationally inexpensive similarity flioic to the entire dataset to

obtain approximately similar pairs.

In these tasks, dissimilarity estimates provided by distafunctions directly in-
fluence the task output and therefore can have a significtatt e&fn performance. Thus,
ensuring that employed similarity functions are apprdprfar a given domain is essential
for obtaining high accuracy.

This thesis presents several techniques for training aiityilfunctions to provide
accurate, domain-specific distance estimates in the doofteacord linkage, semi-supervised
clustering and blocking. Proposed techniques are basedramgterizing traditional dis-
tance functions, such as edit distance or Euclidean distam learning parameter values
that are appropriate for a given domain.

Learning is performed using training data in the form of w&e supervision which
consists of object pairs known to be similar or dissimilaucl® supervision has different
semantics in different tasks. In record linkage, pairs @brds or strings that refer to
the same or different entities are known as matching andnmatching pairs (Winkler,

2006). In clustering, pairs of objects that should be planeatie same cluster or different

3



clusters are known as must-link and cannot-link pairs, eetsgely (Wagstaff & Cardie,
2000). Finally, in blocking, either of the above types of syision can be used depending
on the task for which blocking is employed. Regardless of#téng, pairwise supervision
is a common form of prior knowledge that is either availalblenany domains, or is easy
to obtain via manual labeling. Our methods exploit suchvpag supervision in the three
tasks listed above to learn accurate distance functiorigefact an appropriate notion of

similarity for a given domain.

1.2 Thesis Contributions

The goal of this thesis is proposing learnable variants mwiilarity functions commonly
used in record linkage and clustering, developing algoritor training such functions
using pairwise supervision within these tasks, and peifggnexperiments to study the

effectiveness of the proposed methods. The contributibtiseahesis are outlined below:

e We describe two learnable variants of affine-gap edit digtaa string similarity func-
tion commonly used in record linkage on string data. BasedaanHidden Markov
Models (pair HMMSs) originally developed for aligning bigjical sequences (Durbin,
Eddy, Krogh, & Mitchison, 1998), our methods lead to accuiiagprovements over
unlearned affine-gap edit distance and TF-IDF cosine diityilaDne of the two pro-
posed variants integrates string distance computatiom stithg segmentation, pro-
viding a joint model for these two tasks that leads to moresgate string similarity
estimates with little or no segmentation supervision. Cioimg learnable affine-gap
edit distances across different fields using Support Védichines produces nearly

perfect (above 0.99 F-measure) results on two standarchberk datasets.

e We propose two strategies that facilitate efficient cormsion of training sets for
learning similarity functions in record linkage: weakbbleled negative and likely-

positive pair selection. These techniques facilitatecsielg informative training ex-



amples without the computational costs of traditionaha&ckearning methods, which

allows learning accurate similarity functions using snaaflounts of training data.

e We describe a framework for learning similarity functionshin the Hidden Markov
Random Field (HMRF) model for semi-supervised clusteriBgsu, Bilenko, Baner-
jee, & Mooney, 2006). This framework leads to embedding lsirity function train-
ing within an iterative clustering algorithm, HMRF-K®&ANS, which allows learn-
ing similarity functions from a combination of unlabeledaland labeled supervision
in the form of same-cluster and different-cluster pairwdeastraints. Our approach
accommodates a number of parameterized similarity funstieading to improved

clustering accuracy on a number of text and numeric bendhdwtasets.

e We develop a new framework for learning blocking functionattprovides efficient
and accurate selection of approximately similar objectspar record linkage and
clustering tasks. Previous work on blocking methods hasden manually con-
structed blocking functions with manually tuned parangtarhile our method au-
tomatically constructs blocking functions using trainidgta that can be naturally
obtained within record linkage and clustering tasks. Weigoglly demonstrate that
our technique results in an order of magnitude increassfiiegicy while maintain-

ing high accuracy.

1.3 Thesis Outline
Below is a summary of the remaining chapters in the thesis:

e Chapter 2, Background. We provide the background on commonly used string
and numeric similarity functions, and describe the recorklalge, semi-supervised

clustering and blocking tasks.



e Chapter 3, Learnable Similarity Functions in Record Linkage. We show how
record linkage accuracy can be improved by using learnatitey slistances for indi-
vidual attributes and employing Support Vector Machinesaimbine such distances.
The chapter also discusses strategies for collectingrivdtive training examples for

training similarity functions in record linkage.

e Chapter 4, Learnable Similarity Functions in Semi-supervsed Clustering. This
chapter presents a summary of the HMRF framework for sepestised clustering
and describes how it incorporates learnable similaritgfioms that lead to improved

clustering accuracy.

e Chapter 5, Learnable Similarity Functions in Blocking. In this chapter we present
a new method for automatically constructing blocking fims that efficiently select

pairs of approximately similar objects for a given domain.

e Chapter 6, Future Work. This chapter discusses several directions for future re-

search based on the work presented in this thesis.

e Chapter 7, Conclusions.In this chapter we review and summarize the main contri-

butions of this thesis.

Some of the work presented here has been described in phtications. Material
presented in Chapter 3 appeared in (Bilenko & Mooney, 2088d)(Bilenko & Mooney,
2003b), except for work described in Section 3.1.2 whichritmibeen previously published.
Material presented in Chapter 4 is a summary of work predenta series of publications
on the HMRF model for semi-supervised clustering: (BilenBasu, & Mooney, 2004),
(Bilenko & Basu, 2004), (Basu, Bilenko, & Mooney, 2004), dBésu et al., 2006). Finally,
an early version of the material described in Chapter 3 hpsapd in (Bilenko, Kamath,

& Mooney, 2006).



Chapter 2

Background

Because many data mining and machine learning algorithmgreeestimating similarity
between objects, a number of distance functions for vadate types have been developed.
In this section, we provide a brief overview of several papulistance functions for text
and vector-space data. We also provide background on threeriant problems, record
linkage, clustering, and blocking, solutions for whichyreh similarity estimates between
observations. Finally, we introduce active learning mdshiiat select informative training
examples from a pool of unlabeled data.

Let us briefly describe the notation that we will use in the oéshis thesis. Strings
are denoted by lower-case italic letters sucts aadt; brackets are used for string char-
acters and subsequenceg; stands fori-th character of string, while s;.j; represents the
contiguous subsequencegfrom i-th to j-th character. We use lowercase letters suck as
andy for vectors, and uppercase letters sucandM for matrices. Sets are denoted by
script uppercase letters suchJaand?’.

We use the terms “distance function” and “similarity fucti interchangeably
when referring to binary functions that estimate degreeiftérénce or likeness between

instances.



2.1 Similarity functions

2.1.1 Similarity Functions for String Data

Techniques for calculating similarity between strings lbaiseparated into two broad groups:
sequence-based functions and vector-space-based fumcBequence-based functions com-
pute string similarity by viewing strings as contiguous wges of either characters or
tokens. Differences between sequences are assumed toresuhief applying edit opera-
tions that transform specific elements in one or both strilvgstor space-based functions,
on other hand, do not view strings as contiguous sequendessiunordered bags of ele-
ments. Below we describe two most popular similarity fuoiesi from these groups, edit
distance and TF-IDF cosine similarity. Detailed discussibthese similarity functions can
be found in (Gusfield, 1997) and (Baeza-Yates & Ribeiro-N&899), respectively. For an
overview of various string similarity functions proposedthe context of string matching

and record linkage tasks, see (Winkler, 2006) and (CohevikRaar, & Fienberg, 2003a).

Edit Distance

Edit distance is a dissimilarity function for sequences thavidely used in many applica-
tions in natural text and speech processing (Jelinek, 1988nformatics (Durbin et al.,
1998), and data integration (Cohen, Ravikumar, & Fienb20§3b; Winkler, 2006). Clas-
sical (Levenshtein) edit distance between two stringsfinee as the minimum number of
edit operations (deletions, insertions, and substitstiohelements) required to transform
one string into another (Levenshtein, 1966). The minimumiper of such operations can
be computed using dynamic programming in time equal to tleeymt of string lengths.
Edit distance can be character-based or token-based: rinerf@assumes that every string
is a sequence of characters, while the latter views stringequences of tokens.

For example, consider calculating character-based esliarie between strings

s =12 8 Street” andt =“12 8th St”. There are several character edit operation sequences



of length 6 that transforrsinto t, implying that Levenshtein distance betwesandt is 6.

For example, the following six edit operations applied teansform it intot:

1. Insert‘t” : “12 8 Street”—"12 8t Street”

2. Insert*h” : “12 8t Street’—"12 8th Street”
3. Substituté'r” with “” : “12 8th Street"—"12 8th St.eet’
4. Delete'e” : "12 8th St.eet™~"12 8th St.et”

5. Delete’e” : 12 8th St.et’—"12 8th St.t”

6. Delete't” : 12 8th St.t"—"12 8th St”

Wagner and Fisher (1974) generalized edit distance by @mitpwdit operations
to have different costs. Needleman and Wunsch (1970) estkadit distance further to
distinguish the cost of contiguous insertions or deletignewn as gaps, and Gotoh (1982)
subsequently introduced the affine (linear) model for gagh gielding an efficient dynamic
programming algorithm for computing edit distance with gjaphe following recursions
are used to compute affine-gap edit distad¢gt) between strings andt in O(|g]|t])

computational time:

M(i -1, — 1) + c(sip, b))
M(i, ) = min <y (i =1, — 1) + c(s )

l2(i—1,] — 1) +c(s;), tj)

i—1j)+d i
11(i, }) = min M —11) +d+clg,€) 2.1)

l1(i =1, ) +e+c(sj,€)

M(i,j — 1) +d+ (e t
o) =ming AR
|2(i,j — 1) +e+ C(S,tm)

d(s,t) = min(M(|s, [t[), 11(Is}, [t]), 12(Is], [t]))



wherec(s;), tjj)) is the cost of substituting (or matchinig)h element obandj-th element of
t, c(s;),€) andc(g, ;) are the costs of inserting elemesfsandt;; into the first and second
strings respectively (aligning this element with a gap ia dther string), and ande are
the costs of starting a gap and extending it by one elemerttieB(i, j) in matricesM, I,
andl, correspond to the minimal cost of an edit operation sequbatween string prefixes
14 andtyy;j; with the sequence respectively ending in a match/subistituinsertion into
the first string, or insertion into the second string.

Any sequence of edit operations transforming one string amother corresponds
to analignmentof the two strings. Alignment is a representation of the tirimgs obtained
by inserting empty characters into the strings in place séiitions, and placing the two
strings one above the other. Following is the alignmentmifigé s andt corresponding to

the sequence of edit operations shown in the example above:

12 _81gllef-str e e t
12 _8 t h _ s t. [g [g [g

This representation shows that the sequence of edit opesator any alignment

(2.2)

can be viewed as an a production of the two strings in parajlemitting elements from
either one or both strings simultaneously. This view willdeatral in the development of

learnable affine-gap edit distance in Chapter 3.

Jaccard and TF-IDF Cosine Similarity

While sequence-based string similarity functions worklfgglestimating distance between
shorter strings, they become too computationally expenaid less accurate for longer
strings. For example, when differences between equivalinys are due to long-range
transpositions of multiple words, sequence-based siityilunctions assign high cost to
non-aligned string segments, resulting in low similariépres for strings that share many

common words. At the same time, computing string edit distdbecomes computationally
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prohibitive for larger strings such as text documents ontle® because its computational
complexity is quadratic in string size.

The vector-space model of text avoids these problems byivigstrings as “bags
of tokens” and disregarding the order in which the tokensuoat the strings (Salton &
McGill, 1983). Jaccard similarity can then be used as thekdst method for computing
likeness as the proportion of tokens shared by both strifiggingssandt are represented

by sets of tokeng and‘Z’, Jaccard similarity is:

_IsnT]
|SUT]

SiMyaccard(S; t) (2.3)

The primary problem with Jaccard similarity is that it doex take into account
the relative importance of different tokens. Tokens thatuodrequently in a given string
should have higher contribution to similarity than thosa ticcur few times, as should those
tokens that are rare among the set of strings under con8aerarhe Term Frequency-
Inverse Document Frequency (TF-IDF) weighting schemeeagsi this by associating a

N

N(vi.5) 3 -log <~ with every tokeny; from strings, whereN(v;, s) is the

weightwy, s = i, NG NV

number of timesy; occurs ins (term frequency)N is the number of strings in the overall
corpus under consideration, aNdv; ) is the number of strings in the corpus that incluge
(document frequency).

Given a corpus of strings that yields the §ébf distinct tokens after tokenization,
a strings can be represented a$‘H|-dimensional vector of weights, every non-zero com-
ponent of which corresponds to a token presest ilF-IDF cosine similarity between two

strings is defined as the cosine of the angle between thdwvepresentations:

. W, W 0 Wey Wi v
Simre_ipr(St) = — o — = 2wt Woutty (2.4)

[ Ve pres

With the help of appropriate inverted index data structufésIDF cosine similar-

ity is computationally efficient due to high sparsity of mesttors, and provides a rea-
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sonable off-the-shelf metric for long strings and text doeats. Tokenization is typically
performed by treating each individual word of certain miaimlength as a separate token,
usually excluding a fixed set of functional “stop words” argtionally stemming tokens
to their roots (Baeza-Yates & Ribeiro-Neto, 1999). An altdive tokenization scheme is
known asn-grams: it relies on using all overlapping contiguous cbmrasubsequences of

lengthn as tokens.

2.1.2 Similarity Functions for Numeric Data
Euclidean and Mahalanobis distances

For data represented by vectors in Euclidean space, thedwsk family of metrics, also
known as thd, norms, includes most commonly used similarity measureslifgcts de-

scribed byd-dimensional vectors (Duda et al., 2001):

d O\ LK
Lk(Xi,Xj) = <|Z X1 —Xit | ) (2.5)
=1

The L, norm, commonly known as Euclidean distance, is frequerggdiufor low-

dimensional vector data. Its popularity is due to a numbdacibrs:

¢ Intuitive simplicity: theL, norm corresponds to straight-line distance between points

in Euclidean space;
¢ Invariance to rotation or translation in feature space;

e Mathematical metric properties: non-negativitg (x, ;) > 0)), reflexivity (L2(X;,xj) =
0 iff x; = X;), symmetry [2(xi,X;) = L2(Xj, %)), and triangle inequalityL((x;, X;j) +
La(Xj, %) > La(xi, X)), that allow using it in many algorithms that rely on metric

assumptions.

If distance is computed among points of a given dataset, Mabhis distance is an

extension of Euclidean distance that takes into accountldlt® mean as well as variance
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of each dimension and correlations between the differanedsions, which are estimated
from the dataset. Given a set of observation vec{ass...,x,}, Mahalanobis distance is

defined as:

dvian(%,%)) = (% — X)) 7% —x;)) /2 (2.6)

whereZ~1 is the inverse of the covariance matdix= 17 ST (% — ) (x — )7, andp =
150 1x is the data mean.

Essentially, Mahalanobis distance attempts to give eagtemsion equal weight
when computing distance by scaling its contribution préiporlly to variance, while tak-

ing into account co-variances between the dimensions.

Cosine Similarity

Minkowski metrics including Euclidean distance sufferrfradhe curse of dimensionality
when they are applied to high-dimensional data (Friedm887)L As the dimensionality
of the Euclidean space increases, sparsity of observationsases exponentially with the
number of dimensions, which leads to observations becommuidistant in terms of Eu-
clidean distance. Cosine similarity, or normalized dotdoict, has been widely used as an
alternative similarity function for high-dimensional dgDuda et al., 2001):

Simos(x,y) = D 1L R (2.7)

||xr|||yr| TR

If applied to normalized vectors, cosine similarity obeystric properties when

converted to distance by negating it from 1. In general, hMawdt is not a metric in the

mathematical sense, and it is not invariant to translatemtslinear transformations.

Information-theoretic Measures

In certain domains, data can be described by probabilityrilbigions, e.g., text docu-

ments can be represented as probability distributionsweelts generated by a multinomial
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model (Pereira, Tishby, & Lee, 1993). Kullback-Leibler (Kdivergence, also known as

relative entropy, is a widely used distance measure for datdn

d g
dki (%,%) = 3 Xmlog ™ (28)
m=1 Xjm

wherex; andx; are instances described by probability distributions d\mrents:zﬂ]ﬂ)qm =
z?nzlxjm = 1. Note that KL divergence is not symmetridi (x;,X;) # dkL (X, ;) for any
X # Xj. In domains where a symmetrical distance function is needasen-Shannon di-

vergence, also known as KL divergence to the mean, is used:

Xi + X Xi—iz-Xj)) (2.9)

1
dys(xi,Xj) = = (dkL (X, )+ dkL(Xj,

2

Kullback-Leibler divergence is widely used in informatithreory (Cover & Thomas,
1991), where it is interpreted as the expected extra lenigthnoessage sampled from dis-

tribution x; encoded using a coding scheme that is optimal for distobuj.

2.2 Record Linkage

As defined in Chapter 1, the goal of record linkage is idemmt@fyinstances that differ syn-
tactically yet refer to the same underlying object. Matghot coreferent bibliographic
citations and identifying multiple variants of a personame or address in medical, cus-
tomer, or census databases are instances of this problemmmhar of researchers in dif-
ferent communities have studied variants of record linkiag&s : after being introduced
in the context of matching medical records by Newcombe, KkdgnAxford, and James
(1959), it was investigated under a number of names inaiudierge/purge (Hernandez &
Stolfo, 1995), heterogeneous database integration (CA®&8), hardening soft databases
(Cohen, Kautz, & McAllester, 2000), reference matching (dtum, Nigam, & Ungar,
2000), de-duplication (Sarawagi & Bhamidipaty, 2002; Baettarya & Getoor, 2004),
fuzzy duplicate elimination (Ananthakrishna, Chaudhé&riGanti, 2002; Chaudhuri, Gan-
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jam, Ganti, & Motwani, 2003), entity-name clustering andichang (Cohen & Richman,

2002), identity uncertainty (Pasula, Marthi, Milch, Ruks& Shpitser, 2003; McCallum &

Wellner, 2004a), object consolidation (Michalowski, Thak & Knoblock, 2003), robust
reading (Li, Morie, & Roth, 2004), reference reconciliatitDong, Halevy, & Madhavan,
2005), object identification (Singla & Domingos, 2005), amdity resolution (Bhattacharya
& Getoor, 2006).

The seminal work of Fellegi and Sunter (1969) describedraékey ideas that
have been used or re-discovered by most record linkagerobses, including combining
similarity estimates across multiple fields, using blogkin reduce the set of candidate
record pairs under consideration, and using a similaritgsiold to separate the corefer-
ent and non-coreferent object pairs. Fellegi and Sunte8Q)L8onsidered record linkage
in an unsupervised setting where no examples of coreferehihan-coreferent pairs are
available. In this setting, several methods have been peapthat rely on learning prob-
abilistic models with latent variables that encode the hmatg decisions (Winkler, 1993;
Ravikumar & Cohen, 2004). In the past decade, a number oregsers have considered
record linkage settings where pairwise supervision islats, allowing the application of
such classification techniques as decision trees (Elfdkyagarmid, & Verykios, 2002; Te-
jada, Knoblock, & Minton, 2001), logistic regression (Cah& Richman, 2002), Bayesian
networks (Winkler, 2002), and Support Vector Machines€Bilo & Mooney, 2003a; Co-
hen et al., 2003a; Minton, Nanjo, Knoblock, Michalowski, &d¥elson, 2005) to obtain
record-level distance functions that combine the fielgleimilarities. These methods treat
individual field similarities as features and train a clssito distinguish between coref-
erent and non-coreferent records, using the confidencesdagléissifier's prediction as the
similarity estimate.

The majority of solutions for record linkage treat it as a wlad problem that is
solved in multiple stages. In the first stage, blocking i$gremned to obtain a set of candidate

record pairs to be investigated for co-reference, sincedhgputational cost of computing
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pairwise similarities between all pairs of records in adadgtabase is often prohibitive; see
Section 2.4 for discussion of blocking. In the second staigeijarity is computed between
individual fields of candidate record pairs. In the final bigle stage, similarity is computed
between candidate pairs, and highly similar records areléabas matches that describe
the same entity. Linkage can be performed eitherpaawise inference where decisions
for the different candidate pairs are made independentljiaaollectiveinference over all
candidate record pairs (Pasula et al., 2003; Wellner, Ma@alPeng, & Hay, 2004; Singla
& Domingos, 2005).

2.3 Clustering

Clustering is typically defined as the problem of partituna dataset into disjoint groups so
that observations belonging to the same cluster are sjmikile observations belonging to
different clusters are dissimilar. Clustering has beerelyidtudied for several decades, and
a great variety of algorithms for clustering have been psepo(Jain et al., 1999). Several
large groups of clustering algorithms can be distinguighedlinclude hierarchical cluster-
ing methods that attempt to create a hierarchy of data jpadit Kaufman & Rousseeuw,
1990), partitional clustering methods that separate igs into disjoint clusters (Karypis
& Kumar, 1998; Shi & Malik, 2000; Strehl, 2002; Banerjee, Mgu, Dhilon, & Ghosh,
2005b), and overlapping clustering techniques that allwstainces to belong to multiple
clusters (Segal, Battle, & Koller, 2003; Banerjee, Krunnpah, Basu, Mooney, & Ghosh,
2005c¢).

Traditionally, clustering has been viewed as a form of uesuiped learning, since
no class labels for the data are provided.sémi-supervised clusteringupervision from
a user is incorporated in the form of class labels or pairw@estraints on objects which
can be used to initialize clusters, guide the clusteringgse, and improve the clustering
algorithm parameters (Basu, 2005).

Work presented in Chapter 4 is based on K-Means, a widely cisstering algo-
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rithm that performs iterative relocation of cluster cemsato locally minimize the total dis-
tance between the data points and the centroids. Given ada&taopointsX = {xi}i’\‘:l,xi €
R™, let {p }f_, represent th& cluster centroids, angl be the cluster assignment of a point
Xi, wherey; € 9 and9” = {1,...,K}. The Euclidean K-Means algorithm creatéslisjoint
subsets oft, {X} ;, whose union ist, so that the following objective function is (locally)

minimized:;

JkmeandX,9") = Z 1% — Ly, ||2 (2.10)

X eX
Intuitively, this objective function measures the tighta®f each cluster as the sum
of squared Euclidean distances between every point in theterl and the centroid. Fig-

ure 2.1 presents the pseudocode for the algorithm.

Algorithm: K-MEANS
Input: Set of data pointst = {x}';,% € RY, number of cluster&
Output: Disjoint K—partitioning{)ch}ﬁ:l of X such that objective function
JkmeansiS optimized
Method:
1. Initialize clusters: Initial centroid‘suff”}ﬁ:l are selected at random
2. Repeat untitconvergence
t+1)),

2a. assign_cluster: Assign each data point to the clusteh* (i.e. sevqg*
whereh* = argmin||x; — uﬁt) 112
h

2b. estinatenmeans: gt — — L > X

) T
X X,

2C. t<—(t+1)

Figure 2.1: The K-Means algorithm

Recently, it has been shown that K-Means-style algorithamsbe derived based on
a number of dissimilarity functions including directiomakasures such as cosine similar-
ity (Banerjee, Dhillon, Ghosh, & Sra, 2005a) and a largexcté#gunctions known as Breg-
man divergences, which include squared Euclidean distandeL-divergence (Banerjee

et al., 2005h).
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2.4 Blocking in Record Linkage and Clustering

Because the number of similarity computations grows quidtly with the size of the
input dataset, scaling up to large datasets is problematitagks that require similarities
between all instance pairs. Additionally, even for smalladats, estimation of the full
similarity matrix can be difficult if computationally cogtlsimilarity functions, distance
metrics or kernels are used. At the same time, in many takksimijority of similarity
computations are unnecessary because most instance qgahiglaly dissimilar and have
no influence on the task output. Avoiding the unnecessarypatations results in a sparse
similarity matrix, and a number of algorithms become piadtifor large datasets when
provided with sparse similarity matrices, e.g. the collecinference algorithms for record
linkage (Pasula et al., 2003; McCallum & Wellner, 2004b;gfan& Domingos, 2005).

Blocking methods efficiently select a subset of instancespgfar subsequent sim-
ilarity computation, ignoring the remaining pairs as higtlissimilar and therefore irrele-
vant. A number of blocking algorithms have been proposedebgarchers in recent years,
all of which rely on a manually tuned set of predicates or peters (Fellegi & Sunter,
1969; Kelley, 1985; Jaro, 1989; Hernandez & Stolfo, 1998Qdllum et al., 2000; Baxter,
Christen, & Churches, 2003; Chaudhuri et al., 2003; Jin&Mehrotra, 2003; Winkler,
2005).

Key-based blocking methods form blocks by applying someyupeedicate to each
record and assigning all records that return the same vkéyg {0 the same block (Kelley,
1985; Jaro, 1989; Winkler, 2005). For example, such prégcasSame Zipcoder Same
3-character Prefix of Surnameould be used to perform key-based blocking in a name-
address database, resulting in blocks that contain regotid$he same value of th&ipcode
attribute and the same first three characters oBilmmamaeattribute, respectively.

Another popular blocking technique is the sorted neighbodhmethod proposed
by Hernandez and Stolfo (1995). This method forms blocksdnying the records in a

database using lexicographic criteria and selecting atinds that lie within a window of
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fixed size. Multiple sorting passes are performed to ineeaserage.

The canopies blocking algorithm of McCallum et al. (2000)eseon a similar-
ity function that allows efficient retrieval of all recordsthin a certain distance threshold
from a randomly chosen record. Blocks are formed by rand@elgcting a “canopy cen-
ter” record and retrieving all records that are similar te ihosen record within a certain
(“loose”) threshold. Records that are closer than a “tightéshold are removed from the
set of possible canopy centers, which is initialized withratords in the dataset. This
process is repeated iteratively, resulting in formatiomlotks selected around the canopy
centers. Inverted index-based similarity functions suglaccard or TF-IDF cosine sim-
ilarity are typically used with the canopies method as théynafast selection of nearest
neighbors based on co-occurring tokens. Inverted indicesalso used in the blocking
method of Chaudhuri et al. (2003), who proposed using irsdigesed on charactergrams
for efficient selection of candidate record pairs.

Recently, Jin et al. (2003) proposed a blocking method basedapping database
records to a low-dimensional metric space based on strihgesaf individual attributes.
While this method can be used with arbitrary similarity ftiogs, it is computationally

expensive compared to the sorting and index-based methods.

2.5 Active Learning

When training examples are selected for a learning taskdbra, they may be suboptimal
in the sense that they do not lead to a maximally attainabpgamement in performance.
Active learningmethods attempt to identify those examples that lead tomeba@accuracy

improvements when added to the training set (Lewis & Catl&t®4; Cohn, Ghahramani,
& Jordan, 1996; Tong, 2001). During each round of activeniegy, the example that is
estimated to improve performance the most when added toaiming set is identified and
labeled. The system is then re-trained on the training s&idimg the newly added labeled

example.
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Three broad classes of active learning methods exist: (@rtainty sampling tech-
nigues (Lewis & Catlett, 1994) attempt to identify exampleswhich the learning algo-
rithm is least certain in its prediction; (2) query-by-coittee methods (Seung, Opper, &
Sompolinsky, 1992) utilize a committee of learners and usagleement between commit-
tee members as a measure of training examples’ informa&sger§3) estimation of error re-
duction techniques (Lindenbaum, Markovitch, & Rusakoq;Roy & McCallum, 2001)
select examples which, when labeled, lead to greatest tiedua error by minimizing
prediction variance.

Active learning was shown to be a successful strategy forawipg performance
using small amounts of training data on a number of taskddintg classification (Cohn
et al., 1996), clustering (Hofmann & Buhmann, 1998; Baswage, & Mooney, 2004),
and record linkage (Sarawagi & Bhamidipaty, 2002; Tejad#ldock, & Minton, 2002).
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Chapter 3

Learnable Similarity Functions in

Record Linkage

In this chapter, we describe the use of learnable simil&uritgtions in record linkage, where
they improve the accuracy of distance estimates in two taskaputing similarity of string
values between individual record fields, and combining ssiofilarities across multiple
fields to obtain overall record similarity. At the field leyé&lvo adaptive variants of edit
distance are described that allow learning the costs aigstransformations to reflect their
relative importance in a particular domain. At the recongtlewe employ Support Vector
Machines, a powerful discriminative classifier, to distiigl between pairs of similar and
dissimilar records. We also propose two strategies forraatizally selecting informative
pairwise training examples. These strategies do not redbh& human effort needed by

active learning methods, yet vastly outperform random gelction.

3.1 Learnable Similarity Functions for Strings

In typical linkage applications, individual record fieldeaepresented by short string val-

ues whose length does not exceed several dozen charactiedgens. For such strings,
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differences between coreferent values frequently arisdallocal string transformations at
either character or token level, e.g., misspellings, abatiens, insertions, and deletions.
To capture such differences, similarity functions musneste the total cost associated with
performing these transformations on string values.

As described in Section 2.1.1, edit distance estimatasgstfissimilarity by com-
puting the cost of a minimal sequence of edit operationsireduo transform one string
into another. However, the importance of different editraions varies from domain to
domain. For example, a digit substitution makes a big dffiee in a street address since
it effectively changes the house or apartment number, véhdagle letter substitution is
semantically insignificant because it is more likely to based by a typographic error or
an abbreviation. For token-level edit distance, some t®ker unimportant and therefore
their insertion cost should be low, e.g., for tok&nin street addresses.

Ability to vary the gap cost is a significant advantage of &fgap edit distance over
Levenshtein edit distance, which penalizes all insertindependently (Bilenko & Mooney,
2002). Frequency and length of gaps in string alignmentswvasy from domain to domain.
For example, during linkage of coreferent bibliographiatibns, gaps are common for the
authorfield where names are often abbreviated, yet rare fotitlleefield which is typically
unchanged between citations to the same paper.

Therefore, adapting affine-gap edit distance to a particldenain requires learning
the costs for different edit operations and the costs of .gapghe following subsections,
we present two methods that perform such of edit distancanpeters using a corpus of

coreferent string pairs from a given domain.

3.1.1 Learnable Edit Distance with Affine Gaps
The Pair HMM Model
We propose learning the costs of edit distance parameterg ashree-state pair HMM

shown in Figure 3.1. It extends the one-state model used &tadRand Yianilos (1998)
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<a,a>
<b,b>

<a,b>
<a,c>.<Yy,z>

Figure 3.1: A generative model for edit distance with affiapg

to learn parameters of Levenshtein edit distance, and ibgmas to models proposed
in Durbin et al. (1998) for scoring alignments of biologisgliquences.

For any pair of strings, the model can generate all possiigeraents between them
as sequences of state transitions and edit operation emsssvhere emissions correspond
to productions of elements of the two strings in paralletliding gaps. Each possible
alignment is associated with the probability of observihg torresponding sequence of
transitions and emissions.

The three states of the model generate gaps in the alignmetdted; andl,, and
generate matches and substitutions in skthteTransitions between stal and state$;
andl; in the pair HMM correspond to starting a gap in the deternimesffine-gap edit dis-
tance model, while self-transitions in stategndl, model gap extensions. Probabilities of
these transitionsg andd, correspond to gap opening and extension costs, while pileba
ities |, ym andy; correspond to the relative frequency of continued matchiag ending,
and observing adjacent gaps (these transitions have nct din@log in the deterministic

model)?

Traditional edit distance algorithms as well as pair HMMsatied by Durbin et al. (1998) also disallow
gaps in the two strings to be contiguous. This restrictiameponds to prohibiting transitions between sthtes
andl,, but in the record linkage domain it is unnecessary sincéntbestrings may have parallel non-matching
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Emissions in the pair HMM correspond to individual edit aga@&ms that generate
both strings in parallel. GiveA* = 4U{e}, the symbol alphabet extended with the special
“gap” charactek, the full set of edit operations & = Ev U &, U E,, whereEy = {(a,b) :
a,b € 4} is the set of all substitution and matching operations, eviiii = {(a,€) : a €
A4} and‘E, = {(¢,a) : a€ A} are the insertions into the first and into the second strings
respectively. Each state associates its set of emissidhsarobability distribution. Thus,
emission probabilities in the pair HMMBy = {p(e) :e€ Eu}, B, = {p(e) :e€ F, }, and
P, ={p(e) : ec E,}, correspond to costs of individual edit operations in thehinistic
model. Edit operations with higher probabilities produbaracter pairs that are likely to
be aligned in a given domain, e.g., substitutign—) for phone numbers or deletidn )
for addresses. For each state in the pair HMM, there is arciassd probability of starting
or ending the string alignment in that state, correspontintpe frequency of observing
alignments with gaps at the beginning or at the end.

Because in record linkage applications the order of twag#riis unimportant,
several parameters in the model are tied to make alignmentsnstrical with respect
to the two strings. Tied parameters include probabilitietransitions entering and exit-
ing the insertion stateso, ywv, Vi, andd; emission probabilities for the insertion states:
p((a,€)) = p((g,a)), and emissions of substitutiom(a, b)) = p((b,a)).

Two methods can be used for computing edit distance usingjreett pair HMM.
The Viterbi algorithm computes the highest-probabilitigaiment of two strings, while the
forward (or backward) algorithm computes the total proligbof observing all possible
alignments of the strings, which can be beneficial if seviigi-probability alignments
exist (Rabiner, 1989). If performed in log-space, the atgors are analogous to the de-
terministic edit distance computation shown in Eq. (2.1fhvthe negative logarithms of
probabilities replacing the corresponding costs. Theethmatrices of the deterministic

affine-gap edit distance described in Section 2.1.1 cooraspo dynamic programming

regions.
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matrices computed by the Viterbi, forward and backward rélgms. Each entryi, j) in
the dynamic programming matrices for staliésl,, andl, contains the forward, backward,
or Viterbi probability for aligning prefixeg;;) x1;j; and ending the transition sequence(s)

in the corresponding state.

Training

Given a training set o coreferent string pair® = {(xi(l),xi(z))}, the transition and emis-
sion probabilities in the model can be learned using a vadgtine Baum-Welch algorithm
outlined in Figure 3.2, which is an Expectation-Maximipatiprocedure for learning pa-
rameters of HMMs (Rabiner, 1989); Ristad and Yianilos ()998d an analogous algo-
rithm for training their one-state model for Levenshteistdihce. The training procedure
iterates between two steps, expectation (E-step) and neation (M-step), converging to a
(local) maximum of the log-likelihood of training data= y;_; \log p@(xi(l),xi(z)), where
O = {K,5,0,ym,Vi,,Pu,B,,B,} is the set of emission and transition probabilities being
learned. In the E-step, the forward and backward matrices@nputed for every training
pair to accumulate the expected number of transitions ansksens given current parame-
ter values (Rabiner, 1989). In the M-step, parame®ese updated by re-normalizing the
expectations of transition and emission probabilitiesuaudated in the E-step.

Once trained, the model can be used for estimating sinyilégtween pairs of
strings by using the forward algorithm to compute the prdimtof generating all pos-
sible string alignments. To prevent numerical underflonldoig strings, this computation
should be performed in log-space.

Modeling edit distances with pair HMMs has an intrinsic dbaek: because prob-
ability of generating a string pair decreases with strimgpth, alignments of longer strings
have lower probabilities that alignments of shorter sginghis problem is alleviated by
using length-corrected distandéx,y) = —log p(x,y)¥ (X+M) ' which is equivalent to scal-

ing deterministic edit distance by the sum of string lengtliarthermore, the standard
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Algorithm: AFFINE-GAP PAIR-HMM EM T RAINING

Input: A corpus of coreferent string pai® = {(x",x?)}
Output: A set of pair HMM parametersd = {p,a 0 Y, Vi, P, By, Py}
Method:
until convergence
E-sTEP for each(x; X ),xl(z)) cD
(M(”,Iif),léf))—FORWARD(x,< xf ))
MO 1 10y —Backwarp (xY,x?)

1)

forj=1,...,]%"|
fork=1 ,|x1-(2 |
ACCUmUlateE[uLE[O‘],E[&,E[VM], [yd»
Elp((x} )], Elp((e. X)) ElR( X))
M-STEP.
H= E[Y
E12E[0]
_ _ E[d]
O = Ef+2E[g

E[Q]+E[ym]-+E[vi]
_ Elym
W = ETElyw TEW]

_ Vi
Yi = EETEWITEW]

for eachp(e) € Bu: p(e) = 3 oo E[p ?Ep ]

for eachp(e) € A,: p(e) = %
1

for eachp(e) € B,: p(e) = %

Figure 3.2: Training algorithm for generative string digta with affine gaps

pHMM must normalize the probability of the exact match ofiers against the proba-
bilities of substitutions, and normalize the probability of the self-transition in staké,
against 3, the probabilities of starting a gap in either string. Thesemalizations imply
that even the perfect matching of a string to itself has atleas-1 probability, which is
counter-intuitive, yet unavoidable within the pair HMM geative framework. However,
we have found that setting the costs (log-probabilitied)ledtate self-transitions and match
emissions to 0 leads to improved empirical results, althahg pair HMM model does not

provide a principled way of encoding this intuition.
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Experimental Evaluation

We evaluated the proposed model for learnable affine-gapdedance on four datasets.
FaceConstrainf Reasoning and Reinforcementare single-field datasets containing un-
segmented citations to computer science papers in comdsgpareas from th€iteseer
digital library (Giles et al., 1998)Face contains 349 citations to 242 pape@ynstraint
contains 295 citations to 199 papers, &ehsoningontains 514 citation records that rep-
resent 196 unique papers, ardinforcementontains 406 citations to 148 papers. Figure
3.3 presents sample coreferent records from one of theadstas

Every dataset was randomly split into 2 folds for crossdatipn during each exper-
imental run. A larger number of folds is impractical sincedtuld result in fewer coreferent
pairs per fold. To create the folds, coreferent records \wsvaped together, and the result-
ing clusters were randomly assigned to the folds. All resait reported over 10 random
splits, where for each split the two folds were used altelgdbr training and testing.

During each trial, learnable edit distance is trained asritesd above using ran-
domly sampled pairs of coreferent strings from the trairfinig. After training, edit dis-
tance is computed between all pairs of strings in the testilagy Then, pairs are iteratively
labeled as coreferent in order of decreasing similarityteAlabeling of each successive
string pair, accuracy is evaluated using pairwise precisiod recall, which are computed

as follows:

Figure 3.3: Sample coreferent records from Reasoninglataset
L. P. Kaelbling. An architecture for intelligent reactivgstems. In Reasoning
About Actions and Plans: Proceedings of the 1986 Workshaprgith Kaufmann, 1986
Kaelbling, L. P., 1987. An architecture for intelligent ctige systems. In
M. P. Georgeff & A. L. Lansky, eds., Reasoning about Actiond Rlans, Morgan
Kaufmann, Los Altos, CA, 395 410
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#ofCorrectCore ferentPairs
#ofLabeledPairs

precision=

#ofCorrectCore ferentPairs

recall = -
#ofTrueCoreferentPairs

We also compute mean average precision (MAP), defined asvill

12 S
MAP = = i; precisioryi) (3.1)

wheren is the number of true coreferent pairs in the dataset, @edisior{i) is the pair-
wise precision computed after correctly labelirdp coreferent pair. These measures eval-
uate how well a similarity function distinguishes betweemeterent and non-coreferent
string pairs: a perfect string distance would assign higiveilarity to all coreferent pairs
than to any non-coreferent pair, achieving 1.0 on all meti@n the precision-recall curve,
precision at any recall level corresponds to the fractiopaifs above a certain similarity
threshold that are coreferent, while lowering the threghesults in progressive identifica-
tion of more truly coreferent pairs. For averaging the rissatross multiple trials, precision
is interpolated at fixed recall levels following the starttlarethodology from information
retrieval (Baeza-Yates & Ribeiro-Neto, 1999).

To evaluate the usefulness of adapting affine-gap stringdéstance to a specific
domain, we compare the pair HMM-based learnable affine-gapmlstance with its fixed-
cost equivalent on the task of identifying equivalent fietdues, as well as with classic

Levenshtein distance. The following results are presented

e PHMM L EARNABLE ED: learnable affine-gap edit distance based on characters

trained as described above using the EM algorithm showngr8H;

e UNLEARNED ED: fixed-cost affine-gap edit distance (Gusfield, 1997) aitubsti-

tution cost of 5, gap opening cost of 5, gap extension cost ahd match cost of -5,

28



Figure 3.4: Mean average precision values for field-levebre linkage

| Distance metric | Face | Constraint| Reasoning| Reinforcemeni
pHMM Learnable edit distance 0.960 0.968 0.955 0.961
Unlearned edit distance 0.956 0.956 0.946 0.952
Levenshtein edit distance 0.901 0.874 0.892 0.899

which are parameters previously suggested by (Monge & Eka96);

e LEVENSHTEIN: classic Levenshtein distance described in Section 2.1.1.

Precision-recall curves for the four datasets are shownigurés 3.5-3.8. These
results are summarized in Figure 3.4. Each entry contams#an average precision over
the 20 evaluated folds. Improvements of the learnable éstdrmtce over the fixed-cost vari-
ant are significant at the 0.05 level using a two-tailed phirtest for all datasets. These
results demonstrate that learned affine-gap edit distampedorms its deterministic equiv-
alent in identifying coreferent values in individual fieldghich in turn is significantly more

accurate than Levenshtein distance.

3.1.2 Learnable Segmented Edit Distance

Affine-gap edit distance and the corresponding pair HMM nhddescribed in Section 3.1.1
treat strings as homogeneous entities. In domains whengstare composed of multiple
fields, such as bibliographic citations, ignoring theiremial structure disregards the dif-
ferences between edit distance parameters in approprizdelsifor the fields, while some
string transformations may be frequent in one field, but ra@nother. For affine-gap edit
distance derived from a pair HMM, rarity of certain operasde.g., rarity of gaps fai-

tle values) corresponds to a lower value@fprobability of the gap opening transition.
Training individual pair HMM distances for every field allswmaking such distinctions.
Therefore, segmenting strings into individual fields capriove the accuracy of similarity
computations, and in domains where accurate segmentatevailable, or original data is

described by multiple fields, combining multiple field-sifiecdistances was shown to be
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effective for the record linkage task, as results in Sec3i@will show.

However, in domains where supervision in the form of segeustrings for train-
ing an information extraction system is limited, field vausannot be extracted reliably.
Segmentation mistakes lead to erroneous field-level esgwd similarity, combining which

may produce worse results than utilizing a single stringlaiity function.

Segmented Pair HMM

We propose a new type of pair HMM, the segmented pair HMM (spMhat overcomes
the above limitations by combining segmentation and editadice computation within a
single framework. A sample spHMM is shown in Figure 3.9. Ihd#e viewed as an
interconnected sequence of pair HMMs, where the emissidntramsition probabilities
within each pair HMM are trained for a particular field, whpeobabilities of transitions
between the pair HMMs capture the field structure of the g&inThe model generates
string matchings by emitting alignments of individual figld corresponding components,

transitioning between them at segment boundaries in botigstsimultaneously.

field 1 field 2 field k

Figure 3.9: Segmented pair HMM

As in regular pair HMMs, edit distance between two strirgsdy in the spHMM
is computed as the negative logarithm of the probability exigrating the string pair over

all possible alignmentsi(x,y) = —logp(Xx,y), which can be computed using the standard
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forward (or backward) algorithm. This allows aggregatitigranent probabilities over the
different possible segmentations of the two strings, wisatot achievable if segmentation
and matching are performed in isolation. The obtained wigtaalue is length-corrected to

avoid penalizing longer string$(x,y) = —log p(x, y) X+,

Training

As with the learnable affine-gap edit distance without segat@en described in Section 3.1.1,
transition and emission probabilities of the spHMM are ek using a training seb =
{(xi(l),xi(z))}{(xi,yi)}i'\':l consisting ofN string pairs. Training is performed using an exten-
sion of the Expectation-Maximization (EM) procedure shawirigure 3.2 that learns an
extended set of emission and transition probabilities fok @air HMMs in the spHMM:
©={u®,50, a0y v . ,rk),T,\(,l),iPll ,fP, 1k . Probabilities of transitions between
pair HMMs, {Tl - ,Tk) i1, are learned by decomposing them into transitions outgoing
from individual stategv(), I(), I(i) into any other state outside tli¢h component, and
tying the parameters over all such transitions for any twio lH&IMs.

Training can incorporate any combination of supervisiosdusr segmentation and
string similarity computation tasks. There are three typkfraining data that may be
available:

(i) pairs of coreferent segmented strings, e.g.
author title other year

M.J. Kearnsl The Computational Complexity of Machine Learnir}ngT Press, Cambridge, MP{ (1990).|

Michael Kearnsl The Computational Complexity of Machine Learni|+gMIT Press,| 1990.|

author title other year

(i) pairs of coreferent unsegmented strings, e.g.

M. Kearns, R. Schapire and L. Sellie, Towards efficient aiodsarning. COLT, 1992
Kearns, M., Schapire, R., and Sellie, L. (1992) Toward effitiagnostic learning. In Proc. 5th Ann. Workshop on
Computational Learning Theory. Pittsburgh, PA: Morgan tiaann.

(i) individual segmented strings, e.g.
author year title venue other

| Freund, Y.| (1995).| Boosting a weak learning algorithm by majoriky]nformation and Computati0|1, 121 (2), 256-285+

Each individual segmented string is converted to a pairwise training example

by creating a coreferent training pdi,x;), which allows accumulating expectations of
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emissions for characters or tokens in that string along agttumulating the expectations
of cross-component transitions. Forward and backwardeghaes are modified for seg-
mented string pairs so that expectations are only accuatlfar component pair HMMs

that produce alignments for the corresponding fields, wioiteunsegmented string pairs,
expectations are accumulated over all component pair HMIMs, considering alignments
over all possible segmentations of the two strings.

Because the proposed model is designed for settings wheesvision is limited,
and the number of parameters in the above model can be vee, laeining may result
in poor parameter estimates due to sparsity of training. dadeaddress this, we employ
a variant of shrinkage, or deleted interpolation — a smagthiéchnique previously used
in generative models for language modeling (Jelinek & Mert@80) and information ex-
traction (Freitag & McCallum, 1999). We simultaneouslyiriravo models: one that emits
actual observations (individual characters or tokens faracter-based and token-based
edit distances respectively), and another that distimgsidetween several large classes of
emissions (characters, digits and punctuation for chardiztsed edit distance, and vocab-
ulary, non-vocabulary, and numeric tokens for token-basgitl distance). Parameters of
the two models are then interpolated (“shrunk”) using théhoe of Freitag and McCallum
(1999).

Experimental Results

We perform evaluation following the cross-validation prdare described in Section 3.1.1
on two datasets where segmentation is availaBlestaurantand Cora. Restaurants a
database obtained by Tejada et al. (2002), who integratedde from Fodor’'s and Zagat’s
guidebooks to obtain 864 restaurant names and addresséexthde 112 duplicate<ora

is a collection of 1295 distinct citations to 122 Computeie8ce research papers from the
Cora Computer Science research paper search engine edllaciMcCallum et al. (2000).

The citations were automatically segmented into multiklf such aauthor, title, venue
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Figure 3.10: Sample coreferent records from@uea dataset

| author | title | venue | year |
W. W. Cohen, R. E. Shapirg, Learning to order things} In Advances in Neural Informar 1998
and Y. Singer. tion Processing Systems 10,
William W. Cohen, Rob| Learning to order things| To appear in NIPS-97, 1997
Schapire, and Yoram Singer.

Figure 3.11: Sample coreferent records fromRestaurantdataset

| name | address | city | phone | cuisine |
Fenix 8358 Sunset Blvd. West Hollywood 213/848-6677| American
Fenix at the Argyle| 8358 Sunset Blvd. W. Hollywood | 213-848-6677| French(new)

etc. by an information extraction system, resulting in sowise in the field values. Figures
3.10 and 3.11 present sample coreferent records from thddtesets in segmented form.

SincesPHMM is designed for domains where entities are represenyestrings
containing multiple fields, we omit the available segmeatetor all records in the test fold,
while retaining it in the training fold for segmented supsion of types of (i) and (iii) in the
list above. FoCora, five fields are distinguisheduthor, title, venue, yeagndother, where
the otherfield may includes such information as page numbers, nameditoirs, location,
etc. ForRestaurantfields name, street address, citgndcuisineare distinguished. We
employ token-based edit distance in all experiments, smtieese domains the differences
between the fields are mainly at the token, not charactel. leve

We compare the accuracy of spHMM-learned affine-gap edianiie with the fol-

lowing baselines:

e PHMM: learnable affine-gap edit distance without segmeatatiescribed in Sec-

tion 3.1.1;

e SEQ: abaseline that uses labeled and unlabeled stringsrtatie |E system of Grenager,

Klein, and Manning [2005] that was specifically designed é&mdie unsupervised
data. Individual affine-gap edit distances are learned Hoexdracted fields, and

an SVM classifier is trained to combine them; Section 3.2 rilese this process in
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detail. During testing, the IE system segments each stnitogfields. Learned affine-
gap edit distances are computed for all extracted fieldstl@mcombined using the

SVM classifier to obtain overall string similarity estimate

Comparison with theHMM baseline evaluates whether incorporating segmenta-
tion in learnable affine-gap edit distance yields improversewhile comparison with the
SEQ baseline evaluates performing the segmentation aimg) stratching steps sequen-
tially.

We consider four combinations of training data for the spHMMdgmented string
pairs only, a mixture of segmented and unsegmented pairgtarsof unsegmented and
individual segmented strings, and unsegmented pairs lomdyl experiments 50 string pairs
are used; the three numbers in identifislsiMM-50-0-0, SPHMM-25-25-0, sSPHMM-
0-50-50, andsPHMM-0-50-0 represent the amount of supervision for the éhsaper-
vision types in the order listed in the previous section. &mmple,sPHMM-25-25-0
uses 25 segmented coreferent pairs, 25 unsegmented eotefairs, and no individual
segmented strings for training. TeseHMM-50-0-0, sPHMM-25-25-0, andsPHMM-0-
50-0 curves demonstrate the effects of training on varionsiinations of segmented and
unsegmented pairwise supervision, while #melMM-0-50-50 curve shows the effects of
adding some individual segmented supervision to the psirwnsegmented supervision.

Figures 3.12 and 3.13 contain precision-recall curves Hertvo datasets. The
results demonstrate that affine-gap edit distance baseuHM g outperforms both regular
learnable affine-gap edit distance as well as the sequentiabination of segmentation and
learnable affine-gap edit distance on both datasets. Th@uament is less pronounced on
the Cora dataset compared to thiRestaurandataset: this is due to the fact that the field
structure in citations is more complex than in restauraconas, since the ordering of the
fields varies significantly. As a result, learning an acausggmentation model is more
difficult for Cora. If field extraction is performed in isolation, segmentaterrors degrade

the quality of similarity computations significantly as dae seen from the SEQ results.
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In contrast,sPHMM is able to improve over non-segmented learnable ediadee by
combining similarities from the multiple alignments.

The utility of training the model on segmented versus unseged string pairs is
also dependent on the difficulty of the segmentation taskaBse segmentations produced
by the trained model are less reliableGorathan inRestaurantutilizing more segmented
training data does not result in statistically significanprovements. liRestaurantecords,
the field structure is more regular, and a small amount okeifiegmented pairs or in-
dividual segmented strings improves results obtained jughunsegmented pairs, as the
differences between threPHMM-0-50-0 and the othesPHMM results demonstrate.

Overall, the results show that incorporating segmentaititm learnable edit dis-
tance yields an improved similarity function for stringage even without segmented
training data, while increased improvements are obtainedmwsmall amounts of seg-

mented supervision is provided.

3.2 Learnable Record Similarity

3.2.1 Combining Similarity Across Fields

Because correspondence between overall record simikardyindividual field similarities
can vary greatly depending on field importance, an accueaterd similarity function must
weigh fields in proportion to their contribution to the truendarity between records. For
example, similarities of thauthorandetitle fields in bibliographic citation are more signif-
icant than similarity for theyearfield, and accurate distance measure for overall citations
must reflect this. While statistical aspects of combiningilsirity scores for individual
fields have been addressed in previous work on record linR&f@ekler, 1999), availability

of labeled duplicates allows a more direct approach that adgnary classifier which com-
putes a similarity function (Tejada et al., 2002; Elfeky kf 2002; Sarawagi & Bhamidi-
paty, 2002; Cohen & Richman, 2002). Given a database camggiacords composed &f
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Name Address City Cuisine

Fenix 8358 Sunset Blvd. West| Hollywood American
Fenix at the Argyle | 8358 Sunset Blvd. W. Hollywood  French (ne

Field dla d2a dlc d2c dlcu d2cu

e \\\ S //

Feature vector dln oy dia doa dic e dicy d2cu

SVM

Distance

Coreferent pairs Non-coreferent pairs

Figure 3.14: Computation of record similarity from indiui field similarities

different fields and a set of similarity functions,{di(-,-),...,dm(:,-)}, we can represent

any pair of records by amk-dimensional vector. Each component of the vector contains

similarity between two field values computed using one ofnth@milarity functions.

As in training string similarity functions, pairs of coreéat records can be used
to construct a training set of such feature vectors by asgjginem a positive class label.
Pairs of non-coreferent records form a complementary setegative examples, which
can be very large due to the paiwise nature of the matchirlg tawl therefore requires
subsampling; this problem is addressed in more detail iti@e8.3.

A binary classifier is then trained on such supervision tordlisinate between pairs
of records corresponding to coreferent and non-corefgrains. Previous work in this area
relied on Bayesian classifiers (Winkler, 2002), decisi@esr(Tejada et al., 2002; Elfeky
et al., 2002), and logistic regression (Cohen & Richman,2200Ne employ a Support
Vector Machine (SVM) with an RBF kernel which in the last déeéas proven to be a
top-performing classifier on a wide array of categorizatesks (Shawe-Taylor & Cristian-
ini, 2000). Properties that make SVMs particularly appiatprfor discriminating between
coreferent and non-coreferent record pairs include tlesitience to noise, ability to handle
correlated features, and robustness to the relative sfzaining samples from different

classes. The latter requirement is particularly importgiven that the proportion of coref-
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erent records in a database is very difficult to estimateahstic record linkage applications
due to the pairwise nature of the task.

Once trained, the SVM provides a confidence estimate for esmird pair which
can be treated as an estimate of similarity between recdius confidence estimate is de-
rived from themarginof a particular example, that is, its distance from the hplaere that
separates the two classes. It has been shown that margibe canverted to confidence or
probability values via a logistic transformation (Wahb8992; Platt, 1999b).

Figure 3.14 illustrates the process of computing recordlaiity using multiple
similarity measures over each field and an SVM to categohieeadsulting feature vector
as belonging to the class of duplicates or non-duplicates. ekch field of the database,
two similarity functions,d; andd,, are applied to compute similarity for that field. The
values computed by these measures form the feature veebistithen classified by a
support vector machine, producing a confidence value thesents similarity between

the database records.

The Overall Record Linkage Framework

An overall view of our system, MRLIN (Multiply Adaptive Record Linkage with INduc-
tion), is presented in Figure 3.15. The training phase st;®f two steps. First, the
learnable string similarity functions are trained for eagtord field. The training corpus of
field-level coreferent and non-coreferent pairs is obthimgtaking pairs of values for each
field from the set of coreferent record pairs. Because eltprivaecords may contain indi-
vidual fields that are not coreferent, training data can bgynd-or example, if one record
describing a restaurant contaitfssian” in the cuisinefield, and an equivalent record con-
tains “Seafood”, a noisy training pair is formed that implies equivalencénsen these
two strings. However, this issue does not pose a seriousgonofor our approach for two
reasons. First, particularly noisy fields that are unhéffgfuidentifying record-level dupli-

cates will be considered irrelevant by the classifier thatltioes similarities from different
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fields. Second, the presence of such pairs in the databasateslthat there is a degree
of similarity between such values, and using them in trgratiows the learnable record
similarity function to capture that likelihood as much asgible.

After individual string similarity functions are learnethey are used to compute
distances for each field of training record pairs to obtaiming data for the binary classifier
in the form of vectors composed of distance features.

The record linkage phase starts with generation of poterti@ferent pairs. Since
producing all possible pairs of records and computing sirityl between them is too ex-
pensive for large databasesARILIN incorporates several blocking strategies to efficiently
obtain candidate record pairs that are approximately amaihd warrant detailed distance

computations. Blocking is discussed in detail in Chapten Syhich we describe an adap-
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tive framework for training blocking functions.

Learned string similarity functions are then used to caltitlistances for each field
of every candidate record pair, forming field feature vexfor the classifier. Confidence
estimates for belonging to the class of coreferent pairpar@uced by the binary classifier
for each candidate pair, and pairs are sorted by decreasmilgrity to evaluate similarity

function accuracy as discussed in Section 3.1.1.

3.2.2 Experimental Results

We evaluated the performance of multi-field record linkagghiw the MARLIN framework
using the SVM implementation within the #¥A software toolkit (Witten & Frank, 1999)
that relies on the Sequential Minimal Optimization (SM@)ning algorithm for the under-
lying quadratic optimization problem (Platt, 1999a). Waduocted two sets of experiments.
First, we compared the performance of learnable and naondbée variants of affine-gap
edit distance as components of a record-level similaritgfion that combines their predic-
tions for individual fields. We have again used fRestaurantand Cora datasets, this time
using the field segmentation provided with the datasets.

Figures 3.16 and 3.17 present the precision-recall curvesetcord linkage us-
ing SVM as the combining classifier and different field-leswhilarity functions: learned
edit distance, unlearned edit distance, and TF-IDF wethbtesine similarity. The results
demonstrate that using learnable string edit distanceaffite gaps leads to improved per-
formance even when similarities from multiple fields are bomad. At high recall levels
(above 90%), using learnable edit distance performs paatiy well, indicating that it pro-
vides better field similarity estimates for particularlyffidult coreferent pairs, leading to
more accurate computation of the overall record similarity

Second, we compared the performance of several classhrbave been recently
employed for the record linkage task by different reseachelsing the implementations

in the WEKA toolkiet, we compared the following classifiers using botiiearned and
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learnable affine-gap edit distances as the underlying figldesity functions:

e SVM-RBF: Support Vector Machine with the Gaussian kernel;
e SVM-LINEAR: Support Vector Machine with the linear kernel;

e ADABOOST boosting algorithm of Freund and Schapire (1996) that 348sWEKA’S

implementation of C4.5 decision tree as the base classigin(an, 1993);
e MAXENT: logistic regression (le Cessie & van Houwelingen, 1992);

e BAYESNET: a Bayesian Network learner that uses the K2 structure ilggamgo-

rithm (Cooper & Herskovits, 1992).

Figures 3.19 and 3.20 present results for the experimeatsitied learnable affine-
gap edit distance oRestaurantand Cora datasets, while mean average precision (MAP)
values for all experiments are shown in Figure 3.18.

Overall, the results demonstrate that Support Vector Meshyield the best accu-
racy on both datasets, outperforming the other classifigréficantly. Both the Gaussian
and the linear kernel provide equivalently good perforneamehich is not surprising since
the classification is performed on a very low-dimensionabfgm. Other classifiers per-
form significantly worse for both datasets. We conclude 8¥M-based learnable record
similarity is a robust, accurate similarity function formabining similarities of multiple
fields in the record linkage setting. We also note that ugagiable affine-gap edit distance
as the field similarity function provides better resultsthiging unlearned edit distance, al-
though statistically significant differences are only aled on parts of the learning curve
for most classifiers (e.g., for SVM-RBF and SVMNEAR the improvements are statisti-
cally significant at 0.05 level using a two-tailed paire@gsttonly at 98% and 100% recall
respectively). However, the improvements are consistedtsaiggest that using learnable
edit distance for field-level comparisons leads to accunagrovements even when fields

are combined by a classifier.
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Figure 3.18: Mean average precision values for record-laveage

Restaurant Cora
pHMM ED | Unlearned ED|| pHMM ED | Unlearned ED
SVM-RBF 0.999 0.996 0.998 0.997
SVM-LINEAR 0.994 0.994 0.998 0.997
ADABOOST 0.948 0.927 0.975 0.974
MAXENT 0.938 0.937 0.824 0.815
BAYESNET 0.884 0.873 0.976 0.967

3.3 Training-Set Construction for Learning Similarity Fun ctions

Training string and record similarity functions in realHgb scenarios requires selecting
a set of pairs for a human expert to label as coreferent orcoogferent, or asking the
expert to identify all groups of coreferent records in théadat, which is not feasible for
large datasets. Since typical corpora and databasesméatacoreferent records, selecting
random pairs as potential training examples leads to trgiséts with extremely few coref-
erent pairs (positive examples). As a result, such randselcted training sets are highly
skewed toward non-coreferent pairs, which leads to sulm@piperformance of similarity
functions trained on this data. We propose two heuristic@gghes for collecting training
data: static-active learning and weakly-labeled selactamd present experimental results

on their effectiveness.

3.3.1 Likely-positive Selection of Training Pairs

Traditional active learning systems are “dynamic”: labsl$raining examples selected in
earlier rounds influence which unlabeled examples are déenust informative in sub-
sequent rounds. While prior work has examined dynamic edéarning approaches to
adaptive record linkage (Sarawagi & Bhamidipaty, 2002adgjet al., 2002), such strate-
gies may not always be feasible due to high computationak @scerbated by the large
number of potential training examples. We propose usindadit$ active learning method

for selecting pairs of records that dikely to be coreferent, as a middle ground between
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Precision

Figure 3.19: Classifier comparison for record-level linka theCora dataset

Precision

Figure 3.20: Classifier comparison for record-level linkagy theRestaurantataset
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computationally expensive dynamic active learning meshiba@t try to identify the most
informative training examples and random selection theffisient but fails to select useful
training data.

Our approach relies on the fact that off-the-shelf stringilsirity functions, such
as TF-IDF cosine similarity, can accurately identify cereit strings or records at low
recall levels (high confidence) even when coreferent andcooeferent pairs are difficult
to distinguish at high recall levels (low confidence). THere, when a random sample of
records from a database is taken and similarity between theomputed using such an
off-the-shelf similarity function, string or record painsth high similarity scores are likely
to be coreferent. By asking the user to label strings or decwith high textual similarity,
a training sample with a high proportion of coreferent paaa be obtained. At the same
time, non-coreferent pairs selected using this methodilkely Ito be “near-miss” negative
examples that are more informative for training than rangiaelected record pairs most
of which tend to be “obvious” non-coreferent pairs. Becausi@ing sets constructed using
this method have a dramatically different distribution ofeferent and non-coreferent pairs
from their actual distribution in the dataset, adding soem@lomly selected non-coreferent
pairs is desirable to decrease the difference between thelisiributions and provide the
learner more negative examples.

Figures 3.21 and 3.22 demonstrate the comparative utflisyadic-active selection
and random selection for choosing training record pair&kestaurantand Cora datasets
respectively. The record similarity function was trained4® training examples comprised
of randomly selected record pairs and/or the most similas [zlected by a static-active
method using TF-IDF cosine similarity. Using a token-basweérted index for the vector-
space model (Baeza-Yates & Ribeiro-Neto, 1999) allowediefit selection of static-active
training examples without computing similarity betweehpalirs of records. All exper-
iments utilized SVM9" for computing learnable record similarity function and two-

learned string similarity functions for field comparisofi$:-IDF cosine similarity and edit
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distance with affine gaps.

For both datasets, the highest performance is achieved seherd similarity func-
tions are trained using a mix of static-active and randorelgcted pairs. However, employ-
ing many random pairs with a few static-active examplesdgiehe best results o@ora,
while on Restauranthe highest performance is achieved when the system ittain a
balanced mix of static-active and random examples. Thferéifice is explained by the
makeup of the two dataset€ora has a higher absolute number of coreferent pairs than
Restauran{(8,592 versus 56 for each fold); coreferent pair€ora also represent a larger
proportion of all record pairs (4.1% versus 0.06% for eadtl)foOn Restaurantrandom
selection results in training sets that contain almost mefeoent pairs, while including
a significant number of pairs selected using the statissatgchnique leads to balanced
training sets that contain sufficient positive and negagixemples. OrCora, however, ran-
domly selected record pairs are likely to contain a few @it pairs. Including a limited
number of record pairs chosen using the static-active tgabrresults in the best perfor-
mance, but as more static-active examples are added, parfice decreases because highly
similar coreferent pairs take the place of informative woneferent pairs in the training set.
Thus, the worst performance &estauranbccurs when all training examples are chosen
randomly because coreferent pairs are almost never ererednivhile orCora using only
examples chosen by static-active selection results in ppegite problem: extremely few
non-coreferent pairs are found, and the class distribudfdraining data is highly skewed
toward non-coreferent pairs.

Based on these results, we conclude that best trainingadtsafnable record sim-
ilarity functions are obtained when randomly chosen pairsecords are combined with
pairs chosen using static-active selection. The specifipgation in which the two kinds of
training data should be mixed can be estimated based on tbenoe of labeling randomly
chosen pairs. If coreferent pairs are exceptionally rasggrificant number of static-active

examples is required to obtain a sufficient sample of coeetgrairs, while databases with a
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large number of coreferent records need only a small nuntrecord pairs selected using
the static-active methodology to complete a represeetataining set.

Overall, we show that a reasonable baseline to which dynaatiee learning meth-
ods for adaptive similarity functions should be comparediaisthe one that uses only ran-
domly selected training pairs, but one that employs thecstative method to overcome
the extreme skewness in class distribution that is typmasiimilarity function learning and

record linkage problems.

3.3.2 Weakly-labeled Selection

While the static-active method allows identifying corefier training pairs for learnable
similarity functions, the inverse problem can be encowtén some real-world situations:
a “legacy” training set consisting of identified corefergairs may be available, while in-
formative non-coreferent pairs need to be collected. Foh situations we consider an
unsupervised technique for obtaining negative examplexeXoreferent records are rare
in a typical database, two randomly selected records aetylio be non-coreferent, and
therefore can potentially be used as negative training plestior learning similarity func-
tions. To help ensure that no coreferent records are indladeng these pairs, only pairs of
records that daot share a significant number of common tokens should be indlad@eg-
ative examples. Such selection of “weakly-labeled” (antkptially noisy) non-coreferent
record pairs is the unsupervised analog of static-actilecsen of coreferent pairs. The
process can also be thought of as the opposite of blockingrarpses techniques that use
off-the-shelf metrics to avoid comparing “obvious” norreferent records to speed up the
record linkage process.

We compared the record linkage accuracy oAMlIN trained on weakly-labeled
negatives with training on user-labeled negatives. FiGt&3 and 3.24 present the results
of these experiments on tiikestaurantand Cora datasets. Weakly-labeled negatives were

selected randomly from record pairs that shared no more2®#nof tokens to minimize the
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noise. All experiments used training sets composed of twisp&alf the examples were
positives randomly selected among user-labeled cordf@ars, and the other half was
composed of either weakly-labeled non-coreferent recordsandomly selected labeled
record pairs. SVNE' was employed to compute record similarity, and TF-IDF oesin
similarity and edit distance with affine gaps were used asutigerlying string similarity
functions for individual fields.

The results again demonstrate that the utility of the h&arselection of training
data for similarity function learning is dataset-depend@mn Restaurantwhere coreferent
pairs are scarce and randomly selected records are truabgoreferent with very high
probability, using weakly-labeled non-coreferent paields results identical to randomly
selected labeled coreferent pairs when a large number offgea is selected, and improves
slightly over random selection when the training set is $male conjecture that biasing
the SVM with “negative but slightly similar” examples wheery little training data is
available allows learning a better separating hyperplade.Cora, using weakly-labeled
negatives leads to slight degradation of system accurdughvis expected since coreferent
pairs are relatively frequent, and noise is likely to beddtrced when negative examples
are collected in an unsupervised manner. However, the drpprformance is small, and in
situations where human labeling of negatives is expensiug@asible (e.g. due to privacy
issues), using weakly-labeled selection is a viable avéouansupervised acquisition of

negative training examples for similarity function leargi

3.4 Related Work

Several researchers described methods for learning sirimitarity functions in prior work.
For string edit distance, Ristad and Yianilos (1998) prepdsarning the costs of individual
edit operations of Levenshtein distance using a probébilgenerative model. In their
model, a string alignment is equivalent to a sequence ofacher pairs generated by edit

operations emitted by a hidden Markov model with a single-tesminal state. We have
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followed the same approach in developing a learning mode&fiine-gap edit distance,
which provides significantly better similarity estimates hatural text strings (Bilenko &
Mooney, 2002; Cohen et al., 2003a).

Both our model and the model of Ristad-Yianilos are instanakpair Hidden
Markov Models, proposed earlier for biological sequengmahents in bioinformatics (Durbin
et al., 1998). Using such models for record linkage requme&ral modifications that we
have described. Among those, parameter tying, gap-torgapitions, and length normal-
ization are important for obtaining good performance of pVIM-based edit distance in
natural language string similarity computations.

Two other models for learning the costs of individual edie@ions have been
proposed by Zhu and Ungar (2000) and Yancey (2004). Zhu amgatf2000) have used
genetic algorithms for learning the costs of several maywainstructed edit operations.
Yancey (2004) has employed a variant of Expectation-Mazation for learning the prob-
abilities of individual edit operations, where only higtipsobability (Viterbi) alignments
were used to accumulate expectations. Both of these apmeare adaptive variants of
Levenshtein distance and do not include taking gaps intolaxtc

In recent years, two models of learnable edit distance haea Iproposed based
on discriminative classifiers. Joachims (2003) formulatedproblem of learning edit op-
eration costs as maximum-margin optimization, and showsd ih can be solved using
SVMs. However, this formulation relies on availability aftaal string alignments, not just
coreferent string pairs, and therefore requires signifitaveling effort to obtain training
data. McCallum, Bellare, and Pereira (2005) described aeffodlearning the parameters
of affine-gap edit distance based on Conditional Randonmd&i@CRFs), a discriminative
analog of HMMs. While they have obtained improvements okierfield-level results we
presented in Section 3.1.1 on some of the datasets, thdioohetlies on a number of extra
matching features, some of which could also be implememtg¢tid HMM-based model.

Additionally, training algorithms for CRF-based models arore complex than EM-based
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training of HMMs and incur significant computational costs.

A number of record linkage researchers have relied on fissto combine simi-
larity estimates across multiple fields. Approaches in thgstical literature has tradition-
ally relied on generative classifiers such as Naive BayesBayasian networks (Winkler,
2002), while in recent machine learning research a numbelassifiers have been used,
including decision trees (Elfeky et al., 2002; Tejada et2002; Sarawagi & Bhamidipaty,
2002) and logistic regression (Cohen & Richman, 2002). We lshown that Support Vec-
tor Machines outperform these methods significantly on dathsets that we considered.

Sarawagi and Bhamidipaty (2002) and Tejada et al. (2002¢ pavposed active
learning methods that obtain informative training exaragta learning record-level sim-
ilarity functions between records. The training set caridton strategies we described in
Section 3.3 approximate these methods without the conipogdtcost of active learning
for selecting likely positives, and without the need for ataun oracle for weak negatives.

Recent work on record linkage has focused on the third sthgfgeaecord link-
age process described in Section 2.2: clustering for dbtagroups of coreferent records.
In particular, a number of methods have been proposeddibectivegrouping coreferent
records and obtaining the complete partitioning of datasebd such groups (Pasula et al.,
2003; Wellner et al., 2004, Li et al., 2004; Singla & Dominga605). Our work addresses
an orthogonal problem, accurate computation of record a&bdigimilarities, and the meth-
ods presented in this chapter can be used as input to thetoalénkage approaches, since

they rely on pairwise similarity estimates between recamdeir fields.

3.5 Chapter Summary

In this chapter, we have shown how learnable similarity fioms lead to significant perfor-
mance improvements in the record linkage task. BecauseddioBage requires accurate
distance estimates between individual field values andativercords, adapting similarity

functions that provide these estimates allows learningaio+specific parameters to com-
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pute similarity with higher accuracy.

Two learnable variants of affine-gap edit distance basedaanHiMMs that we
described learn edit operation and gap costs that discimipetween coreferent and non-
coreferent strings. For record-level similarity, we hahewn that using Support Vector
Machines leads to accurate distance estimations betweendsecomposed of multiple
fields. We have demonstrated that employing learnable ligsiel- similarity functions is
still advantageous over using unlearned methods in melt-tiomains when field similar-
ities are combined by a classifier. Finally, we have shownitfi@rmative training examples
for these methods can be collected without relying on atgi@ming methods, and possibly

without even relying on human supervision.
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Chapter 4

Learnable Similarity Functions in

Semi-supervised Clustering

In this chapter, we show how learnable similarity functismgprove clustering accuracy
when employed in a semi-supervised clustering setting. #geribe a probabilistic model
for semi-supervised clustering based on Hidden Markov RamBields (HMRFs) that ac-
commodates a wide variety of learnable similarity functiomhis model yields a clustering
algorithm, HMRF-KMEANS, that integrates similarity function learning with corasiit-

based clustering, improving on algorithms that perfornsé¢htasks in isolation.

4.1 Similarity Functions in Clustering

As discussed in Section 2.3, clustering inherently reliesimilarity estimations as its goal
is to group instances that are alike while separating igs®that are dissimilar. For many
datasets, off-the-shelf functions may fail in providinghgarity estimates that place same-
cluster points nearby and different-cluster points farrgpgareventing the discovery of a
desired partitioning of a dataset. Examples of same-clastd different-cluster instance

pairs that are available in the semi-supervised clustesgtjng provide supervision for

56



training the similarity function to produce appropriatstdnce estimates, making it easier
to create clusters that respect the pairwise supervisi@nwhouping the unlabeled data.

For some datasets, clusters of different shapes may beblesiwhich effectively
indicates that datapoints in these clusters lie in diffemrbspaces of the overall data
space. Recovering such partitioning requires using arvishaal similarity function for
each cluster, a fact that is exploited in unsupervised eting algorithms like Expectation-
Maximization that estimate distinct density parametersdftferent clusters. In the semi-
supervised setting, pairwise constraints provide adsilianformation about the shape of
underlying clusters that can be captured if the similanityction is learned using both su-
pervised and unsupervised data.

The HMRF framework for semi-supervised clustering preseriielow addresses
the above considerations in a principled probabilistic el@hd leads to a clustering algo-
rithm, HMRF-KMEANS, that combines the advantages of constraint-based anidsiyni
based approaches to semi-supervised clustering. Thevfoliccection presents an overview
of the overall HMRF framework, more detailed descriptioniich can be found in (Basu
et al., 2006). Then, use of learnable similarity functionthin the framework is described
in detail. Three examples of similarity functions and thgarameterizations for use with
HMRF-KMEANS are provided for squared Euclidean distance, cosine distand KL
divergence. Through parameterization, each of these iumecbecomes adaptive in the
semi-supervised clustering setting, which allows leaynive appropriate notion of similar-

ity using both the pairwise constraints and the unlabeled. da

4.2 The HMRF Model for Semi-supervised Clustering

We assume that we are given a senafata pointsX = {x;}i! ;, where eachx R is a
d-dimensional vector. Supervision consists of two sets of\gse constraints over points
in X: must-link constraintsy. = {(,x;j)} and cannot-link constraintsc. = {(x;,X;j)},

where(x;,x;j) € GuL implies thatg andx; should belong to the same cluster, whkg x;) €
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CcL implies thatx; and x; should belong to different clusters. The constraints may be
accompanied by associated violation ca8tsvherew;; represents the cost of violating the
constraint between poinks andx;, if such a constraint exists.

The model relies on selecting distortion measure g to compute dissimilarity
between pointsds : RY x R — R. The distortion measure corresponds to a learnable sim-
ilarity function, with 4 being the set of parameters to learn, which is typically arimat
a vector of weights. The objective of semi-supervised elirsg) is to partition the data-
points.X into K disjoint clusters{ Xj, ..., Xk } so that the total distortion between the points
and the corresponding cluster representatives is minahdzeording to the given distortion

measural 4, while constraint violations are kept to a minimum.

4.2.1 HMRF Model Components

The Hidden Markov Random Field (HMRF) (Zhang, Brady, & SmRB01) probabilistic
framework for semi-supervised constrained clusteringsist® of the following compo-

nents:

¢ An observablesetX = {x;}! ; corresponding to the given data poicks Note that
we overload notation and uséto refer to both the given set of data points and their

corresponding random variables.

¢ An unobservablghidden) sety” = {y;}!' ; corresponding to cluster assignments of
points inX. Each hidden variablg encodes the cluster label of the painand takes

values from the set of cluster indic€s, ..., K}.

e An unobservable(hidden) set of generative model paramet@swhich consists
of distortion measure parametefisand cluster representatived = {4} ;: © =
{4, M}.

e An observableset of constraint variable§ = {C12,C13,...,Ch-1n}. Eachgj is a

tertiary variable taking on a value from the det1,0,1}, wherecjj = 1 indicates
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Figure 4.1: A Hidden Markov Random Field for semi-superdiskistering

that (x,Xj) € GuL, Gij = —1 indicates thatx;,X;) € (cL, andcij = 0 corresponds to

pairs(x;, ;) that are not constrained.

Fig. 4.1 shows the HMRF for a hypothetical five-point data¥etThe datapoints
correspond to variable§q,...,xs) that have cluster label® = (ys,...,ys), which may
each take on valuegl, 2,3) denoting the three clusters. Three pairwise constrairgs ar
provided: two must-link constraints, x2) and (x1,Xs), and one cannot-link constraint
(x2,x3). Corresponding constraint variables afe = 1, c14 = 1, andcyz = —1; all other
variables inC are set to zero. The task is to partition the five points intedfclusters.
Fig. 4.1 demonstrates one possible clustering configurattich does not violate any con-
straints. The must-linked pointg,x, and x4 belong to cluster 1; the poing, which is
cannot-linked withx,, is assigned to cluster ;, which is not involved in any constraints,

belongs to cluster 3.
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4.2.2 Joint Probability in the HMRF Model

The graphical plate model (Buntine, 1994) of the dependbet&een the random variables
in the HMRF is shown in Figure 4.2, where the unshaded nogeesent the hidden vari-
ables, the shaded nodes are the observed variables, totedilmks show dependencies
between the variables, while the lack of an edge between &niahles implies conditional
independence. The prior probability ®fis assumed to be independent®fThe probabil-
ity of observing the label configuratiglf depends on the constrainfsand current genera-
tive model parameteri®. Observed datapoints corresponding to varialllee generated
using the model paramete®Bbased on cluster labef¥, independent of the constraints
The variablesX are assumed to be mutually independent: eachgenerated individually
from a conditional probability distribution B|y;, ®). Then, the joint probability of(, 9,

ando, givenC, can be factorized as follows:

Pr(X,Y,0[C) = Pr(©) Pr(Y©,() up(xilyi,e) (4.1)

wherep(-|yi,©) is the parameterized probability density function for yhx#h cluster, from
which x; is generated. This probability density corresponds to thstering distortion

measurealz, and is discussed in detail in Section 4.3 below.
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Each hidden random variabjg € 9 representing the cluster label xfc X is as-
sociated with a set of neighborX, defined as all points to whick is must-linked or
cannot-linked:A; = {y;|(%,Xj) € GuL U (X, Xj) € CcL}. We make the Markov assumption
that each labey; is conditionally independent of all other labels9ngiven the labels of
its neighbors. The resulting random field over the hiddemat#es?)” is a Markov Ran-
dom Field (MRF), in which by the Hammersley-Clifford themréHammersley & Clifford,
1971) the prior probability of a particular label configuoat)” can be expressed as a Gibbs

distribution (Geman & Geman, 1984):

Pr910,C) = —exp( Zv > (4.2)

whereZ is the partition function (normalizing term), and each j) is the potential function
encoding the compatibility of cluster labgtsandy;. Because label compatibility is only

relevant for pairs of points that participate in constrginte define(i, j) as follows:

wij fmi (i, j) if 6j = 1 andy; #y;
v(i,j) = ¢ wijfe(i,j) if Gj =—1andy =y, (4.3)
0 otherwise

where fyy. and fc arepenalty functionghat encode the lowered probability of observing
configurations ofy” where must-link and cannot-link constraints are violatespectively,
andw;; is the user-provided constraint weight that can be useddicate its importance.
Penalty functions are chosen to correlate with the distontheasure by depending on the
distortion measure parametetsand will be described in detail in Section 4.3 below. Over-
all, this formulation for observing the label assignmenugtering) 9" results in higher
probabilities being assigned to configurations in whictstedu assignments do not violate

the provided constraints.
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Then, joint probability on the HMRF can be expressed as\ialo

oo Leo(— 5 viin))(Bexly
Pr(x,y,ew)—Pr(e)(Zexp( (i’j):zwov(u,n))(ﬂp(w.,e)) @4

The first factor in the above expression describes a pratyadiktribution over
the model parameters preventing them from attaining degengalues, thereby providing
regularization. The second factor is the conditional pbiligt of observing a particular
label configuration given the provided constraints, effety assigning a higher probability
to configurations where the cluster assignments do notteidfe constraints. Finally, the
third factor is the conditional probability of generatirtietobserved data points given the
labels and the parameters: if maximume-likelihood estiora{MLE) was performed on the
HMRF, the goal would have been to maximize this term in isotat

Overall, maximizing the joint HMRF probability in Eq.(4.4) equivalent to jointly
maximizing the likelihood of generating datapoints frore thodel and the probability of

label assignments that respect the constraints, whildagging the model parameters.

4.3 Learnable Similarity Functions in the HMRF Model

The Joint probability formulation in Eq.(4.4) provides angeal framework for incorporat-
ing various similarity functions in clustering by choosiagparticular form ofp(x|yi, ©),
the probability density that generates thih instancex; from clustery;. In this work, we
restrict our attention to probability densities from th@erential family, where the expec-
tation parameter corresponding to clusgers p,, the mean of the points of that cluster.
Using this assumption and the bijection between regulapmsmptial distributions and regu-
lar Bregman divergences (Banerjee et al., 2005b), the tiondl density for observed data

can be represented as follows:

p(Xilyi, ©) = Z—leexp(—dﬂ(m,uyi))» (4.5)
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wheredg (X, 1y, ) is the Bregman divergence betwegrmandyy,, corresponding to the expo-
nential densityp, andZp is the normalizer. Different similarity functions can bepexssed

via this exponential form:

e If x; andpy, are vectors in Euclidean space, aihgis the square of the, distance
parameterized by a positive semidefinite weight ma&jpd (X, by, ) = ||Xi — Hi’
then the cluster conditional probability isledimensional multivariate normal density
with covariance matrixd—*: p(x|y;,®) = W exp(—3 (% — Wy ll%) (Kearns,

Mansour, & Ng, 1997);

e If x; and p, are probability distributions, andg is KL-divergence d4(xi,1y,) =
zﬂhlximlog ﬁ) then the cluster conditional probability is a multinohlstribu-

tion (Dhillon & Guan, 2003).

The relation in Eq.(4.5) holds evendf; is not a Bregman divergence but a direc-
tional distance measure such as cosine distance. Theayiflp, are vectors of unit length
andd is one minus the dot-product of the vectdts; (x;, by, ) = 1— W) then the
cluster conditional probability is a von-Mises Fisher (vitstribution with unit concen-
tration parameter (Banerjee et al., 2005a), which is therspdd analog of a Gaussian.

Putting Eq.(4.5) into Eq.(4.4) and taking logarithms gitles following clustering
objective function, minimizing which is equivalent to mmnizing the joint probability over

the HMRF in Eq.(4.4):

Jobj = > da(x,Hy)+ > V(i) —logPrO)+logZ + nlogZe (4.6)
XeX GjeC
Thus, an optimal clustering is obtained by minimizifyg; over the hidden variables
9 and parameter®, which are comprised of cluster centroi@$ and distortion measure
parameters? (note that given cluster assignmentsthe meansVf = {M-}iK:1 are uniquely

determined).
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Selecting an appropriate distortion measdgefor a clustering task typically in-
volves knowledge about properties of the particular donsaid dataset. For example,
squared Euclidean distance is most appropriate for lowedsional data, while cosine
similarity is most fitting for data described by vectors imghridimensional space where
directional differences are important but vector lengttesiaelevant.

Once a distortion measure is chosen for a given domain, tiaifuns fy. and fe
must be defined to penalize must-link and cannot-link caigtviolations respectively,
as described in Section 4.2.2. Each violation penalty ikedgaroportionally to the “egre-
giousness” of the violation with respect to the current knty function. That s, a violated
must-link constraint carries a heavy penalty in the objedtiinction if the distance between
its points is high: this indicates that the two points aréhhiglissimilar, and the current pa-
rameterization of the similarity function is grossly ingdate. Likewise, two if points of a
violated cannot-link constraints are similar, the pena@thigh since the parameterization
of the similarity function is inappropriate: the points shbbe dissimilar.

To reflect this intuition, the penalty functions are definedalows:

fCL(ivj) = (I)max_q)(iaj) (48)

whered : X x X — R is a non-negative function that penalizes constraint timta, while

¢™*is an upper bound on the maximum valuepobver any pair of points in the dataset;
examples of such bounds for specific distortion functiorsdescribed below. The func-
tion ¢ is chosen to be identical or proportional to the distortiogasure, assigning higher
penalties to violations of must-link constraints betweeim{s that are distant with respect
to the current parameter values of the distortion measuwravésely, penalties for violated
cannot-link constraints are higher for points that have thigtance between them. With

this formulation of the penalty functions, constraint aitibns will lead to changes in the
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distortion measure parameters that attempt to mend thatiaps. The potential function

Vv(i, J) in Eq.(4.3) then becomes:

Wi & (X, X)) if ¢ij =1 andy; #y;
Vi, ) =9 wij (0™ —(x,%)) if gj=—1andy=y; , (4.9)
0 otherwise

and the objective function for semi-supervised clusteiimBgq.(4.6) can be expressed as:

Jobj =y dali,M(i)+ 3 wd(%,x))

XeX (%X} ) ECML
st. Vi
+ Y Wi (9™ —0(%,X)) —logPr(41) +nlogZe (4.10)
(XX )€ CeL
st Yi=yj

Note that the MRF partition function term I@has been dropped from the objective
function. Its estimation cannot be performed in closed flwnmost non-trivial dependency
structures, and while approximate inference methods cbalémployed for computing
it (Kschischang, Frey, & Loeliger, 2001; Wainwright & Jord2003), experiments with the
different methods have shown that minimizing the simpliftdgective yields comparable

results (Bilenko & Basu, 2004).

4.3.1 Parameter Priors

Following the definition of® in Section 4.2.1, the prior term logf) in Eq.(4.6) and the

subsequent equations can be factored as follows:

log P(©) = log(Pr(2) Pr(M)) = log P(A) + Py
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where the distortion parametefsare assumed to be independent of the cluster centroids
M = {M}iK:l, and uniform priors are considered over the cluster catgr@ieading to the
constant ternPy). For different distortion measures, parameter values exist that lead
to degenerate solutions of the optimization problem. Famgxe, for squared Euclidean
distance, the zero matr&= 0is one such solution. To prevent degenerate solutioris])Pr
is used to regularize the parameter values using a priailigon.

If the standard Gaussian prior was used on the parametdrs didtortion function,
it would allow the parameters to take negative values. Sinsalesirable to constrain the
parameter values to be non-negative, it is more appropwatse the Rayleigh distribu-
tion (Papoulis & Pillai, 2001). Assuming independence @f plarameters; € A, the prior

term based on the Rayleigh distribution is the following:

awo(-3)

Pr(A) = 2

g cA

(4.11)

wheresis the width parameter.

Next, we consider three examples of commonly used distortieasures and their
parameterizations for use with HMRF-KBMNS: squared Euclidean distance, cosine dis-
tance and KL divergence. Through learning, each of thesiasity functions reflects the
correct notion of similarity provided by the pairwise caastts, leading to better clustering

accuracy.

4.3.2 Parameterized Squared Euclidean Distance

Squared Euclidean distance is parameterized using a syrarpesitive-definite matrixA

as follows:

deuay (%, X)) = [[% —X{[I3 = (x —X})TAM — ;). (4.12)

This form of the parameterized squared Euclidean distam@guivalent to Ma-
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halanobis distance with an arbitrary positive semidefiniggght matrixA in place of the
inverse covariance matrix, and it was previously used by@XiNg, Jordan, & Russell,
2003) and (Bar-Hillel, Hertz, Shental, & Weinshall, 2008uch formulation can also be
viewed as a projection of every instancento a space spanned By/2: x— AY/2x.
The¢ function that penalizes constraint violations is definedl@&s X;) = deug, (X, X;)-
One possible initialization of the upper bound for canmak-penalties ishgix = ¥ (x Xj)ECoL deua (%i,X;j),
which guarantees that the penalty is always positive. Ugirge definitions in the objec-
tive in Eq.(4.10), the following objective function is obtad for semi-supervised clustering

with parameterized squared Euclidean distance:

Jeuq = Z deugy (X, M(i)) + z Wij deud, (X5 Xj)

X €X (Xi,Xj )€ CuL
st. Yi#Yj
+ > wij (9o — deuq (%, X)) —logP(A) — nlogde( 1) (4.13)
(6,%))€CeL
St Yi=Yj

Note that the lo@e term in the general objective function in Eq.(4.10) is com-
putable in closed form for a Gaussian distribution with e¢@amce matrixA 1, resulting in

the logdetA) term.

4.3.3 Parameterized Cosine Distance

Cosine distance can be parameterized using a symmetritvpedefinite matrixA, which

leads to the following distortion measure:

X' AX

S, S Ny 4.14
TR (4.14)

eos, (X, X)) = 1

Because for realistic high-dimensional domains compuitiegfull matrix A is very expen-
sive computationally, diagonal matrix is considered irs ttéise, such tha = diag(A) is

a vector of positive weights, intuitively correspondingth® relative importance of each
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dimension.

To use parameterized cosine distance as the adaptivetidistoreasure for cluster-
ing, the¢ function is defined a$(x,Xj) = deos, (Xi,X;j). Using this definition along with
Eq.(4.10), and setting™® = 1 as an upper bound op(x;,x;), the following objective

function is obtained for semi-supervised clustering witingmeterized cosine distance:

Joos, = Z deos, (Xi, M(T)) + Z WiJ'dCOSA(XivXJ')

XeX (%X} )€ G
st yi#yj
+ 0y W (1—dcosy (X, Xj)) — logPr(2) (4.15)
(%i,Xj )€ CeL
st. yi=yj

Note that the lo@g term is difficult to compute in closed form (Banerjee et al.,
2005a), so it is assumed to be constant during the clustprimzpss and therefore dropped
from the objective function. This assumption is reasonghlen an appropriate prior BX),

and experimentally we have not observed problems with ggorconvergence due to this

approximation.

4.3.4 Parameterized Kullback-Leibler Divergence

In domains where each instance can be described a propatisitrioution, Kullback-
Leibler divergence can be used to measure similarity betwestances. In previous work,
(Cohn, Caruana, & McCallum, 2003) parameterized KL-dieae by multiplying every
component by a real weight, (x,%;) = 39_; 8mXim log .

We use a similar parameterization of KL divergence, wheeevictor of positive
weights, a, corresponds to a diagonal mat#x However, since after the reweighting
each instance is no longer a probability distribution, pesameterization requires using
I-divergence, a function that also belongs to the class efjBran divergences (Banerjee

et al., 2005b). I-divergence has the ford{x,x;) = zﬂ,zlximlog)’g—fn“1 — 591 (Xim — Xjm),
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wherex; andx; no longer need to be probability distributions but can be rrmy-negative

vectorst The parameterized I-divergence is expressed as follows:

diy (%, %)) = Z amXim Iog Z am(Xim — Xjm), (4.16)

which can be interpreted as scaling every component of igaaf probability distribution
by a weight contained in the corresponding componera, @nd then taking I-divergence
between the transformed vectors.

The HMRF framework requires defining an appropriate penatijation function
¢ that is symmetric, since the constraint pairs are unordefi@meet this requirement,
a sum of weighted I-divergences fromnandx; to the mean vecto@ is used. This
parameterized I-divergence to the medjy,, is equivalent to weighted Jensen-Shannon
divergence (Cover & Thomas, 1991), the symmetric KL-dieeige to the mean, and is

defined as follows:

d
OIS SUNPE S

(4.17)
n=1 Xim =+ Xjm Xim 4 Xjm

Then, defining the constraint violation functignasd(x,x;) = dim,(Xi,X;) yields

the following objective function for semi-supervised ¢kring with parameterized I-divergence:

Ja= Y 0GR+ D Widima (X, %)

XeX (X, Xj )€ GuL
st. YiZyj
+ 0w (v — dima (%, Xj)) — log Pr(2) (4.18)
(%,%] )€ CeL
st. yi=yj

The upper boundi{iX can be initialized asl{ji = 54, am, which follows from

1For probability distributions, I-divergence and KL-digence are equivalent.
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the fact that unweighted Jensen-Shannon divergence isibdwabove by 1 (Lin, 1991).

As for cosine distance, the Iag term is difficult to compute in closed form for
parameterized I-divergence (Banerjee et al., 2005a),is@misumed to be constant during
the clustering process and therefore dropped from the tlgefunction. Again, this as-
sumption is reasonable given an appropriate prigARrand experimentally we have not

observed problems with algorithm convergence due to thpscegmation.

4.4 Learning Similarity Functions within the HMRF-KMeans
Algorithm

Since the cluster assignments and the generative modehptees are unknown in a clus-
tering setting, minimizing the general objective functinftg.(4.10) is an “incomplete-data
problem”. A popular solution technique for such problem&Expectation-Maximization
(EM) algorithm (Dempster, Laird, & Rubin, 1977). The K-Meaalgorithm (MacQueen,
1967) is known to be equivalent to the EM algorithm with haigstering assignments, un-
der certain assumptions (Kearns et al., 1997; Basu et &2; Banerjee et al., 2005b). This
section describes a K-Means-type hard partitional clugjealgorithm, HMRF-KMEANS,
that finds a local minimum of the semi-supervised clustedbgective functionfop; in
Eq.(4.10).

The outline of the algorithm is presented in Fig. 4.3. Thedaka of HMRF-
KMEANS is as follows. First, the constraints are used to obtain @ goidialization of the
cluster centroids. Then, in the E-step, given the currargtet representatives, every data
point is re-assigned to the cluster which minimizes its gbation to ;. In the M-step,
the cluster centroid9/ = {4 }X , are re-estimated given current assignments to minimize
Jobj for the current assignment of points to clusters. The climjedistortion measure
is subsequently updated in the M-step to reduce the obgefitinction by modifying the

parameters? of the distortion measure.

70



Algorithm: HMRF-KM EANS
Input: Set of data pointst = {x}/"_;

Set of constraintg’

Parameterized distortion measuaig(-, ).

Constraint violation cost$//

Desired number of clusteks
Output: Disjoint K-partitioning{.X; }{_; of X such that objective

function Jop; in Eqn. (3.9) is (locally) minimized.

Method:
1. Initialize theK clusters centroidg/© = {u{”}X | sett— 0
2. Repeat untitonvergence

2a. E-step: Given centroidsM V) and distortion parameters®),

(t+1)yn

re-assign cluster labefsY) = {7} | onX to minimize Jop;.

2b. M step(A) : Given cluster labels’*1) and distortion parameter 1),
re-calculate centroidd/ 1) = {"™}K | to minimize fop;.

2c. M step(B): Given cluster labels ™1 and centroidsi/ (1),
re-estimate paramete*Y of the distortion measure to redugg;.

2d. t—t+1

Figure 4.3: The HMRF-KMANS algorithm

Note that this corresponds to the generalized EM algoritben{pster et al., 1977;
Neal & Hinton, 1998), where the objective function is rediidmit not necessarily mini-
mized in the M-step. Effectively, the E-step minimizgg; over cluster assignments, the
M-step(A) minimizesJopj Over cluster centroid$/, and the M-step(B) reduceky, over
the parameterA of the distortion measumy;. The E-step and the M-step are repeated until
a specified convergence criterion is reached.

Detailed discussion of the initialization, E-step, and tdggA) of the algorithm
along with the proof of convergence can be found in (Basu520hile in this section we
focus on M-step(B) where the distortion measure parametersipdated to decrease the
objective function.

For certain distortion measure parameterizations, miation via taking partial
derivatives and solving for the parameter values may bédfieas.g., for squared Euclidean
distance with uniform parameter priors (Bilenko et al., 200n which case the weight

matrix A is obtained in M-Step(B) as:
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A=|X|(2X<m—uyi><m—uyf+ T Wy — %)% — %)
X € (K,Xj)ZCML
St YiZYj

-1
" ! [ X (K =X) T — (% —%) (% —x))T (4.19)
(m,xgeCCLWJ((%ijech(X: D —X)" = (% —Xj) (X —Xj) ))

st Yi=yj

Since the weight matripA is obtained by inverting the summation of covariance
matrices in Eq.(4.19), that summation (correspondin%td—l) must not be singular. If at
any iteration the summation is singular, it can be condégwia adding the identity matrix
multiplied by a small fraction of the trace &% A~ = A=l 4 ¢ tr(A=1)I. If the weight
matrix A resulting from the inversion is negative definite, it is meddby projecting on the
setC = {A: A= 0} of positive semi-definite matrices, to ensure that the sgliBuclidean
distance parameterized Byis a Mahalanobis distance (Golub & van Loan, 1989).

In general, for parameterized Bregman divergences ortaired distances with
general parameter priors, it is difficult to obtain a closeahf update for the parameters of
the distortion measure that can minimize the objectivetionc Gradient descent provides
an alternative avenue for learning the distortion measarameters.

For squared Euclidean distance, a full parameter maAtisxupdated during gradient

ajeugg

descent using the ruléi= A+n -3 (wheren is the learning rate). Using Eq.(4.1§¥§;—9“

can be expressed as:

0 ad i, M(i ad X
ge):m _ Z( euméﬁ H(i)) i z Wi eua(‘\,'(a)\q i)
X € (%X} )€ G
st. YiZY
008%  0deuq, (Xi,Xj) dlogPr(A) dlogde(A)

+ Wij [ - - -n : (4.20)

mgecu oA 0A oA oA

st Yi=Yj

The gradient of the parameterized squared Euclidean disiargiven by:
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00euq, (X, X )

A = (=)0 =x)!

The derivative of the upper bourd% is % = 3 (xoxp)ece (5 = X) 06 — %)) T if
$aiit. is computed as described in Section 4.3.2. In practice, andritialize ¢giZs with
a sufficiently large constant, which would make its derx@tzero. Accordingly, an extra
condition must be then inserted into the algorithm to guaerthat penalties for violated
cannot-link constraints are never negative, in which casebnstant must be increased.
When Rayleigh priors are used on the set of paramétgetise partial derivative of

dlogPr(A)
0am

the log-prior with respect to every individual paramedgre A, , IS given by:

dlogPrA) 1 am
o A @ (4.21)

The gradient of the distortion normalizer log &) term is as follows:

Ologdeth) _ ;-1 _ giag(aY). (4.22)
0A

For parameterized cosine distance and KL divergence, aul#garameter matrix
Ais considered, wher@= diag(A) is a vector of positive weights. During gradient descent,
each weighta,, is updated individually:a, = am + r]%‘jﬂ" (n is the learning rate). Using

Eq.(4.10),‘3377‘:1'j can be expressed as:

0 Jobj 9d (X, M(i 90 (X, X
> i _ E)u())+ T w ((3 i)

am e 8m (%% )€ G 8m

st. Vi#Y;
AT A (X, Xi dlogPr(A

+ 0y Wij[j; — q>((;q, )] _ g A (4.23)
(%X )ECoL am am am

St Yi=yj

The gradients of the corresponding distortion measurescandtraint potential

functions for parameterized cosine distance and KL divesgere the following:
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Xl A+l 11
0anm ARSI ’
ad,, (%, ;) Xim
am Xim ngm (Xim ij)a
9dim, (%, Xj) 2Xim 2Xjm
—— % = Xmlog———— + Xjmlog ———, 4.24
0am m gXim‘i‘xjm m gXim‘i‘xjm ( )

while the gradient of the upper bourfiﬁ_:%ax is O for parameterized cosine and 1 for parame-
terized KL divergence, as follows from the expressionsliese constants in Sections 4.3.3
and 4.3.4.

For all distortion metrics, individual similarity functioparameters can be learned
for each cluster, allowing the clusters to lie in differenbspaces. To implement cluster-
specific similarity function learning, the above updatesuith be based only on points
belonging to the cluster, ignoring the rest of the dataset.

Overall, the distance learning step results in modifying distortion measure pa-
rameters so that data points in violated must-link constisaare brought closer together,
while points in violated cannot-link constraints are pdllepart, and each dimension is
scaled proportionally to data variance. This process leadstransformed data space that
facilitates partitioning of the unlabeled data by attemgtio mend the constraint violations

while capturing the natural variance in the data.

4.5 Experimental Results

This section describes the experiments that were perfoton@eimonstrate the effectiveness

of using learnable similarity functions within HMRF-KIBANS.
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45.1 Datasets

Experiments were run on both low-dimensional and high-disianal datasets to eval-
uate the HMRF-KM:ANS framework with different distortion measures. For the low-
dimensional datasets, on which squared Euclidean distsas@ised as the distortion mea-

sure, the following datasets were considered:

e Three datasets from the UCI repositoiyis, Wine andlonosphergBlake & Merz,
1998);

e TheProteindataset used by Xing et al. (2003) and Bar-Hillel et al. (2003

e Randomly sampled subsets from Digits andLettershandwritten character recog-
nition datasets, also from the UCI repository. Bagits andLetters two sets of three
classes were chosef, J, L } from Lettersand{3, 8, 9 from Digits, sampling 10%
of the data points from the original datasets randomly. €heasses were chosen

since they represent difficult visual discrimination pexhb.

Table 4.1 summarizes the properties of the low-dimensidatsets: the number

of instances, the number of dimensions, and the number sé&$a

Table 4.1: Low-dimensional datasets used in experimexgdliation

Iris  Wine lonosphere Protein Letters Digits

Instances 150 178 351 116 227 317
Dimensions 4 13 34 20 16 16
Classes 3 3 2 6 3 3

For the high-dimensional text data, 3 datasets that havehifwacteristics of being
sparse, high-dimensional, and having a small number oftpoompared to the dimension-

ality of the space were considered. This is done for two mesiso
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e When clustering sparse high-dimensional data, e.g., motients represented us-
ing the vector space model, it is particularly difficult tausler small datasets, as
observed by Dhillon and Guan (2003). The purpose of perfognexperiments on
these subsets is to scale down the sizes of the datasetsriputational reasons but

at the same time not scale down the difficulty of the tasks.

e Clustering small number of sparse high-dimensional daiatpas a likely scenario
in realistic applications. For example, when clustering $learch results in a web-
search engine like Vivisinfo the number of webpages that are being clustered is
typically in the order of hundreds. However, the dimensiibnaf the feature space,
corresponding to the number of unique words in all the webpais in the order of
thousands. Moreover, each webpage is sparse, since ifrtootay a small number
of all the possible words. On such datasets, clusteringi#tigas can easily get stuck
in local optima: in such cases it has been observed that thditde relocation of
documents between clusters for most initializations, Whéads to poor clustering
quality after convergence of the algorithm (Dhillon & Gu&®903). Supervision in
the form of pairwise constraints is most beneficial in sudesand may significantly

improve clustering quality.

Three datasets were derived from @@ Newsgroupsollection? This collection
has messages harvested from 20 different Usenet newsgrbd@3 messages from each
newsgroup. From the original dataset, a reduced datasetn@ated by taking a random
subsample of 100 documents from each of the 20 newsgroup®e Tatasets were cre-
ated by selecting 3 categories from the reduced collectidews-Similar-3consists of 3
newsgroups on similar topicsdnp. gr aphi ¢s, conp. 0S. ns-wi ndows, conp. wi ndows. x)
with significant overlap between clusters due to crossippstNews-Related-8onsists

of 3 newsgroups on related topicsalk. politics.msc, talk.politics.guns, and

2http://www.vivisimo.com
Shttp://www.ai.mit.edu/people/jrennie/20Newsgroups
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tal k. politics.mdeast). News-Different-Zonsists of articles posted in 3 newsgroups
that cover different topicsa( t . at hei sm rec. sport. basebal |, sci . space) with well-
separated clusters. All the text datasets were convertdteteector-space model by tok-
enization, stop-word removal, TF-IDF weighting, and readaf very high-frequency and
low-frequency words, following the methodology of Dhillamd Modha (2001). Table 4.2

summarizes the properties of the high-dimensional dataset

Table 4.2: High-dimensional datasets used in experimentduation

News-Different-3 News-Related-3 News-Similar-3

Instances 300 300 300
Dimensions 3251 3225 1864
Classes 3 3 3

4.5.2 Clustering Evaluation

Normalized mutual informatioNMI) was used as the clustering evaluation measure. NMI
is an external clustering validation metric that estimakesquality of the clustering with
respect to a given underlying class labeling of the datae#sares how closely the cluster-
ing algorithm could reconstruct the underlying label disttion in the data (Strehl, Ghosh,
& Mooney, 2000). IfY is the random variable denoting the cluster assignmenteqidints
andY is the random variable denoting the underlying class labelthe points, then the

NMI measure is defined as:

(4.25)

wherel (X;Y) = H(X) — H(X|Y) is the mutual information between the random variables
X andY, H(X) is the Shannon entropy of, andH (X|Y) is the conditional entropy of
X givenY (Cover & Thomas, 1991). NMI effectively measures the amairgtatistical

information shared by the random variables representiagchster assignments and the
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user-labeled class assignments of the data points. Thoaigbus clustering evaluation
measures have been used in the literature, NMI and it'snvartzave become popular lately

among clustering practitioners (Dom, 2001; Fern & Brod2803; Meila, 2003).

4.5.3 Methodology

Learning curves were generated using two-fold cross-aatid performed over 20 runs on
each dataset. In every trial, 50% of the dataset was setasithe training fold. Every point
on the learning curve corresponds to the number of conttrampairs of data points from
the training fold. These constraints are obtained by ragleaiecting pairs of points from
the training fold and creating must-link or cannot-link staints depending on whether the
underlying classes of the two points are the same or diffetémit constraint costg/ were
used for all constraints (original and inferred), sincedh&sets did not provide individual
weights for the constraints. The gradient step sjzor learning the distortion measure
parameters and the Rayleigh prior width paramsteere set based on pilot studies. The
gradient step size was setjo= 1000 for clustering with weighted cosine distandgs,
andn = 0.08 for weighted | divergencd,,. The Rayleigh prior width parameter was set
to s= 1. In a real-life setting, the free parameters of the algoricould be tuned using
cross-validation with a hold-out set. The clustering altipon was run on the whole dataset,
but NMI was calculated using points in the test fold.

Sensitivity experiments were performed with HMRF-khiNs to study the ef-
fectiveness of employing learnable similarity functiorishe proposed HMRF-KMANS
algorithm was compared with three ablations, as well as wiupervised K-Means clus-

tering. The following variants were compared for distantineasureslos,, di, anddeyg:

¢ HMRF-KMEANS-C-D-R is the complete HMRF-KMANS algorithm that incor-
porates constraints in cluster assignments (C), perfoisterdon measure learning
(D), and also performs regularization (R) using a Rayleigbrpas described in Sec-

tion 4.3.1;
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e HMRF-KMEANS-C-D is the first ablation of HMRF-KMANS that includes all

components except for regularization of distortion meagarameters;

¢ HMRF-KMEANS-C is an ablation of HMRF-KNMNEANS that uses pairwise supervi-
sion for initialization and cluster assignments, but doeisperform distortion mea-

sure learning;

¢ RCA-KMEANS is K-Means algorithm that uses distortion measure parasiketarned

using the Relevant Components Analysis (RCA) algorithmanfBillel et al. (2003);

e KMEANS is the unsupervised K-Means algorithm;

The goal of these experiments was to evaluate the utilitysdbdion measure learn-
ing HMRF framework and identify settings in which partiauomponents are beneficial.
For low-dimensional datasets, we also compared sevetaiaipossibilities for parame-

terizing the distance metritgyg,:

¢ HMRF-KMEANS-C-D-R is the complete HMRF-KMANS algorithm that learns a
single diagonal weight matrix for the entire dataskiq diagonal and identical for

all clusters);

¢ HMRF-KMEANS-C-D-R-M isthe complete HMRF-KMANS algorithm that learns
K diagonal weight matrices;,...,Ax so that each cluster corresponds to a distinct

similarity function;

¢ HMRF-KMEANS-C-D-R-FULL is the complete HMRF-KMANS algorithm that
learns a single fully-parameterized Mahalanobis distankds a d x d positive-

definite matrix that is identical for all clusters.

The goal of these experiments is to study the utility of leayra full parameteri-
zation of the similarity function (effectively training a &halanobis distance) versus only

using a diagonal parameterization (learning weights forualifean distance), since the

79



latter is significantly cheaper computationally. Resuli¢amed with learning individual
similarity functions for each cluster illustrate the uyilof allowing different clusters to lie
in different subspaces, as opposed to learning a singld senhitarity function parameters

for the entire dataset.

4 5.4 Results and Discussion

Low-dimensional datasets: Figures 4.4-4.15 show learning curves for the ablation ex-
periments on the six low-dimensional datasets. Acrossasts, the overall HMRF-
KM EANS approach without regularization (KEANS-C-D) outperforms the constraints-
only ablation and unsupervised KMeans. Since the perfocmah KMEANS-C-D-R is
not substantially different from KIANs-C-D, it can be concluded that regularization does
not lead to performance improvements on low-dimensionsgds. This can be explained
by the fact that the number of distortion measure parametenmall for low-dimensional
domains while estimates obtained from data do not have kghnce, and therefore incor-
porating a prior in the probabilistic model is not necessary

For theWing Protein and Digits-389 datasets, the difference between ablations
that utilize metric learning (KMANS-C-D-R and KMEANS-C-D) and those that do not
(KMEANS-C and KMEANS) at the beginning of the learning curve indicates that even i
the absence of constraints, weighting features by theianee (essentially using unsuper-
vised Mahalanobis distance) improves clustering accuraaytheWinedataset, additional
constraints provide an insubstantial improvement in elugtiality on this dataset, which
shows that meaningful feature weights are obtained froningchy variance using just the
unlabeled data.

Comparing the performance of different variants of HMRF-KAMis with RCA
we can see that the ability to embed similarity function méag within the clustering al-

gorithm leads to significantly better results for HMRF-KNNS. This is explained by
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the fact thatRCAutilizes only the pairwise constraints for learning the inity function
parameters, while HMRF-KMKANS uses both the constraints and the unlabeled data, ad-
justing the parameters gradually in the course of clusgerin

The results for learning full-matrix and per-cluster paeaenizations of the similar-
ity function demonstrate that both of these extensions eadh {0 significant improvements
in clustering quality. However, the relative usefulnessghafse two techniques varies be-
tween the datasets. Multiple similarity functions are Ifiefed for all datasets except for
Proteinwhere they did not affect the results, dnd, where they had a negative effect. Us-
ing the full matrix parameterization also did not aff@ubtein results, and had a negative
effect onDigits, while it improved results on the other four datasets. Tini®nsistency can
be explained by the fact that the relative success of theaaliniques depends on the prop-
erties of a particular dataset: using a full weight matrijpeevhen the features are highly
correlated, while using per-cluster parameterizatiod leamprovements when clusters in
the dataset are of different shapes or lie in different sabsp of the original space. A
combination of the two techniques is most helpful when bdtithese requirements are
satisfied, as fowineandLetters which was observed by visualizing low-dimensional pro-
jections of these datasets. For other datasets with the@&eoef Protein, either per-cluster
parameterization or the full weight matrix lead to maximuenfprmance in isolation.

Some of the HMRF-KMANS learning curves display a characteristic “dip”, where
clustering accuracy decreases as a few initial constramggprovided, but after a certain
point starts to increase and eventually rises above thalipibint on the learning curve.
One possible explanation of this phenomenon is overfitthraying just a few constraints
provides unreliable supervision, forcing the algorithmctmverge to inferior local op-
tima, while increasing the number of provided constrairi®s overcoming this effect.
Overall, when both constraints and distortion measuraiegrare utilized, the unified ap-
proach benefits from the individual strengths of the two mé$h as can be seen from the

KM EANS-C-D results.
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High-dimensional datasets: Figures 4.16, 4.18 and 4.20 present the results for
the ablation experiments where weighted cosine similakigy, was used as the distortion
measure, while Figures 4.17, 4.19 and 4.21 summarize exeets where weighted | di-
vergenced;, was used.

As the results demonstrate, the full HMRF-KMNs algorithm with regularization
(KM EANS-C-D-R) outperforms the unsupervised K-Means baselinealsas the ablated
versions of the algorithm for both distortion measuilgs, andd,,. As can be seen from
results for zero pairwise constraints in Figs. 4.16-4.24tpdiion measure learning is bene-
ficial even in the absence of any pairwise constraints, dtraléows capturing the relative
importance of the different attributes in the unsupervidath. In the absence of super-
vised data or when no constraints are violated, distancaifgpattempts to minimize the
objective function by adjusting the weights given the diéto between the unsupervised
datapoints and their corresponding cluster represeagativ

For high-dimensional datasets, regularization is clebédgeficial to performance,
as can be seen from the improved performance ofgdMs-C-D-R over KMEANS-C-D
on all datasets. This can be explained by the fact that thebaumwf distortion measure
parameters is large for high-dimensional datasets, amdftite algorithm-based estimates
of parameters tend to be unreliable unless they incorparpteor.

Overall, the experimental results demonstrate that legrsimilarity functions within
the HMRF-KMEANS algorithm lead to significant improvements in clusteringuaeacy,
effectively exploiting both supervision in the form of paise constraints and the unsuper-

vised data.

4.6 Related Work

Several semi-supervised clustering approaches were ggdpbat incorporate adaptive dis-
tortion measures, including parameterizations of Jei@wmnon divergence (Cohn et al.,

2003) as well as Euclidean and Mahalanobis distances (Kfe&imvar, & Manning, 2002;
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Bar-Hillel et al., 2003; Xing et al., 2003). These technisjuse only constraints to learn
the distortion measure parameters and ignore unlabeledrdéte parameter learning step,
as well as separate training of the similarity function fribva clustering process.

In contrast, the HMRF model provides an integrated fram&wahnich incorpo-
ratesboth learning the distortion measure parameters and conssaiditive cluster as-
signments. In HMRF-KMANS, the parameters of the similarity function are learned iter
atively as the clustering progresses, utilizing both uelledh data and pairwise constraints.
The parameters are modified to decrease the parameterstadadi between violated must-
linked constraints and increase it between violated calimiotconstraints, while allowing

constraint violations if they accompany a more cohesivetehing.

4.7 Chapter Summary

This chapter has demonstrated the utility of learnablelaiity functions in semi-supervised
clustering, and presented a general approach for emplalggmg within a general proba-
bilistic framework based on Hidden Markov Random Fields (RIf). The framework
accommodates a broad class of similarity functions (Bregdigergences), as well as di-
rectional measures such as cosine distance, making itcappgi to a wide variety of do-
mains.

The framework yields an EM-style clustering algorithm, HBAHRKMEANS, that
maximizes the joint probability of observed data pointgjiticluster assignments, and dis-
tortion measure parameters. The fact that the similaribctions are trained within the
clustering algorithm allows utilizing both labeled and aln¢led data in learning similarity
function parameters, which leads to results that are supteriearning similarity functions

in isolation.
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Chapter 5

Learnable Similarity Functions in

Blocking

In this chapter, we show how learnable similarity functieas be employed not only for
improving the accuracy of tasks that rely on pairwise sirtilacomputations, but also
for improving their scalability. We introduce an adaptivarhework for learning blocking
functions that are efficient and accurate for a given domgiauiomatically constructing
them from combinations of blocking predicates. Our appnatows formulating this task
as an instance of the Red-Blue Set Cover problem, appraximalgorithms for which can

be used for learning blocking functions.

5.1 Motivation

As discussed in Section 2.4, intelligent data analysisstésit rely on computing pairwise
similarities require blocking methods for scaling up tagyudatasets due to the quadratic
number of instance pairs in a given dataset. Manual sefeofiields and parameter tuning
are required by all existing blocking strategies to redineertumber of returned dissimilar

pairs while retaining the similar pairs.
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Since an appropriate blocking strategy can be highly dordapendent, the ad-hoc
construction and manual tuning of blocking methods is difficThey may lead to over-
selection of many dissimilar pairs which impedes efficierary worse, under-selection of
important similar pairs which decreases accuracy. Bectugge can be many potentially
useful blocking criteria over multiple object attributébere is a need for automating the
process of constructing blocking strategies so that allearly all same-entity or same-
cluster pairs are retained while the maximum number of whiai pairs is discarded.

In subsequent sections, we formalize the problem of legramoptimal blocking
strategy using training data. In many record linkage domaome fraction of instances
contains true entity identifiers, e.g., UPC (bar code) nusfie retail products, SSN num-
bers for individuals, or DOI identifiers for citations. Peese of such labeled data allows
evaluating possible blocking functions and selecting ftbem one that is optimal, that is,
one that selects all or nearly all positive record pairst(tbéer to the same entity), and a
minimal number of negative pairs (that refer to differentitess).

We propose to construct blocking functions based on setsrdrglblocking pred-
icateswhich efficiently select all instance pairs that satisfy edminary similarity criterion.
Figure 5.1 contains examples of predicates for specificrdefields in different domains.
We formulate the problem of learning an optimal blockingdiion as the task of finding
a combination of blocking predicates that captures all arlgeall coreferent object pairs
and a minimal number of non-coreferent pairs. Our appraagemeral in the sense that we
do not place restrictions on the similarity predicates coteg on instance pairs selected

by blocking, such as requiring them to be an inner producbaotrespond to a distance

metric.
| Domain | Blocking Predicate \
Census Data Same ¥ Three Chars i.ast Name
Product Normalization Common token ilManufacturer
Citations Publication Yearsame or off-by-one

Figure 5.1: Examples of blocking functions from differeatord linkage domains
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We consider two types of blocking functions: (1) disjunogoof blocking pred-
icates, and (2) predicates combined in disjunctive norrmahf(DNF). While finding a
globally optimal solution for these formulations is NP-thawe describe an effective ap-
proximation method for them and discuss implementationeiss Empirical evaluation on
synthetic and real-world record linkage datasets dematestrthe efficiency of our tech-

niques.

5.2 Adaptive Blocking Formulation

Let us formally define the problem of learning an optimal klog function. We assume
that a training datasebain = {X,9'} is available that includes a sat = {x}]' ; of n
records known to refer tn true objects:” = {y;}!' ;, where eacly, is the true object
identifier for thei-th record:y; € {1,...,m}. Each recorc; may have one or more fields.
We assume that a set sfgeneralblocking predicateq p; };_; is available, where

each predicat@; corresponds to two functions:

e Indexing function f{-) is a unary function that is applied to a field value from some
domain Donfh;) (e.g., strings, integers, or categories) and generategranerekeys

for the field value:h; : Dom(hj) — U*, where is the set of all possible keys;

e Equality function g-,-) returns 1 if the intersection of the key sets produced by
the indexing function on its arguments is non-empty, andrnst zero otherwise:
Pi(Xj, %) = 1 iff hi(x;) Nhi(x) # 0. Any pair (xj,x) for which pi(xj,x) =1 is
coveredoby the predicatey;.

Each general blocking predicate can be instantiated fortecpkar field (or a com-
bination of fields) in a given domain, resulting in sevesécificblocking predicates for the
domain. Given a database wiHields and a set af general blocking predicates, we obtain

t < sx d specific predicate® = {p;}!_, by applying the general predicates to all fields of
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Sample record:

author

year

title

venue

other

| Freund, Y.| (1995).| Boosting a weak learning algorithm by majority]nformation and Computatiod, 121(2), 256-285+

Blocking predicates and key sets produced by their indeftingtions for the record:

| | author | title | venue | year | other |

Contain {freund, y} | {boosting, {1995} {121, 2, 256, 28%
Common a, weak, {information,
Token learning, computatior

algorithm,

by,

majority}
Exact Match {’boosting a {"1995'} {"121 2 256 285}

{'freund y’} | weak {"information

learning and

algorithm by | computation}

majority’}
Same ¥ {fre} {boo} {inf} {199} {121}
Three Chars
Contains 0 0 0 {120.121, 121122,
Same or {19941995| 12,23, 255256,
Off-By-One 19951996} | 256.257, 284285,
Integer 285286}

Figure 5.2: Blocking key values for a sample record

the appropriate type. For example, suppose we have fourgesredicates defined for all

textual fields:“Contain Common Token”*Exact Match”, and“Same 15t Three Chars”

“Contains Same of Off-By-One Integer'When these general predicates are instantiated

for the bibliographic citation domain with five textual fislguthor, title, venue year, and

other, we obtain 5< 4 = 20 specific blocking predicates for this domain. Figure ®&dn-

strates the values produced by the indexing functions afetlspecific blocking predicates

on a sample citation record (we assume that all strings ameected to lower-case and

punctuation is removed before the application of the inggXunctions):

Multiple blocking predicates are combined by an ovebpédicking function § con-

structed using the sat of predicates. Like the individual predicatefg, corresponds to an
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indexing function that can be applied to any record, and aald@g function for any pair of
records. Pairs for which this equality function returns é @vered they comprise the set
of candidate pairs returned for subsequent similarity agatjon, while pairs for which the
blocking function returns 0 are ignored (uncovered). Edfitigeneration of the set of can-
didate pairs requires computing the indexing function forecords, followed by retrieval
of all candidate pairs using inverted indices.

Given the setP = {pi}!_, containingt specific blocking predicates, the objective
of the adaptive blocking framework is to identify an optintbcking function f; that
combines all or a subset of the predicate®iso that the set of candidate pairs it returns
contains all or nearly all coreferent (positive) recordrpaind a minimal number of non-
coreferent (negative) record pairs.

Formally, this objective can be expressed as follows:

f, =argmin Z fo(Xi,X;)

- xxJeR (5.1)

st |B|— Z fo(Xi,X)) < €
(%X )€B
whereR = {(X,Xj) : Vi #Y;} is the set of non-coreferent pair8,= {(x,X;) : i =Y;} is
the set of coreferent pairs, ands a small value indicating that up ¢éacoreferent pairs may
remain uncovered, thus accommodating noise and partigudéficult coreferent pairs.
The optimal blocking functiorf;, must be found in a hypothesis space that corresponds to
some method of combining the individual blocking predisati this paper, we consider

two classes of blocking functions:

¢ Disjunctive blocking selects record pairs that are covered by at least one bipckin
predicate from the subset of predicates that comprise thekiplg function. This
strategy can be viewed as covering pairs for which a the ggdiahction for at least

one of the selected predicates returns 1. The blockingifumid trained by selecting
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a subset of blocking predicates fram

¢ Disjunctive Normal Form (DNF) blocking selects object pairs that are covered by
at least one conjunction of blocking predicates from a coogtd set of conjunctions.
This strategy can be viewed as covering record pairs forhwaideast one equality
function of a conjunction of predicates returns 1. The hilogKunction is trained by

constructing a DNF formula from the blocking predicates.

Each type of blocking functions leads to a distinct formiolabf the objective (5.1),

and we consider them individually in the following subseis.

5.2.1 Disjunctive blocking

Given a set of specific blocking predicat®s= {pi}!_,, a disjunctive blocking function
corresponds to selecting some subset of predic&tes P, performing blocking using
eachp; € P', and then selecting record pairs that share at least one ocorkay in the
key sets computed by the indexing functions of the selectedigates. Thus, the equality
function for the disjunctive blocking function based on set®' = {p;,,..., pi } of pred-
icates returns 1 if the equality function for at least onedjmate returns 1:fp (x;,X;) =
[pi, (%, %) + - - - + pi. (%, Xj )| where[rj = 1 if t> 0, and O otherwise. If the equality func-
tion for the overall blocking functiorfy returns 1 for a pai(x;,x;), we say that this pair is
coveredby the blocking function.

Learning the optimal blocking functiofy; requires selecting a subset of predi-
cates that results in all or nearly all coreferent pairs ¢pemvered by at least one predicate
in P*, and a minimal number of non-coreferent pairs being coverEden the general

adaptive blocking problem in Eg.(5.1) can be written asofef:
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Negative pairs
R:{rl,---,rp}:{(xi,xj):yi%yj}
X X L Y X

(5 Blocking predicates

P={ps,..., Pt}

Positive
pairs O

B={by,....,bg} = {(X%, %) : ¥ =Y}

Figure 5.3: Red-blue Set Cover view of disjunctive blocking

w*=argmin 5 [w'p(x,X;) > 0]
W (ex)ER

st [B]— Y [w'p(x,x)>0] < ¢ (5.2)
(X, Xj)€B

w is binary

wherew is a binary vector of length encoding which of the blocking predicates are se-
lected as a part of5, andp(x;, Xj) = [p1(X;,Xj),-- -, P (X, %j)]" is a vector of binary values
returned by equality functions of theredicates for the paix;, ;).

This formulation of the learnable blocking problem is e@ilint to theRed-Blue Set
Coverproblem ife = 0 (Carr, Doddi, Konjevod, & Marathe, 2000). Figure 5.3 ithases the
equivalence. The task of selecting a subset of predicateprissented by a graph with three
sets of vertices. The bottom row ffvertices corresponds to positive (coreferent) record
pairs designated as the sethdfie elementsB = {by,...,bg}. The top row ofp vertices
corresponds to negative (non-coreferent) record paingEegd as the set oéd elements
R =A{r1,...,rp}. The middle row ot vertices represents the set of blocking predicates
where eachp; € P corresponds to a set covering some red and blue elementsy &lge
between an element vertex and a predicate vertex indidseshe record pair represented

by the element vertex is covered by the predicate. Learhiagptimal disjunctive blocking
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function is then equivalent to selecting a subset of preeivartices with their incident
edges so that at leaBt- € blue (positive) vertices have at least one incident edgdele
cover costequal to the number of red (negative) vertices with at leastincident edge, is

minimized.

5.2.2 DNF Blocking

In some domains, a disjunctive combination of blocking mais may be an insufficient
representation of the optimal blocking strategy. For eXamip US Census data, conjunc-
tions of predicates such &8ame Zipcode AND Santé' Char in Surname’yield useful
blocking criteria (Winkler, 2005). To incorporate suchdking criteria, we must extend the
disjunctive formulation described above to a formulati@sdd on combining predicates in
disjunctive normal form (DNF). Then, the hypothesis spaxélie blocking function must
include disjunctions of not just individual blocking predtes, but also of their conjunc-
tions.

A search for the optimal DNF blocking function can be viewadsalving an ex-
tended variant of the red-blue set cover problem. In thatmgrthe cover is constructed
using not only the sets representing the original predssabeit also using additionally
constructed sets representing predicate conjunctionsaude the number of all possible
conjunctions is exponential, only conjunctions up to fixeadthk are considered. In Fig-
ure 5.3, considering a conjunction of blocking predica@sesponds to adding a vertex to
the middle row, with edges connecting it to the red and bludoes present in the intersec-
tion of covered vertex sets for the individual predicatethiconjunction.

The learnable blocking problem based on DNF blocking fumdiis then equiv-
alent to constructing a set of conjunctions followed by ctgd& of a set of predicate and
conjunction vertices so that at ledst € positive (blue) vertices have at least one incident
edge, while the cost, equal to the number of negative (red@swith at least one incident

edge, is minimized.
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5.3 Algorithms

5.3.1 Pairwise Training Data

For clustering settings, supervision corresponds to setaust-link (same-cluster) and
cannot-link (different-cluster) pairs. For record linkagupervision is available in many
domains in the form of records for which the true entities tuck they refer are known,
as discussed in Section 5.1. Such labeled records compasgaining datasefain =
{X,7} that can be used to generate the pairwise supervision famiheathe blocking
function in the form of coreferent (positive) and non-cereht (negative) record pairs. For
large databases, it is impractical to explicitly generaig store in memory all positive pairs
and negative pairs. However, the set of covered pairs fdr peedicate can be computed
using the indexing function of the predicate to form an it@@rindex based on the key
values returned by the indexing function. Then, bit arrays lze used to store the cover of
each predicate, obtained by iteration over the invertedxnd

If training data is unavailable, it can be obtained autooadlii by performing link-
age or clustering without blocking, and then using the Igear clustering results as train-

ing data for learning a blocking function for the given domai

5.3.2 Learning Blocking Functions
Disjunctive Blocking

The equivalence of learning optimal disjunctive blockimgl éhe red-blue set cover problem
described in Section 5.2.1 has discouraging implicationghfe practitioner. The red-blue
set cover problem is NP-hard, and Carr et al. (2000) have isitioat unless P=NP, it cannot
be efficiently approximated within a fact@(Z'Oglfat),é = 1/loglog°t, wheret is the num-

ber of predicates under consideration. On the other harndraleapproximate algorithms
have been proposed for the red-blue set cover problem (€akr, 2000; Peleg, 2000). We

base our approach on a modified version of Peleg’s greedyithligothat has an approxi-
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Algorithm: APPROXRBSETCOVER
Input: Training setB = {by,...,bg} and®R = {ry,...,rp} where
eachb; € B is a pair of coreferent records;, , %) S.t. Yi, = Vi,
eachr; € R is a pair ofnon-coreferent records;,, %i,) S.t. Vi, # Vi,
Set of blocking predicate® = {pi,...,pt}
Maximum number of coreferent pairs allowed to be uncovered
Maximum number of pairs that any predicate may cayer
Output: A disjunctive blocking function based on subgtc P
Method:
1. Discard from? all predicates; for whichr(p;) > n:
P—{pi € Pr(pi) <n}.
2. If |B| —|B(P)| > € return® (cover is not feasible is too low)
3. Sety=4/t/logp.
4. Discard allr; covered by more thappredicates:
R {ri € R|degr;, ?) <y}
5. Construct an instance of weighted set ca¥dny discarding
elements ofR , creating a set; for eachp; € P, and setting
its weightw(t)) =r(p;).

6.7*—0

7. while|B| > ¢

8. selectrj € T that maximized(t;)/w(T;)
9. B — B—B(Ti)

10. T — T*U{t}
11. Return the set of predicat®$ corresponding t& ™.

Figure 5.4: The algorithm for learning disjunctive bloakin

mation ratio of W (Peleg, 2000). This algorithm is particularly approprigiethe
adaptive blocking setting as it involves early discardifigarticularly costly sets (block-
ing predicates that cover too many non-coreferent paiesilihg to more space-efficient
learning of the blocking function. In the remaining disdoss we use the term “blocking
predicates” in place of “sets” considered in the originalcsser problem.

The outline of the algorithm APROXRBSETCOVER is shown in Figure 5.4. The
algorithm is provided with training data in the form @fcoreferent record pair$ =
{by,...,bg} andp non-coreferent records pais = {rs,...,rg}, where each; andb; rep-
resents a record pafK;,,%,). For each predicatg; € P, let covered negative& (p;) be
the set of negative pairs it coversredicate cost (p;) be the number of negative pairs it

coversr(pi) = |R (pi)|, covered positive®B(p;) be the set of positive pairs it covers, and
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coverage bp;) be the number of covered positivégp;) = | B(p;)|. For each negative pair
ri = (X, %), let thedegreedeqr;, P) be the number of predicates ¢hthat cover it; degree
for a positive pair, de@;, P), is defined analogously. In step 1 of the algorithm, blocking
predicates that cover too many negative pairs are discavdeete the parametey can be
set to a fraction of the total number of pairs in the dataséten] negative pairs covered
by too many predicates are discarded in step 4, which imélyticorresponds to disregard-
ing non-coreferent pairs that are highly similar and aregaain the same block by most
predicates. Again, this parameter can be set as a fractithe @lvailable predicate set.
Next, a standard weighted set cover problem is set up foretmaining predicates
and pairs by setting the cost of each predicate to be the nuofilmegatives it covers and
removing the negatives. The resulting weighted set covanlpm is solved in steps 6-11
using Chvatal's greedy approximation algorithm (Chvatl79). The algorithm iteratively
constructs the cover, at each step adding the blocking gaedy that maximizes a greedy
heuristic: the ratio of the number of previously uncoveredifives over the predicate cost.
To soften the constraint requiring all positive pairs to beered, we add an early stopping
condition permitting up t@ positives to remain uncovered. In practieeshould be set to
0 at first, and then gradually increased if the cover ideutifig the algorithm is too costly
for the application at hand (that is, when covering all pes# incurs covering too many

negatives).

DNF Blocking

Learning DNF blocking can be viewed as an extension of legrigisjunctive blocking
where not only individual blocking predicates may be seldcbut also their conjunctions.
We assume that conjunctions that include uj firedicates are considered. Because enu-
merating over all possible conjunctions of predicates|tesn an exponential number of
predicate sets under consideration, we propose a two-gtagedure, shown in Figure 5.5.

First, a set ot(k— 1) predicate conjunctions of lengths from 2kas created in
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Algorithm: APPROXDNF
Input: Training setB = {by,...,bg} and®R = {ry,...,rp} where
eachb; is a pair of coreferent records, , xi,) S.t. Vi, = Vi,
eachr; is a pair ofnon-coreferent recordsi, , Xi,) S.t. Vi, # Vi,
Set of blocking predicate® = {p1,...,pt}
Maximum number of coreferent pairs allowed to be uncovered
Maximum number of pairs that any predicate may cayer
Maximum conjunction lengttk
Output: A DNF blocking function based off:
(Pig A= APy ) VeV (Pig Ao Ay ), eachiy <k
Method:
1. Discard from? all predicateg; for whichr(p;) > n:
P —{pi € P|r(pi) <n}.
2.0 =0
3. Foreachp e P
4.  Construct — 1 candidate conjunctiorﬁc) =PiA- APy
by greedily selecting eadh, that maximizes coven(p'®)/r(p\),
adding eactp® to 2(©),
5. Return A°PROXRBSETCOVER(R, B, PUP©) & n).

Figure 5.5: The algorithm for learning DNF blocking

a greedy fashion. Candidate conjunctions are construtéedtively starting with each
predicatep; € P. At each step, another predicate is added to the currentircctipn so
that the ratio between the number of positives and the nueteegatives covered by the
conjunction is maximally improved.

After the candidate set of conjunctions of lengths from X is constructed, the
conjunctions are added 1B, the set of individual predicates. Then, the#ROXRBSET-
CovEeR algorithm described in the previous section is used to ladocking function that

corresponds to a DNF formula over the blocking predicates.

5.3.3 Blocking with the Learned Functions

Efficiency considerations, which are the primary motivatior this work, require the
learned blocking functions to perform the actual blockimgrew, unlabeled data in an

effective manner. After the blocking function is learnedhgstraining data, it should be
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applied to the test data (for the actual linkage or clusgetask) without explicitly con-

structing all pairs of records and evaluating the predgate them. This is achieved by
applying the indexing function for every blocking prediatr conjunction in the learned
blocking function to every record in the test dataset. Thanspverted index is constructed
for each predicate or conjunction in the blocking functibmeach inverted index, every key
is associated with a list of instances for which the indexungction of the corresponding
predicate returns the key value. Disjunctive and DNF blogkian then be performed by
iterating over every key in all inverted indices and retagnall pairs of records that occur

in the same list for any key.

5.4 Experimental Results

5.4.1 Methodology and Datasets

We evaluate the efficiency of the our methods for learninglolg functions using two
metrics, speedup ratio and recall. They are are defined wihect to the number of
coreferent and non-coreferent record pairs that get cdveyea blocking functionfy in

a database of records:

Y (xx)e T2 (X)) + 3 (x x e T2 (%, X))
nin—1)/2
> xxj)es T2 (X, Xj)
|B|

ReductionRatie= 1.0 —

Recall=

Intuitively, recall captures blocking accuracy by measgrihe proportion of truly
coreferent record pairs that have been covered by the bigdkinction. an ideal blocking
function would have recall of 1.0, indicating that all caednt pairs are covered. Reduction
ratio measures the efficiency gain due to blocking by meaguwvhat proportion of all pairs

in the dataset is filtered out by the blocking function. Withblocking, reduction ratio is O
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since all record pairs are returned, while a higher numlgicates what proportion of pairs

is not covered, and therefore will not require similaritynguutations in the subsequent
record linkage stages or in the clustering algorithm. Nb#g efficiency savings due to

blocking are more substantial if collective (graph-based@rence methods are used for
linkage or clustering (Pasula et al., 2003; McCallum & Wel|r2004a; Singla & Domingos,

2005; Bhattacharya & Getoor, 2006), as the time compleXitthese methods increases
superlinearly with the number of record pairs under consititen.

Results are obtained using 10 runs of two-fold cross-vatida Using a higher
number of folds would result in fewer coreferent recordsha test fold, which would
artificially make the blocking task easier. During each rtire dataset is split into two
folds by randomly assigning all records for every undedyémtity to one of the folds. The
blocking function is then trained using record pairs geteerdrom the training fold. The
learned blocking function is used to perform blocking ontde fold, based on which recall
and reduction ratio are measured.

We present results on two datase@ora and Addresses The Cora dataset is de-
scribed in Section 3.1.1. While it is a relatively smalldscdataset, results of Chapter 3
illustrate that good linkage performance on this domaimireg computationally intensive
string similarity functions; it has also been shown thakdige on that dataset benefits from
collective linkage methods (Singla & Domingos, 2005), ifysig the need for blocking.
Addressess a dataset containing names and addresses of 50,000 #efteldls for 10,000
unique individuals that was generated using the ER@rogram provided by Hernandez
and Stolfo (1995).

We use the following general predicates are for constrgcarnable blocking

functions:

e Exact Match covers instances that have the same value for the field;

e Contain Common Tokertovers instances that contain a common token in the field

value;
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e Contain Common Integercovers instances that contain a common token consisting

of digits in the field value;

e Contain Same or Off-by-One Integecovers instances that contain integer tokens

that are equal or differ by at most 1,

e Same N First Chars, N 3,5, 7: covers instances that have a common character prefix

in the field value;

e Contain Common Token N-gram, N2, 4, 6: covers instances that contain a common

lengthN subsequence of tokens;

e Token-based TF-IDE- &, & = 0.2,0.4,0.6,0.8,1.0: covers instances where token-

based TF-IDF cosine similarity between field values is gretitan the threshold;

e N-gram-based TF-IDFE> 9, 6 = 0.2,0.4,0.6,0.8,1.0, N = 3,5: covers instances
where TF-IDF cosine similarity between n-gram represériat of field values is

greater than the threshofd

As described in Section 5.2, these general predicates stantrated for all fields
in the given database. Algorithms presented in Sectior2 2t used to construct blocking
functions by selecting subsets of the resulting field-dmepredicates. For DNF blocking,
conjunctions of length 2 were employed, as experiments litger conjunctions did not
lead to improvements over blocking based on a 2-DNF.

We vary the value of parameter(which specifies the number of coreferent pairs
allowed to remain uncovered) by setting fofor different values of desired recalbetween
0.0 and 1.0, wher@ is the number of coreferent record pairs in the training .foldhis
parameter captures the dependence between the redutitoancrecall: ife is high, fewer
predicates are selected resulting in lower recall sincehabreferent pairs are retrieved.
At the same time, the reduction ratio is higher for highsimce fewer pairs are covered by

the learned blocking function, leading to higher efficierBy varyinge, we obtain a series
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of results that demonstrate the trade-off between obtgihigher recall and improving the
reduction ratio.

We compare the proposed methods witaNOPIES (McCallum et al., 2000), a
popular blocking method relying on token-based or n-grased TF-IDF similarity com-
puted using an inverted index. In a previous study, Basteal. (Baxter et al., 2003) have
compared several manually-tuned blocking strategies@mtf CANOPIESto produce best
overall results. @GNOPIESalso allows trading off precision and the reduction ratiozhyy-
ing the threshold parameter that controls the coverage eobtbcking! We tried both
token-based @noPIESand tri-gram based ANorPIESand chose the best-performing vari-
ants as baselines: token-based indexingfora, and tri-gram indexing foAddressesThis
difference is due to the fact that most variation betweeefeoent citations ifCorais due
to insertions and deletions of whole words, making tokesedasimilarity more appropri-
ate. Coreferent records iddresseson other hand, mostly differ due to misspellings and

character-level transformations that n-gram similastglble to capture.

5.4.2 Results and Discussion

Figures 5.6 and 5.7 show the reduction ratio versus recalesuor the two types of learned
blocking functions described above and foxMDPIES From these results, we observe that
both variants of adaptive blocking outperform the unledrbaseline: combining multiple
predicates allows achieving higher recall levels as wedldseving higher reduction ratios.
DNF blocking is more accurate than disjunctive blocking) anAddresseg also achieves
higher recall, while foilCora the maximum recall is comparable. Because DNF blocking
is based on predicate conjunctions, non-coreferent pagrsasier avoided by the blocking
function: conjunctions effectively form high-precisioiew-recall rules that cover smaller

subsets of coreferent pairs but fewer non-coreferent gaingpared to single predicates.

1The original G\NoPIESalgorithm allows varying two separate threshold pararseteswever, empirical
results have shown that using the same value for both thidsskields highest performance (McCallum et al.,
2000).
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Figure 5.7: Blocking accuracy results for tAddresseslataset
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While none of the methods achieve 100% recall (as it woulecsifely require returning
all record pairs), for both datasets adaptive blocking ie &b achieve higher recall than
CaNoOPIES Thus, using learnable blocking functions leadbdthaccuracy and efficiency

improvements.

\ | Cora | Addresses |

DNF Blocking, 23,499 | 4,890,410
Disjunctive Blocking 41,439 | 4,090,283
Canopies 125,986| 1,745,995
Total number of pairs 606,182| 312,487,500

Table 5.1: Average number of pairs covered by the learnetkirlg functions and highest
achieved recall

Table 5.1 shows the actual number of record pairs returnetidoglifferent block-
ing methods at highest achieved recall. These results demata the significance of dif-
ferences in the reduction ratio between the different blagkunctions: because the total
number of pairs is very large, differences in the reductaiiortranslate into significant sav-
ings in the number of pairs for which similarity must be corgali Note that the smaller
number of pairs returned byABiorPIES and disjunctive blocking oAddressesorresponds
to a significantly lower recall, while for a fixed recall leMBNF blocking either does as

well or better.

\ | Cora | Addresseg

DNF Blocking 26.9 | 735.81
Disjunctive Blocking 32.4 409.4
Canopies 16.0 572.7

Table 5.2: Average blocking time, CPU seconds

Table 5.2 show the blocking times for the different methodssured at maximum
achieved recall. Learnable blocking functions incur atiedy modest increase in compu-
tational time despite the fact that they utilize many pratiis. This is due to the fact that

the learned predicates that cover few negatives typicalipire smaller inverted indices
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than the one built by canopies using tokens or n-grams wlaaie oken or n-gram occurs
in many strings. Many predicates employed by the adaptigekiohg functions, on other
hand, map each string to a single key, resulting in more efftaietrieval of covered pairs.
Inverted indices corresponding to conjunctions are everereficient as they contain many
keys (the cross product of the key sets for the predicatdseicdnjunction) and incur less
chaining, which is the reason for better performance of DNEKINg compared to disjunc-
tive blocking onCora, where the number of predicates in the constructed blodkingtion
is similar for the two methods. OAddressesDNF blocking constructs blocking functions
containing more predicates, which on one hand incurs a ctatipoal penalty, but on other
allows it to achieve higher recall.

Overall, the results demonstrate that adaptive blockimgtfans significantly im-
prove the efficiency of record linkage, and provide an atitraenethodology for scaling up

data mining tasks that rely on similarity computations kestw pairs of instances.

5.5 Related Work

A number of blocking methods have been proposed by researfdrespeeding up record
linkage and clustering (Fellegi & Sunter, 1969; Kelley, 39Bewcombe, 1988; Jaro, 1989;
Hernandez & Stolfo, 1995; McCallum et al., 2000; Baxterlet2003; Chaudhuri et al.,
2003; Jin et al., 2003; Gu & Baxter, 2004; Winkler, 2005); $ee summary of these
methods in Section 2.4. A key distinction between prior warkl our approach is that
previously described methods focus on improving blockiffigiency while assuming that
an accurate blocking function is known and its parameteve baen tuned manually. In
contrast, our approach attempts to construct an optimakirig function automatically.
Because blocking functions can be learned using any cotmamaf similarity predicates
on different record fields, and no assumptions are made d@bheurtumber of record fields
or their type, our approach can be used for adapting the ilgdkinction in any domain,

while allowing human experts to add domain-specific pradika
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Our predicate-based blocking approach is most closelyectl® key-based meth-
ods developed by researchers working on record linkage éms@s data (Kelley, 1985;
Newcombe, 1988; Jaro, 1989; Winkler, 2005). Techniquesriex] by Kelley (Kelley,
1985) and Winkler (Winkler, 2005) are particularly relevas they describe methodolo-
gies for evaluating the accuracy of individual blockinggcates, and could be integrated
with our approach for further speedup of blocking functiearhing.

Our formulation for training disjunctive and DNF blockingrictions is related to
machine learning algorithms for learning disjunctive suénd DNFs (Mitchell, 1997). A
principal difference between that work and the learnabbelihg problem is that in our
setting the learned disjunctions must cover all positivare pairs while minimizing the
number of covered negative pairs, while rule learning mastgenerally attempt to equally
minimize the number of errors on both positive and negatikenples. Cost-sensitive
machine learning methods (Elkan, 2001) may provide a fotimidior other approaches
to adaptive blocking, and we hope that our initial work witlceurage the development of

alternative learnable blocking techniques.

5.6 Chapter Summary

In this chapter, we formulated the adaptive blocking probées the task of learning a func-
tion that returns a minimal number of non-coreferent reqmads while returning all or
nearly all coreferent pairs. We described two types of hlmgiunctions: disjunctive and
DNF blocking. Formulating the learning problem as an insteof the Red-Blue Set Cover
problem allowed us to adopt a well-known approximation atgm for that problem to
construct blocking functions. Experimental results desti@ied the ability of our approach

to learn efficient and accurate blocking functions autocadi.
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Chapter 6

Future Work

Because learnable similarity functions are a part of manghim& learning and data analy-
sis tasks, there is a large number of applications wheretiadagistance computations can
have a significant effect on performance. These applicatt@m be found in such fields
as natural language processing, information retrievalpmi robotics and bioinformatics,
where application-specific similarity functions are ofemployed. Adapting such func-
tionsin situ in these applications can be achieved using the framewa# ursthe three
applications considered in this thesis: learning fromveigie supervision. While specific
applications in the above areas are beyond the scope oh#ssst in subsequent sections
we describe several directions for future work that areatliyerelated to the applications

and similarity functions considered in prior chapters.

6.1 Multi-level String Similarity Functions

Improvements obtained using learnable affine-gap edianiigt over its unlearned equiv-
alent demonstrated the benefits of adapting string sirtyilaomputations to a given do-
main. However, edit distance has certain properties thgtlmat its suitability in some

domains. For example, it does not directly handle transiposi of entire fragments (e.qg.,

113



token swaps), and while edit operations for short-rangespasitions can be added at
considerable computational cost, handling long-termsjpasitions is problematic. Order-
insensitive similarity functions such as cosine similariin other hand, have no trouble
dealing with token transpositions, yet they depend on ateuokenization and suffer when
edit operations occur at the character level.

The SoftTFIDF variant of cosine similarity recently propdsy Cohen et al. (2003a)
attempts to amend this drawback of cosine similarity, yeaitnot adapt to a given domain
beyond the IDF weighting. An exciting challenge for futurenwlies in developing learn-
able string similarity functions that integrate adaptiteng comparison at the character,
token, and document (string) levels. Such similarity fioret must rely on joint similarity
computation across the levels while remaining computatiprefficient. While segmented
pair HMMs presented in Section 3.1.2 are a first step in thisctibn, developing string
similarity models that perform further structural anadysif strings remains an open re-
search issue. Progress in this area will have impact ingiktéhat rely on string similarity

functions such as record linkage and information retrieval

6.2 Discriminative Pair HMMs

The Expectation-Maximization algorithm that we descriliedhapter 3 for training pair
HMMs only utilizes positive supervision: the learning pedcare maximizes the likelihood
of observing alignments of coreferent pairs. However, it/rha advantageous to exploit
negative supervision, that is, pairs of non-coreferemgst since some “near-miss” nega-
tive examples can be very informative.

Arecently proposed edit distance model based on ConditRaadom Fields (CRFs)
has structure that allows training with both positive angatie examples so that the model
directly learns to discriminate between the two kinds ofpéiicCallum et al., 2005). The
CRF edit distance model consists of two three-state eddnlis transducers, one of which

computes the alignment probabilities for coreferent ggjrwhile the other computes align-
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ment probabilities for non-coreferent strings.

Although the CRF-based model has different probabilistimantics (alignments
are not generated since the model is conditioned on thetfatahy two strings under con-
sideration are aligned), the coupled structure of that rhoae be implemented as a pair
HMM. Considering such coupled structures within the pair Miffamework is an interest-
ing area for future work, since it would allow applying disginative training methods that
explicitly attempt to learn model parameters that effedyidistinguish between coreferent
and non-coreferent strings (Eisner, 2002). Another avdou&uture work on alternative
pair HMM structures involves deriving learnable models limeal alignment that focus
on scoring matching alignment fragments while disregardire mismatched sequences
around them (Gusfield, 1997). In domains where large gapsarenonplace yet small
matching sequences may be very informative, e.g., in liakagetail product descriptions,
pair HMM structures that model local alignment may yieldteeperformance, and inves-

tigating this possibility is an interesting future direxti

6.3 Active Learning of Similarity Functions

As discussed in Section 3.3, the goal of active learning oustHor similarity functions is
identifying pairs of objects whose equivalence or non-egence is informative for im-
proving distance estimates. The classifier-based recoritbsity described in Section 3.2
lends itself nicely to active learning techniques devetbfoe classification, which has been
explored by Sarawagi and Bhamidipaty (2002) and Tejada &@02) in the record linkage
context.

One of the biggest challenges in selecting useful trainkegrple pairs lies with
the fact that the space of possible pairs grows quadratieath the number of examples,
and static-active and weakly-labeled methodologies wpgsed in Section 3.3 address this
challenge. However, these methods are based on heurigtids,developing more princi-

pled active learning methods remains an interesting dinedor future work. Such methods
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must directly attempt to identify example pairs that wowddd to maximal improvement
of similarity estimates. Traditional active learning apgeches such as uncertainty sam-
pling (Lewis & Catlett, 1994), query-by-committee (Seurigak, 1992), estimation error
reduction (Lindenbaum et al., 1999; Roy & McCallum, 2001)d arersion space reduc-
tion (Tong, 2001) could be adopted for this task, and dewe¢ppuch methods for directly
improving the learning of similarity functions like editsance or distortion measures de-

scribed in Chapter 4 is an area yet to be explored.

6.4 From Adaptive Blocking to Learnable Metric Mapping

The predicate-based methodology that we proposed in Ghajioe automatically obtain-
ing accurate blocking functions requires specifying atidhiset of blocking predicates.
Although a sufficiently general set of predicates for tektada is easy to encode, in future
work it would be interesting to explore learnable blockingthods that are not predicate-
based but rely on mapping records to metric spaces. Sewgstihg blocking methods rely
on such mapping, such as those of Jin et al. (2003) and Cheawgdtal. (2003). Learning
algorithms that would make these methods adaptive couklpuwo directions: searching
for an optimal mapping of data to metric space, or transfogithe metric space after the
mapping to allow efficient yet accurate selection of apprately similar records.

This problem is related to methods for fast nearest-neiglsbarching, a number
of which have been developed in the past decade (Indyk & Muaitwi2098; Liu, Moore,
Gray, & Yang, 2004; Beygelzimer, Kakade, & Langford, 2006jowever, using these
techniques for domains where data is described by multipldsfiof heterogeneous types
is non-trivial as they typically rely on strong metric asqiions on the data space, and do
not scale efficiently to high-dimensional data. Developdgptive nearest-neighbor search
methods for heterogeneous data is an interesting areatwefwork that has applications in
blocking as well as in other tasks where retrieving appratéty similar objects efficiently

is important, e.g., in classification methods and dataketsieval.
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Chapter 7

Conclusions

Research presented in this thesis has focused on learniiigrily functions from pairwise
supervision. We have shown that by parameterizing sevepllpr distance functions and
learning parameter values from examples of similar andrdilss instance pairs, we obtain
increases in accuracy of similarity computations, whicdl&é performance improvements
in tasks that rely on them: record linkage, semi-supervidestering, and blocking.

First, we have considered learning similarity functionshia context of record link-
age where they are used for two tasks: computing similagtwben individual field values
and combining these similarities across multiple fields. fiedd-level similarity computa-
tions, we have described two adaptive variants of affineeghipdistance in which the costs
of string transformations are learned on a corpus of cagatestring pairs. Our approach is
based on pair HMMs, a probabilistic model for generatingngtelignments. Learning the
costs of affine-gap edit distance parameters allows adpptim underlying string match-
ing algorithm to each field’s domain, while using segmentanl BIMMs integrates such
adaptation with performing string segmentation that ipfuglin domains where strings are
composed of multiple fields from different domains.

For computing similarity between records in linkage, weendemonstrated that

Support Vector Machines (SVMs) effectively combine simiflas from individual fields in
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proportion to their relative importance. Using learnalieilarity functions at both field and
record levels leads to improved results over using recevdtlearnable similarity functions
that combine unlearned field-level similarities.

We have proposed two strategies for selecting informataiespof coreferent or
non-coreferent examples for training similarity funcsom record linkage. One of the
proposed strategies, weakly-labeled negative selectien dot require labeled supervision,
while the other, likely positive pair selection, avoids tmmputational costs of the standard
active learning methods. Both of these strategies faiglidficient selection of training
pairs that allows learning accurate similarity functiomssmall training sets.

Second, we have demonstrated the utility of employing Ealensimilarity func-
tions in semi-supervised clustering. By incorporatingikinty function learning within the
HMRF-KMEANS algorithm for semi-supervised clustering, we were ablevetage both
labeled pairwise supervision and unlabeled data when iadafite similarity functions.
Our approach allows learning individual similarity furaois for different clusters which is
useful for domains where clusters have different shapes. pfbposed framework can be
used with a variety of distortion (distance) functions fimatude directional measures such
as cosine similarity, and Bregman divergences that inckndeidean distance and Kull-
back Leibler divergence. Ablation experiments have detnates! that the HMRF-based
approach combines the strengths of learnable similaritgtfans and constrained cluster-
ing to obtain significant improvements in clustering qyalit

In the context of blocking, the third application we consete we have proposed
methods for learning similarity functions that efficientlglect approximately similar pairs
of examples. Because blocking is required for scaling eetiokage and many pairwise
clustering algorithms up to large datasets, our techniduosvs that learnable similarity
functions can be employed not only for increasing accurdaata mining tasks, but also
for improving their scalability. Unlike previous blockingethods that require manual tun-

ing and hand-construction of blocking functions, our apgtois adaptive as it optimizes
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the blocking function for a given domain using pairwise sufgon that can be naturally
obtained in linkage and clustering tasks.

For the three tasks under consideration, we have evaluageelffectiveness of uti-
lizing learnable similarity functions, comparing theircacacy on standard benchmarks
with that of unlearned similarity functions typically useadthese tasks. Our experiments
demonstrate that learnable similarity functions effeadtiwutilize the pairwise training data
to make distance estimates more accurate for a given domesinlting in overall perfor-
mance improvements on the tasks.

Overall, the work presented in this thesis contributes oatHeading to state-of-
the art performance on the considered tasks and providesnaerwf useful algorithms
for practitioners in record linkage, semi-supervised teltisg, and blocking. This research
demonstrates the power of using similarity functions tlaat @dapt to a given domain using
pairwise supervision, and we hope that it will motivatelfigrtresearch in trainable distance
functions, as well as encourage employing such functiongirous applications where

distance estimates between instances are required.
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