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Many machine learning and data mining tasks depend on functions that estimate similarity

between instances. Similarity computations are particularly important in clustering and

information integration applications, where pairwise distances play a central role in many

algorithms. Typically, algorithms for these tasks rely on pre-defined similarity measures,

such as edit distance or cosine similarity for strings, or Euclidean distance for vector-space

data. However, standard distance functions are frequentlysuboptimal as they do not capture

the appropriate notion of similarity for a particular domain, dataset, or application.

In this thesis, we present several approaches for addressing this problem by em-

ploying learnablesimilarity functions. Given supervision in the form of similar or dis-
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similar pairs of instances, learnable similarity functions can be trained to provide accurate

estimates for the domain and task at hand. We study the problem of adapting similarity

functions in the context of several tasks: record linkage, clustering, and blocking. For each

of these tasks, we present learnable similarity functions and training algorithms that lead to

improved performance.

In record linkage, also known as duplicate detection and entity matching, the goal

is to identify database records referring to the same underlying entity. This requires esti-

mating similarity between corresponding field values of records, as well as overall simi-

larity between records. For computing field-level similarity between strings, we describe

two learnable variants of edit distance that lead to improvements in linkage accuracy. For

learning record-level similarity functions, we employ Support Vector Machines to combine

similarities of individual record fields in proportion to their relative importance, yielding

a high-accuracy linkage system. We also investigate strategies for efficient collection of

training data which can be scarce due to the pairwise nature of the record linkage task.

In clustering, similarity functions are essential as they determine the grouping of

instances that is the goal of clustering. We describe a framework for integrating learnable

similarity functions within a probabilistic model for semi-supervised clustering based on

Hidden Markov Random Fields (HMRFs). The framework accommodates learning vari-

ous distance measures, including those based on Bregman divergences (e.g., parameterized

Mahalanobis distance and parameterized KL-divergence), as well as directional measures

(e.g., cosine similarity). Thus, it is applicable to a wide range of domains and data repre-

sentations. Similarity functions are learned within the HMRF-KMEANS algorithm derived

from the framework, leading to significant improvements in clustering accuracy.

The third application we consider, blocking, is critical inmaking record linkage

and clustering algorithms scalable to large datasets, as itfacilitates efficient selection of

approximately similar instance pairs without explicitly considering all possible pairs. Pre-

viously proposed blocking methods require manually constructing a similarity function or
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a set of similarity predicates, followed by hand-tuning of parameters. We propose learning

blocking functions automatically from linkage and semi-supervised clustering supervision,

which allows automatic construction of blocking methods that are efficient and accurate.

This approach yields computationally cheap learnable similarity functions that can be used

for scaling up in a variety of tasks that rely on pairwise distance computations, including

record linkage and clustering.
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Chapter 1

Introduction

1.1 Motivation

Similarity functions play a central role in machine learning and data mining tasks where

algorithms rely on estimates of distance between objects. Consequently, a large number of

similarity functions have been developed for different data types, varying greatly in their

expressiveness, mathematical properties, and assumptions. However, the notion of simi-

larity can differ depending on the particular domain, dataset, or task at hand. Similarity

between certain object features may be highly indicative ofoverall object similarity, while

other features may be unimportant.

Many commonly used functions make the assumption that different instance fea-

tures contribute equally to similarity (e.g., edit distance or Euclidean distance), while oth-

ers use statistical properties of a given dataset to transform the feature space (e.g., TF-IDF

weighted cosine similarity or Mahalanobis distance) (Duda, Hart, & Stork, 2001). These

similarity functions make strong assumptions regarding the optimal representation of data,

while they may or may not be appropriate for specific datasetsand tasks. Therefore, it is

desirable tolearnsimilarity functions from training data to capture the correct notion of dis-

tance for a particular task in a given domain. While learningsimilarity functions via feature
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selection and feature weighting has been extensively studied in the context of classifica-

tion algorithms (Aha, 1998; Wettschereck, Aha, & Mohri, 1997), use of adaptive distance

measures in other tasks remains largely unexplored. In thisthesis, we develop methods for

adapting similarity functions to provide accurate similarity estimates in the context of the

following three problems:� Record Linkage

Record linkage is the general task of identifying syntactically different object de-

scriptions objects that refer to the same underlying entity(Winkler, 2006). It has

been previously studied by researchers in several areas as duplicate detection, entity

resolution, object identification, and data cleaning, among several other coreferent

names for this problem. Examples of record linkage include matching of coreferent

bibliographic citations (Giles, Bollacker, & Lawrence, 1998), identifying the same

person in different Census datasets (Winkler, 2006), and linking different offers for

the same product from multiple online retailers for comparison shopping (Bilenko,

Basu, & Sahami, 2005). In typical settings, performing record linkage requires two

kinds of similarity functions: those that estimate similarity between individual object

attributes, and those that combine such estimates to obtainoverall object similarity.

Object similarities are then used by matching or clusteringalgorithms to partition

datasets into groups of equivalent objects, or perform pairwise record matching be-

tween distinct data sources.� Semi-supervised Clustering

Clustering is an unsupervised learning problem in which theobjective is to partition

a set of objects into meaningful groups (clusters) so that objects within the same clus-

ter are more similar to each other than to objects outside thecluster (Jain, Murty, &

Flynn, 1999). In pure unsupervised settings, this objective can take on many forms

depending on the semantics of “meaningful” in a specific context and on the choice of

the similarity function. In semi-supervised clustering, prior information is provided

2



to aid the grouping either in the form of objects labeled as belonging to certain cate-

gories (Basu, Banerjee, & Mooney, 2002), or in the form of pairwise constraints indi-

cating preference for placing them in same or different clusters (Wagstaff & Cardie,

2000).� Blocking

Blocking is the task of efficiently selecting a minimal subset of approximately sim-

ilar object pairs from the set of all possible object pairs ina given dataset (Kelley,

1985). Because computing similarity for all object pairs iscomputationally costly

for large datasets, to be scalable, record linkage and clustering algorithms that rely

on pairwise distance estimates require blocking methods that efficiently retrieve the

subset of object pairs for subsequent similarity computation. Blocking can be viewed

as applying a computationally inexpensive similarity function to the entire dataset to

obtain approximately similar pairs.

In these tasks, dissimilarity estimates provided by distance functions directly in-

fluence the task output and therefore can have a significant effect on performance. Thus,

ensuring that employed similarity functions are appropriate for a given domain is essential

for obtaining high accuracy.

This thesis presents several techniques for training similarity functions to provide

accurate, domain-specific distance estimates in the context of record linkage, semi-supervised

clustering and blocking. Proposed techniques are based on parameterizing traditional dis-

tance functions, such as edit distance or Euclidean distance, and learning parameter values

that are appropriate for a given domain.

Learning is performed using training data in the form of pairwise supervision which

consists of object pairs known to be similar or dissimilar. Such supervision has different

semantics in different tasks. In record linkage, pairs of records or strings that refer to

the same or different entities are known as matching and non-matching pairs (Winkler,

2006). In clustering, pairs of objects that should be placedin the same cluster or different
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clusters are known as must-link and cannot-link pairs, respectively (Wagstaff & Cardie,

2000). Finally, in blocking, either of the above types of supervision can be used depending

on the task for which blocking is employed. Regardless of thesetting, pairwise supervision

is a common form of prior knowledge that is either available in many domains, or is easy

to obtain via manual labeling. Our methods exploit such pairwise supervision in the three

tasks listed above to learn accurate distance functions that reflect an appropriate notion of

similarity for a given domain.

1.2 Thesis Contributions

The goal of this thesis is proposing learnable variants of similarity functions commonly

used in record linkage and clustering, developing algorithms for training such functions

using pairwise supervision within these tasks, and performing experiments to study the

effectiveness of the proposed methods. The contributions of the thesis are outlined below:� We describe two learnable variants of affine-gap edit distance, a string similarity func-

tion commonly used in record linkage on string data. Based onpair Hidden Markov

Models (pair HMMs) originally developed for aligning biological sequences (Durbin,

Eddy, Krogh, & Mitchison, 1998), our methods lead to accuracy improvements over

unlearned affine-gap edit distance and TF-IDF cosine similarity. One of the two pro-

posed variants integrates string distance computation with string segmentation, pro-

viding a joint model for these two tasks that leads to more accurate string similarity

estimates with little or no segmentation supervision. Combining learnable affine-gap

edit distances across different fields using Support VectorMachines produces nearly

perfect (above 0.99 F-measure) results on two standard benchmark datasets.� We propose two strategies that facilitate efficient construction of training sets for

learning similarity functions in record linkage: weakly-labeled negative and likely-

positive pair selection. These techniques facilitate selecting informative training ex-
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amples without the computational costs of traditional active learning methods, which

allows learning accurate similarity functions using smallamounts of training data.� We describe a framework for learning similarity functions within the Hidden Markov

Random Field (HMRF) model for semi-supervised clustering (Basu, Bilenko, Baner-

jee, & Mooney, 2006). This framework leads to embedding similarity function train-

ing within an iterative clustering algorithm, HMRF-KMEANS, which allows learn-

ing similarity functions from a combination of unlabeled data and labeled supervision

in the form of same-cluster and different-cluster pairwiseconstraints. Our approach

accommodates a number of parameterized similarity functions, leading to improved

clustering accuracy on a number of text and numeric benchmark datasets.� We develop a new framework for learning blocking functions that provides efficient

and accurate selection of approximately similar object pairs for record linkage and

clustering tasks. Previous work on blocking methods has relied on manually con-

structed blocking functions with manually tuned parameters, while our method au-

tomatically constructs blocking functions using trainingdata that can be naturally

obtained within record linkage and clustering tasks. We empirically demonstrate that

our technique results in an order of magnitude increase in efficiency while maintain-

ing high accuracy.

1.3 Thesis Outline

Below is a summary of the remaining chapters in the thesis:� Chapter 2, Background. We provide the background on commonly used string

and numeric similarity functions, and describe the record linkage, semi-supervised

clustering and blocking tasks.
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� Chapter 3, Learnable Similarity Functions in Record Linkage. We show how

record linkage accuracy can be improved by using learnable string distances for indi-

vidual attributes and employing Support Vector Machines tocombine such distances.

The chapter also discusses strategies for collecting informative training examples for

training similarity functions in record linkage.� Chapter 4, Learnable Similarity Functions in Semi-supervised Clustering.This

chapter presents a summary of the HMRF framework for semi-supervised clustering

and describes how it incorporates learnable similarity functions that lead to improved

clustering accuracy.� Chapter 5, Learnable Similarity Functions in Blocking. In this chapter we present

a new method for automatically constructing blocking functions that efficiently select

pairs of approximately similar objects for a given domain.� Chapter 6, Future Work. This chapter discusses several directions for future re-

search based on the work presented in this thesis.� Chapter 7, Conclusions.In this chapter we review and summarize the main contri-

butions of this thesis.

Some of the work presented here has been described in prior publications. Material

presented in Chapter 3 appeared in (Bilenko & Mooney, 2003a)and (Bilenko & Mooney,

2003b), except for work described in Section 3.1.2 which hasnot been previously published.

Material presented in Chapter 4 is a summary of work presented in a series of publications

on the HMRF model for semi-supervised clustering: (Bilenko, Basu, & Mooney, 2004),

(Bilenko & Basu, 2004), (Basu, Bilenko, & Mooney, 2004), and(Basu et al., 2006). Finally,

an early version of the material described in Chapter 3 has appeared in (Bilenko, Kamath,

& Mooney, 2006).
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Chapter 2

Background

Because many data mining and machine learning algorithms require estimating similarity

between objects, a number of distance functions for variousdata types have been developed.

In this section, we provide a brief overview of several popular distance functions for text

and vector-space data. We also provide background on three important problems, record

linkage, clustering, and blocking, solutions for which rely on similarity estimates between

observations. Finally, we introduce active learning methods that select informative training

examples from a pool of unlabeled data.

Let us briefly describe the notation that we will use in the rest of this thesis. Strings

are denoted by lower-case italic letters such ass andt; brackets are used for string char-

acters and subsequences:s[i℄ stands fori-th character of strings, while s[i: j℄ represents the

contiguous subsequence ofs from i-th to j-th character. We use lowercase letters such asx

andy for vectors, and uppercase letters such asA andM for matrices. Sets are denoted by

script uppercase letters such asX andY .

We use the terms “distance function” and “similarity function” interchangeably

when referring to binary functions that estimate degree of difference or likeness between

instances.
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2.1 Similarity functions

2.1.1 Similarity Functions for String Data

Techniques for calculating similarity between strings canbe separated into two broad groups:

sequence-based functions and vector-space-based functions. Sequence-based functions com-

pute string similarity by viewing strings as contiguous sequences of either characters or

tokens. Differences between sequences are assumed to be theresult of applying edit opera-

tions that transform specific elements in one or both strings. Vector space-based functions,

on other hand, do not view strings as contiguous sequences but as unordered bags of ele-

ments. Below we describe two most popular similarity functions from these groups, edit

distance and TF-IDF cosine similarity. Detailed discussion of these similarity functions can

be found in (Gusfield, 1997) and (Baeza-Yates & Ribeiro-Neto, 1999), respectively. For an

overview of various string similarity functions proposed in the context of string matching

and record linkage tasks, see (Winkler, 2006) and (Cohen, Ravikumar, & Fienberg, 2003a).

Edit Distance

Edit distance is a dissimilarity function for sequences that is widely used in many applica-

tions in natural text and speech processing (Jelinek, 1998), bioinformatics (Durbin et al.,

1998), and data integration (Cohen, Ravikumar, & Fienberg,2003b; Winkler, 2006). Clas-

sical (Levenshtein) edit distance between two strings is defined as the minimum number of

edit operations (deletions, insertions, and substitutions of elements) required to transform

one string into another (Levenshtein, 1966). The minimum number of such operations can

be computed using dynamic programming in time equal to the product of string lengths.

Edit distance can be character-based or token-based: the former assumes that every string

is a sequence of characters, while the latter views strings as sequences of tokens.

For example, consider calculating character-based edit distance between strings

s = “12 8 Street” andt = “12 8th St.” . There are several character edit operation sequences
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of length 6 that transforms into t, implying that Levenshtein distance betweens andt is 6.

For example, the following six edit operations applied tos transform it intot:

1. Insert“t” : “12 8 Street”!”12 8t Street”

2. Insert“h” : “12 8t Street”!”12 8th Street”

3. Substitute“r” with “.” : “12 8th Street”!”12 8th St.eet’

4. Delete“e” : ”12 8th St.eet”!”12 8th St.et”

5. Delete“e” : ”12 8th St.et”!”12 8th St.t”

6. Delete“t” : ”12 8th St.t”!”12 8th St.”

Wagner and Fisher (1974) generalized edit distance by allowing edit operations

to have different costs. Needleman and Wunsch (1970) extended edit distance further to

distinguish the cost of contiguous insertions or deletions, known as gaps, and Gotoh (1982)

subsequently introduced the affine (linear) model for gap cost yielding an efficient dynamic

programming algorithm for computing edit distance with gaps. The following recursions

are used to compute affine-gap edit distanced(s; t) between stringss and t in O(jsjjtj)
computational time:

M(i; j) = min

8>>>><>>>>:M(i �1; j �1)+c(s[i℄; t[ j ℄)
I1(i �1; j �1)+c(s[i℄; t[ j ℄)
I2(i �1; j �1)+c(s[i℄; t[ j ℄)

I1(i; j) = min

8><>:M(i �1; j)+d+c(s[i℄;ε)
I1(i �1; j)+e+c(s[i℄;ε) (2.1)

I2(i; j) = min

8><>:M(i; j �1)+d+c(ε; t[ j ℄)
I2(i; j �1)+e+c(ε; t[ j ℄)

d(s; t) = min(M(jsj; jtj); I1(jsj; jtj); I2(jsj; jtj))
9



wherec(s[i℄; t[ j℄) is the cost of substituting (or matching)i-th element ofsand j-th element of

t, c(s[i℄;ε) andc(ε; t[ j℄) are the costs of inserting elementss[i℄ andt[ j℄ into the first and second

strings respectively (aligning this element with a gap in the other string), andd ande are

the costs of starting a gap and extending it by one element. Entries(i; j) in matricesM, I1,

andI2 correspond to the minimal cost of an edit operation sequencebetween string prefixes

s[1:i℄ andt[1: j℄ with the sequence respectively ending in a match/substitution, insertion into

the first string, or insertion into the second string.

Any sequence of edit operations transforming one string into another corresponds

to analignmentof the two strings. Alignment is a representation of the two strings obtained

by inserting empty characters into the strings in place of insertions, and placing the two

strings one above the other. Following is the alignment of stringss andt corresponding to

the sequence of edit operations shown in the example above:

1 2 8 ε ε S t r e e t

1 2 8 t h S t : ε ε ε
(2.2)

This representation shows that the sequence of edit operations for any alignment

can be viewed as an a production of the two strings in parallelby emitting elements from

either one or both strings simultaneously. This view will becentral in the development of

learnable affine-gap edit distance in Chapter 3.

Jaccard and TF-IDF Cosine Similarity

While sequence-based string similarity functions work well for estimating distance between

shorter strings, they become too computationally expensive and less accurate for longer

strings. For example, when differences between equivalentstrings are due to long-range

transpositions of multiple words, sequence-based similarity functions assign high cost to

non-aligned string segments, resulting in low similarity scores for strings that share many

common words. At the same time, computing string edit distance becomes computationally
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prohibitive for larger strings such as text documents on theWeb because its computational

complexity is quadratic in string size.

The vector-space model of text avoids these problems by viewing strings as “bags

of tokens” and disregarding the order in which the tokens occur in the strings (Salton &

McGill, 1983). Jaccard similarity can then be used as the simplest method for computing

likeness as the proportion of tokens shared by both strings.If stringssandt are represented

by sets of tokensS andT , Jaccard similarity is:

simJaccard(s; t) = jS \T jjS [T j (2.3)

The primary problem with Jaccard similarity is that it does not take into account

the relative importance of different tokens. Tokens that occur frequently in a given string

should have higher contribution to similarity than those that occur few times, as should those

tokens that are rare among the set of strings under consideration. The Term Frequency-

Inverse Document Frequency (TF-IDF) weighting scheme achieves this by associating a

weightwvi ;s = N(vi ;s)
maxvj2sN(vj ;s) � log N

N(vi ) with every tokenvi from strings, whereN(vi;s) is the

number of timesvi occurs ins (term frequency),N is the number of strings in the overall

corpus under consideration, andN(vi) is the number of strings in the corpus that includevi

(document frequency).

Given a corpus of strings that yields the setV of distinct tokens after tokenization,

a strings can be represented as ajV j-dimensional vector of weights, every non-zero com-

ponent of which corresponds to a token present ins. TF-IDF cosine similarity between two

strings is defined as the cosine of the angle between their vector representations:

simTF�IDF (s; t) = wT
s wtkwskkwtk = ∑vi2V ws;vi wt;viq

∑si2S w2
s;si
�q∑ti2T w2

t;ti (2.4)

With the help of appropriate inverted index data structures, TF-IDF cosine similar-

ity is computationally efficient due to high sparsity of mostvectors, and provides a rea-
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sonable off-the-shelf metric for long strings and text documents. Tokenization is typically

performed by treating each individual word of certain minimum length as a separate token,

usually excluding a fixed set of functional “stop words” and optionally stemming tokens

to their roots (Baeza-Yates & Ribeiro-Neto, 1999). An alternative tokenization scheme is

known asn-grams: it relies on using all overlapping contiguous character subsequences of

lengthn as tokens.

2.1.2 Similarity Functions for Numeric Data

Euclidean and Mahalanobis distances

For data represented by vectors in Euclidean space, the Minkowski family of metrics, also

known as theLk norms, includes most commonly used similarity measures forobjects de-

scribed byd-dimensional vectors (Duda et al., 2001):

Lk(xi ;x j) =� d

∑
l=1

��xil �x jl
��k�1=k

(2.5)

TheL2 norm, commonly known as Euclidean distance, is frequently used for low-

dimensional vector data. Its popularity is due to a number offactors:� Intuitive simplicity: theL2 norm corresponds to straight-line distance between points

in Euclidean space;� Invariance to rotation or translation in feature space;� Mathematical metric properties: non-negativity (L2(xi ;x j)�0)), reflexivity (L2(xi ;x j)=
0 iff xi = x j ), symmetry (L2(xi ;x j) = L2(x j ;xi)), and triangle inequality (L2(xi ;x j)+
L2(x j ;xk) � L2(xi ;xk)), that allow using it in many algorithms that rely on metric

assumptions.

If distance is computed among points of a given dataset, Mahalanobis distance is an

extension of Euclidean distance that takes into account thedata mean as well as variance
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of each dimension and correlations between the different dimensions, which are estimated

from the dataset. Given a set of observation vectorsfx1; :::;xng, Mahalanobis distance is

defined as:

dMah(xi ;x j) = ((xi �x j)TΣ�1(xi �x j))1=2 (2.6)

whereΣ�1 is the inverse of the covariance matrixΣ = 1
n�1 ∑n

i=1(xi �µ)(xi �µ)T , andµ=
1
n ∑n

i=1 xi is the data mean.

Essentially, Mahalanobis distance attempts to give each dimension equal weight

when computing distance by scaling its contribution proportionally to variance, while tak-

ing into account co-variances between the dimensions.

Cosine Similarity

Minkowski metrics including Euclidean distance suffer from thecurse of dimensionality

when they are applied to high-dimensional data (Friedman, 1997). As the dimensionality

of the Euclidean space increases, sparsity of observationsincreases exponentially with the

number of dimensions, which leads to observations becomingequidistant in terms of Eu-

clidean distance. Cosine similarity, or normalized dot product, has been widely used as an

alternative similarity function for high-dimensional data (Duda et al., 2001):

Simcos(x;y) = xTykxkkyk = ∑d
i=1 xi �yiq

∑d
i=1 x2

i �q∑d
i=1y2

i

(2.7)

If applied to normalized vectors, cosine similarity obeys metric properties when

converted to distance by negating it from 1. In general, however, it is not a metric in the

mathematical sense, and it is not invariant to translationsand linear transformations.

Information-theoretic Measures

In certain domains, data can be described by probability distributions, e.g., text docu-

ments can be represented as probability distributions overwords generated by a multinomial
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model (Pereira, Tishby, & Lee, 1993). Kullback-Leibler (KL) divergence, also known as

relative entropy, is a widely used distance measure for suchdata:

dKL(xi ;x j) = d

∑
m=1

xim log
xim

x jm
(2.8)

wherexi andx j are instances described by probability distributions overd events:∑d
m=1xim =

∑d
m=1x jm = 1. Note that KL divergence is not symmetric:dKL(xi ;x j) 6= dKL(xi ;x j) for any

xi 6= x j . In domains where a symmetrical distance function is needed, Jensen-Shannon di-

vergence, also known as KL divergence to the mean, is used:

dJS(xi ;x j) = 1
2
(dKL(xi ; xi +x j

2
)+dKL(x j ; xi +x j

2
)) (2.9)

Kullback-Leibler divergence is widely used in informationtheory (Cover & Thomas,

1991), where it is interpreted as the expected extra length of a message sampled from dis-

tribution xi encoded using a coding scheme that is optimal for distribution x j .

2.2 Record Linkage

As defined in Chapter 1, the goal of record linkage is identifying instances that differ syn-

tactically yet refer to the same underlying object. Matching of coreferent bibliographic

citations and identifying multiple variants of a person’s name or address in medical, cus-

tomer, or census databases are instances of this problem. A number of researchers in dif-

ferent communities have studied variants of record linkagetasks : after being introduced

in the context of matching medical records by Newcombe, Kennedy, Axford, and James

(1959), it was investigated under a number of names including merge/purge (Hernández &

Stolfo, 1995), heterogeneous database integration (Cohen, 1998), hardening soft databases

(Cohen, Kautz, & McAllester, 2000), reference matching (McCallum, Nigam, & Ungar,

2000), de-duplication (Sarawagi & Bhamidipaty, 2002; Bhattacharya & Getoor, 2004),

fuzzy duplicate elimination (Ananthakrishna, Chaudhuri,& Ganti, 2002; Chaudhuri, Gan-
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jam, Ganti, & Motwani, 2003), entity-name clustering and matching (Cohen & Richman,

2002), identity uncertainty (Pasula, Marthi, Milch, Russell, & Shpitser, 2003; McCallum &

Wellner, 2004a), object consolidation (Michalowski, Thakkar, & Knoblock, 2003), robust

reading (Li, Morie, & Roth, 2004), reference reconciliation (Dong, Halevy, & Madhavan,

2005), object identification (Singla & Domingos, 2005), andentity resolution (Bhattacharya

& Getoor, 2006).

The seminal work of Fellegi and Sunter (1969) described several key ideas that

have been used or re-discovered by most record linkage researchers, including combining

similarity estimates across multiple fields, using blocking to reduce the set of candidate

record pairs under consideration, and using a similarity threshold to separate the corefer-

ent and non-coreferent object pairs. Fellegi and Sunter (1969) considered record linkage

in an unsupervised setting where no examples of coreferent and non-coreferent pairs are

available. In this setting, several methods have been proposed that rely on learning prob-

abilistic models with latent variables that encode the matching decisions (Winkler, 1993;

Ravikumar & Cohen, 2004). In the past decade, a number of researchers have considered

record linkage settings where pairwise supervision is available, allowing the application of

such classification techniques as decision trees (Elfeky, Elmagarmid, & Verykios, 2002; Te-

jada, Knoblock, & Minton, 2001), logistic regression (Cohen & Richman, 2002), Bayesian

networks (Winkler, 2002), and Support Vector Machines (Bilenko & Mooney, 2003a; Co-

hen et al., 2003a; Minton, Nanjo, Knoblock, Michalowski, & Michelson, 2005) to obtain

record-level distance functions that combine the field-level similarities. These methods treat

individual field similarities as features and train a classifier to distinguish between coref-

erent and non-coreferent records, using the confidence of the classifier’s prediction as the

similarity estimate.

The majority of solutions for record linkage treat it as a modular problem that is

solved in multiple stages. In the first stage, blocking is performed to obtain a set of candidate

record pairs to be investigated for co-reference, since thecomputational cost of computing

15



pairwise similarities between all pairs of records in a large database is often prohibitive; see

Section 2.4 for discussion of blocking. In the second stage,similarity is computed between

individual fields of candidate record pairs. In the final linkage stage, similarity is computed

between candidate pairs, and highly similar records are labeled as matches that describe

the same entity. Linkage can be performed either viapairwise inference where decisions

for the different candidate pairs are made independently, or via collectiveinference over all

candidate record pairs (Pasula et al., 2003; Wellner, McCallum, Peng, & Hay, 2004; Singla

& Domingos, 2005).

2.3 Clustering

Clustering is typically defined as the problem of partitioning a dataset into disjoint groups so

that observations belonging to the same cluster are similar, while observations belonging to

different clusters are dissimilar. Clustering has been widely studied for several decades, and

a great variety of algorithms for clustering have been proposed (Jain et al., 1999). Several

large groups of clustering algorithms can be distinguishedthat include hierarchical cluster-

ing methods that attempt to create a hierarchy of data partitions (Kaufman & Rousseeuw,

1990), partitional clustering methods that separate instances into disjoint clusters (Karypis

& Kumar, 1998; Shi & Malik, 2000; Strehl, 2002; Banerjee, Merugu, Dhilon, & Ghosh,

2005b), and overlapping clustering techniques that allow instances to belong to multiple

clusters (Segal, Battle, & Koller, 2003; Banerjee, Krumpelman, Basu, Mooney, & Ghosh,

2005c).

Traditionally, clustering has been viewed as a form of unsupervised learning, since

no class labels for the data are provided. Insemi-supervised clustering, supervision from

a user is incorporated in the form of class labels or pairwiseconstraints on objects which

can be used to initialize clusters, guide the clustering process, and improve the clustering

algorithm parameters (Basu, 2005).

Work presented in Chapter 4 is based on K-Means, a widely usedclustering algo-
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rithm that performs iterative relocation of cluster centroids to locally minimize the total dis-

tance between the data points and the centroids. Given a set of data pointsX = fxigN
i=1;xi 2Rm, letfµhgK

h=1 represent theK cluster centroids, andyi be the cluster assignment of a point

xi , whereyi 2 Y andY = f1; : : : ;Kg. The Euclidean K-Means algorithm createsK disjoint

subsets ofX , fXlgK
l=1, whose union isX , so that the following objective function is (locally)

minimized:

Jkmeans(X ;Y ) = ∑
xi2X

kxi �µyik2 (2.10)

Intuitively, this objective function measures the tightness of each cluster as the sum

of squared Euclidean distances between every point in the cluster and the centroid. Fig-

ure 2.1 presents the pseudocode for the algorithm.

Algorithm: K-M EANS

Input: Set of data pointsX = {xi}
n
i=1,xi ∈ Rd, number of clustersK

Output: Disjoint K-partitioning{Xh}
K
h=1 of X such that objective function

Jkmeansis optimized
Method:

1. Initialize clusters: Initial centroids{µ(0)
h }K

h=1 are selected at random
2. Repeat untilconvergence

2a. assign cluster: Assign each data pointxi to the clusterh∗ (i.e. setX (t+1)
h∗ ),

whereh∗ = argmin
h

‖xi −µ(t)
h ‖2

2b. estimate means: µ(t+1)
h ← 1

|X
(t+1)
h |

∑
xi∈X

(t+1)
h

xi

2c. t ← (t +1)

Figure 2.1: The K-Means algorithm

Recently, it has been shown that K-Means-style algorithms can be derived based on

a number of dissimilarity functions including directionalmeasures such as cosine similar-

ity (Banerjee, Dhillon, Ghosh, & Sra, 2005a) and a large class of functions known as Breg-

man divergences, which include squared Euclidean distanceand KL-divergence (Banerjee

et al., 2005b).
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2.4 Blocking in Record Linkage and Clustering

Because the number of similarity computations grows quadratically with the size of the

input dataset, scaling up to large datasets is problematic for tasks that require similarities

between all instance pairs. Additionally, even for small datasets, estimation of the full

similarity matrix can be difficult if computationally costly similarity functions, distance

metrics or kernels are used. At the same time, in many tasks, the majority of similarity

computations are unnecessary because most instance pairs are highly dissimilar and have

no influence on the task output. Avoiding the unnecessary computations results in a sparse

similarity matrix, and a number of algorithms become practical for large datasets when

provided with sparse similarity matrices, e.g. the collective inference algorithms for record

linkage (Pasula et al., 2003; McCallum & Wellner, 2004b; Singla & Domingos, 2005).

Blocking methods efficiently select a subset of instance pairs for subsequent sim-

ilarity computation, ignoring the remaining pairs as highly dissimilar and therefore irrele-

vant. A number of blocking algorithms have been proposed by researchers in recent years,

all of which rely on a manually tuned set of predicates or parameters (Fellegi & Sunter,

1969; Kelley, 1985; Jaro, 1989; Hernández & Stolfo, 1995; McCallum et al., 2000; Baxter,

Christen, & Churches, 2003; Chaudhuri et al., 2003; Jin, Li,& Mehrotra, 2003; Winkler,

2005).

Key-based blocking methods form blocks by applying some unary predicate to each

record and assigning all records that return the same value (key) to the same block (Kelley,

1985; Jaro, 1989; Winkler, 2005). For example, such predicates asSame Zipcodeor Same

3-character Prefix of Surnamecould be used to perform key-based blocking in a name-

address database, resulting in blocks that contain recordswith the same value of theZipcode

attribute and the same first three characters of theSurnameattribute, respectively.

Another popular blocking technique is the sorted neighborhood method proposed

by Hernández and Stolfo (1995). This method forms blocks bysorting the records in a

database using lexicographic criteria and selecting all records that lie within a window of
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fixed size. Multiple sorting passes are performed to increase coverage.

The canopies blocking algorithm of McCallum et al. (2000) relies on a similar-

ity function that allows efficient retrieval of all records within a certain distance threshold

from a randomly chosen record. Blocks are formed by randomlyselecting a “canopy cen-

ter” record and retrieving all records that are similar to the chosen record within a certain

(“loose”) threshold. Records that are closer than a “tight”threshold are removed from the

set of possible canopy centers, which is initialized with all records in the dataset. This

process is repeated iteratively, resulting in formation ofblocks selected around the canopy

centers. Inverted index-based similarity functions such as Jaccard or TF-IDF cosine sim-

ilarity are typically used with the canopies method as they allow fast selection of nearest

neighbors based on co-occurring tokens. Inverted indices are also used in the blocking

method of Chaudhuri et al. (2003), who proposed using indices based on charactern-grams

for efficient selection of candidate record pairs.

Recently, Jin et al. (2003) proposed a blocking method basedon mapping database

records to a low-dimensional metric space based on string values of individual attributes.

While this method can be used with arbitrary similarity functions, it is computationally

expensive compared to the sorting and index-based methods.

2.5 Active Learning

When training examples are selected for a learning task at random, they may be suboptimal

in the sense that they do not lead to a maximally attainable improvement in performance.

Active learningmethods attempt to identify those examples that lead to maximal accuracy

improvements when added to the training set (Lewis & Catlett, 1994; Cohn, Ghahramani,

& Jordan, 1996; Tong, 2001). During each round of active learning, the example that is

estimated to improve performance the most when added to the training set is identified and

labeled. The system is then re-trained on the training set including the newly added labeled

example.
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Three broad classes of active learning methods exist: (1) uncertainty sampling tech-

niques (Lewis & Catlett, 1994) attempt to identify examplesfor which the learning algo-

rithm is least certain in its prediction; (2) query-by-committee methods (Seung, Opper, &

Sompolinsky, 1992) utilize a committee of learners and use disagreement between commit-

tee members as a measure of training examples’ informativeness; (3) estimation of error re-

duction techniques (Lindenbaum, Markovitch, & Rusakov, 1999; Roy & McCallum, 2001)

select examples which, when labeled, lead to greatest reduction in error by minimizing

prediction variance.

Active learning was shown to be a successful strategy for improving performance

using small amounts of training data on a number of tasks, including classification (Cohn

et al., 1996), clustering (Hofmann & Buhmann, 1998; Basu, Banerjee, & Mooney, 2004),

and record linkage (Sarawagi & Bhamidipaty, 2002; Tejada, Knoblock, & Minton, 2002).
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Chapter 3

Learnable Similarity Functions in

Record Linkage

In this chapter, we describe the use of learnable similarityfunctions in record linkage, where

they improve the accuracy of distance estimates in two tasks: computing similarity of string

values between individual record fields, and combining suchsimilarities across multiple

fields to obtain overall record similarity. At the field level, two adaptive variants of edit

distance are described that allow learning the costs of string transformations to reflect their

relative importance in a particular domain. At the record level, we employ Support Vector

Machines, a powerful discriminative classifier, to distinguish between pairs of similar and

dissimilar records. We also propose two strategies for automatically selecting informative

pairwise training examples. These strategies do not require the human effort needed by

active learning methods, yet vastly outperform random pairselection.

3.1 Learnable Similarity Functions for Strings

In typical linkage applications, individual record fields are represented by short string val-

ues whose length does not exceed several dozen characters ortokens. For such strings,
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differences between coreferent values frequently arise due to local string transformations at

either character or token level, e.g., misspellings, abbreviations, insertions, and deletions.

To capture such differences, similarity functions must estimate the total cost associated with

performing these transformations on string values.

As described in Section 2.1.1, edit distance estimates string dissimilarity by com-

puting the cost of a minimal sequence of edit operations required to transform one string

into another. However, the importance of different edit operations varies from domain to

domain. For example, a digit substitution makes a big difference in a street address since

it effectively changes the house or apartment number, whilea single letter substitution is

semantically insignificant because it is more likely to be caused by a typographic error or

an abbreviation. For token-level edit distance, some tokens are unimportant and therefore

their insertion cost should be low, e.g., for tokenSt. in street addresses.

Ability to vary the gap cost is a significant advantage of affine-gap edit distance over

Levenshtein edit distance, which penalizes all insertionsindependently (Bilenko & Mooney,

2002). Frequency and length of gaps in string alignments also vary from domain to domain.

For example, during linkage of coreferent bibliographic citations, gaps are common for the

authorfield where names are often abbreviated, yet rare for thetitle field which is typically

unchanged between citations to the same paper.

Therefore, adapting affine-gap edit distance to a particular domain requires learning

the costs for different edit operations and the costs of gaps. In the following subsections,

we present two methods that perform such of edit distance parameters using a corpus of

coreferent string pairs from a given domain.

3.1.1 Learnable Edit Distance with Affine Gaps

The Pair HMM Model

We propose learning the costs of edit distance parameters using a three-state pair HMM

shown in Figure 3.1. It extends the one-state model used by Ristad and Yianilos (1998)
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Figure 3.1: A generative model for edit distance with affine gaps

to learn parameters of Levenshtein edit distance, and is analogous to models proposed

in Durbin et al. (1998) for scoring alignments of biologicalsequences.

For any pair of strings, the model can generate all possible alignments between them

as sequences of state transitions and edit operation emissions, where emissions correspond

to productions of elements of the two strings in parallel, including gaps. Each possible

alignment is associated with the probability of observing the corresponding sequence of

transitions and emissions.

The three states of the model generate gaps in the alignment in statesI1 andI2, and

generate matches and substitutions in stateM. Transitions between stateM and statesI1

andI2 in the pair HMM correspond to starting a gap in the deterministic affine-gap edit dis-

tance model, while self-transitions in statesI1 andI2 model gap extensions. Probabilities of

these transitions,σ andδ, correspond to gap opening and extension costs, while probabil-

ities µ, γM andγI correspond to the relative frequency of continued matching, gap ending,

and observing adjacent gaps (these transitions have no direct analog in the deterministic

model).1

1Traditional edit distance algorithms as well as pair HMMs described by Durbin et al. (1998) also disallow
gaps in the two strings to be contiguous. This restriction corresponds to prohibiting transitions between statesI1
andI2, but in the record linkage domain it is unnecessary since thetwo strings may have parallel non-matching
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Emissions in the pair HMM correspond to individual edit operations that generate

both strings in parallel. GivenA� = A [fεg, the symbol alphabet extended with the special

“gap” characterε, the full set of edit operations isE = EM[EI1[EI2, whereEM = fha;bi :

a;b 2 Ag is the set of all substitution and matching operations, while EI1 = fha;εi : a 2
Ag andEI2 = fhε;ai : a 2 Ag are the insertions into the first and into the second strings

respectively. Each state associates its set of emissions with a probability distribution. Thus,

emission probabilities in the pair HMM,PM = fp(e) : e2EMg, PI1 = fp(e) : e2EI1g, and

PI2 = fp(e) : e2EI2g, correspond to costs of individual edit operations in the deterministic

model. Edit operations with higher probabilities produce character pairs that are likely to

be aligned in a given domain, e.g., substitutionh=;�i for phone numbers or deletionh:;εi
for addresses. For each state in the pair HMM, there is an associated probability of starting

or ending the string alignment in that state, correspondingto the frequency of observing

alignments with gaps at the beginning or at the end.

Because in record linkage applications the order of two strings is unimportant,

several parameters in the model are tied to make alignments symmetrical with respect

to the two strings. Tied parameters include probabilities of transitions entering and exit-

ing the insertion states:σ, γM, γI , andδ; emission probabilities for the insertion states:

p(ha;εi) = p(hε;ai), and emissions of substitutionsp(ha;bi) = p(hb;ai).
Two methods can be used for computing edit distance using a trained pair HMM.

The Viterbi algorithm computes the highest-probability alignment of two strings, while the

forward (or backward) algorithm computes the total probability of observing all possible

alignments of the strings, which can be beneficial if severalhigh-probability alignments

exist (Rabiner, 1989). If performed in log-space, the algorithms are analogous to the de-

terministic edit distance computation shown in Eq. (2.1), with the negative logarithms of

probabilities replacing the corresponding costs. The three matrices of the deterministic

affine-gap edit distance described in Section 2.1.1 correspond to dynamic programming

regions.
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matrices computed by the Viterbi, forward and backward algorithms. Each entry(i; j) in

the dynamic programming matrices for statesM, I1, andI2 contains the forward, backward,

or Viterbi probability for aligning prefixesx[1:i℄ x[1: j℄ and ending the transition sequence(s)

in the corresponding state.

Training

Given a training set ofN coreferent string pairsD = f(x(1)i ;x(2)i )g, the transition and emis-

sion probabilities in the model can be learned using a variant of the Baum-Welch algorithm

outlined in Figure 3.2, which is an Expectation-Maximization procedure for learning pa-

rameters of HMMs (Rabiner, 1989); Ristad and Yianilos (1998) used an analogous algo-

rithm for training their one-state model for Levenshtein distance. The training procedure

iterates between two steps, expectation (E-step) and maximization (M-step), converging to a

(local) maximum of the log-likelihood of training dataL = ∑i=1::N log pΘ(x(1)i ;x(2)i ), where

Θ = fµ;δ;σ;γM ;γI ; ;PM ;PI1;PI2g is the set of emission and transition probabilities being

learned. In the E-step, the forward and backward matrices are computed for every training

pair to accumulate the expected number of transitions and emissions given current parame-

ter values (Rabiner, 1989). In the M-step, parametersΘ are updated by re-normalizing the

expectations of transition and emission probabilities accumulated in the E-step.

Once trained, the model can be used for estimating similarity between pairs of

strings by using the forward algorithm to compute the probability of generating all pos-

sible string alignments. To prevent numerical underflow forlong strings, this computation

should be performed in log-space.

Modeling edit distances with pair HMMs has an intrinsic drawback: because prob-

ability of generating a string pair decreases with string length, alignments of longer strings

have lower probabilities that alignments of shorter strings. This problem is alleviated by

using length-corrected distanced(x;y) =� logp(x;y)1=(jxj+jyj) , which is equivalent to scal-

ing deterministic edit distance by the sum of string lengths. Furthermore, the standard
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Algorithm: AFFINE-GAP PAIR-HMM EM T RAINING

Input: A corpus of coreferent string pairsD = {(x(1)
i ,x(2)

i )}
Output: A set of pair HMM parameters:Θ = {µ,δ,σ,γM,γI ,PM,PI1,PI2}
Method:

until convergence

E-STEP: for each(x(1)
i ,x(2)

i ) ∈ D

(M( f ), I ( f )
1 , I ( f )

2 ) =FORWARD(x(1)
i ,x(2)

i )

(M(b), I (b)
1 , I (b)

2 ) =BACKWARD(x(1)
i ,x(2)

i )

for j = 1, . . . , |x(1)
i |

for k = 1, . . . , |x(2)
i |

AccumulateE[µ],E[σ],E[δ],E[γM],E[γI ],

E[p(〈x(1)
i[ j],ε〉)],E[p(〈ε,x(2)

i[k]
〉)],E[p(〈x(1)

i[ j],x
(2)
i[k]
〉)]

M-STEP:

µ= E[µ]
E[µ]+2E[σ]

σ = E[σ]
E[µ]+2E[σ]

δ = E[δ]
E[δ]+E[γM ]+E[γI ]

γM = E[γM ]
E[δ]+E[γM ]+E[γI ]

γI = E[γI ]
E[δ]+E[γM ]+E[γI ]

for eachp(e) ∈ PM: p(e) = E[p(e)]
∑p(eM )∈PM

E[p(eM)]

for eachp(e) ∈ PI1: p(e) = E[p(e)]
∑p(eI1

)∈PI1
E[p(eI1)]

for eachp(e) ∈ PI2: p(e) = E[p(e)]
∑p(eI2

)∈PI2
E[p(eI2)]

Figure 3.2: Training algorithm for generative string distance with affine gaps

pHMM must normalize the probability of the exact match operations against the proba-

bilities of substitutions, and normalizeµ, the probability of the self-transition in stateM,

against 2δ, the probabilities of starting a gap in either string. Thesenormalizations imply

that even the perfect matching of a string to itself has a less-than-1 probability, which is

counter-intuitive, yet unavoidable within the pair HMM generative framework. However,

we have found that setting the costs (log-probabilities) ofM-state self-transitions and match

emissions to 0 leads to improved empirical results, although the pair HMM model does not

provide a principled way of encoding this intuition.
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Experimental Evaluation

We evaluated the proposed model for learnable affine-gap edit distance on four datasets.

Face,Constraint, Reasoning, and Reinforcementare single-field datasets containing un-

segmented citations to computer science papers in corresponding areas from theCiteseer

digital library (Giles et al., 1998).Facecontains 349 citations to 242 papers,Constraint

contains 295 citations to 199 papers, andReasoningcontains 514 citation records that rep-

resent 196 unique papers, andReinforcementcontains 406 citations to 148 papers. Figure

3.3 presents sample coreferent records from one of the datasets.

Every dataset was randomly split into 2 folds for cross-validation during each exper-

imental run. A larger number of folds is impractical since itwould result in fewer coreferent

pairs per fold. To create the folds, coreferent records weregrouped together, and the result-

ing clusters were randomly assigned to the folds. All results are reported over 10 random

splits, where for each split the two folds were used alternately for training and testing.

During each trial, learnable edit distance is trained as described above using ran-

domly sampled pairs of coreferent strings from the trainingfold. After training, edit dis-

tance is computed between all pairs of strings in the testingfold. Then, pairs are iteratively

labeled as coreferent in order of decreasing similarity. After labeling of each successive

string pair, accuracy is evaluated using pairwise precision and recall, which are computed

as follows:

Figure 3.3: Sample coreferent records from theReasoningdataset
L. P. Kaelbling. An architecture for intelligent reactive systems. In Reasoning
About Actions and Plans: Proceedings of the 1986 Workshop. Morgan Kaufmann, 1986
Kaelbling, L. P., 1987. An architecture for intelligent reactive systems. In
M. P. Georgeff & A. L. Lansky, eds., Reasoning about Actions and Plans, Morgan
Kaufmann, Los Altos, CA, 395 410
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precision= #o fCorrectCore f erentPairs
#o f LabeledPairs

recall = #o fCorrectCore f erentPairs
#o f TrueCore f erentPairs

We also compute mean average precision (MAP), defined as follows:

MAP= 1
n

n

∑
i=1

precision(i) (3.1)

wheren is the number of true coreferent pairs in the dataset, andprecision(i) is the pair-

wise precision computed after correctly labelingi-th coreferent pair. These measures eval-

uate how well a similarity function distinguishes between coreferent and non-coreferent

string pairs: a perfect string distance would assign highersimilarity to all coreferent pairs

than to any non-coreferent pair, achieving 1.0 on all metrics. On the precision-recall curve,

precision at any recall level corresponds to the fraction ofpairs above a certain similarity

threshold that are coreferent, while lowering the threshold results in progressive identifica-

tion of more truly coreferent pairs. For averaging the results across multiple trials, precision

is interpolated at fixed recall levels following the standard methodology from information

retrieval (Baeza-Yates & Ribeiro-Neto, 1999).

To evaluate the usefulness of adapting affine-gap string edit distance to a specific

domain, we compare the pair HMM-based learnable affine-gap edit distance with its fixed-

cost equivalent on the task of identifying equivalent field values, as well as with classic

Levenshtein distance. The following results are presented:� PHMM L EARNABLE ED: learnable affine-gap edit distance based on characters

trained as described above using the EM algorithm shown in Fig.3.2;� UNLEARNED ED: fixed-cost affine-gap edit distance (Gusfield, 1997) witha substi-

tution cost of 5, gap opening cost of 5, gap extension cost of 1, and match cost of -5,
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Figure 3.4: Mean average precision values for field-level record linkage
Distance metric Face Constraint Reasoning Reinforcement

pHMM Learnable edit distance 0.960 0.968 0.955 0.961
Unlearned edit distance 0.956 0.956 0.946 0.952
Levenshtein edit distance 0.901 0.874 0.892 0.899

which are parameters previously suggested by (Monge & Elkan, 1996);� LEVENSHTEIN: classic Levenshtein distance described in Section 2.1.1.

Precision-recall curves for the four datasets are shown on Figures 3.5-3.8. These

results are summarized in Figure 3.4. Each entry contains the mean average precision over

the 20 evaluated folds. Improvements of the learnable edit distance over the fixed-cost vari-

ant are significant at the 0.05 level using a two-tailed paired t-test for all datasets. These

results demonstrate that learned affine-gap edit distance outperforms its deterministic equiv-

alent in identifying coreferent values in individual fields, which in turn is significantly more

accurate than Levenshtein distance.

3.1.2 Learnable Segmented Edit Distance

Affine-gap edit distance and the corresponding pair HMM model described in Section 3.1.1

treat strings as homogeneous entities. In domains where strings are composed of multiple

fields, such as bibliographic citations, ignoring their internal structure disregards the dif-

ferences between edit distance parameters in appropriate models for the fields, while some

string transformations may be frequent in one field, but rarein another. For affine-gap edit

distance derived from a pair HMM, rarity of certain operations (e.g., rarity of gaps forti-

tle values) corresponds to a lower value ofσ, probability of the gap opening transition.

Training individual pair HMM distances for every field allows making such distinctions.

Therefore, segmenting strings into individual fields can improve the accuracy of similarity

computations, and in domains where accurate segmentation is available, or original data is

described by multiple fields, combining multiple field-specific distances was shown to be

29



 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  20  40  60  80  100

P
re

ci
si

on

Recall

pHMM Learnable ED
Unlearned ED

Levenshtein

Figure 3.5: Field linkage results for theFacedataset
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Figure 3.6: Field linkage results for theConstraintdataset
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Figure 3.7: Field linkage results for theReasoningdataset
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Figure 3.8: Field linkage results for theReinforcementdataset
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effective for the record linkage task, as results in Section3.2 will show.

However, in domains where supervision in the form of segmented strings for train-

ing an information extraction system is limited, field values cannot be extracted reliably.

Segmentation mistakes lead to erroneous field-level estimates of similarity, combining which

may produce worse results than utilizing a single string similarity function.

Segmented Pair HMM

We propose a new type of pair HMM, the segmented pair HMM (spHMM), that overcomes

the above limitations by combining segmentation and edit distance computation within a

single framework. A sample spHMM is shown in Figure 3.9. It can be viewed as an

interconnected sequence of pair HMMs, where the emission and transition probabilities

within each pair HMM are trained for a particular field, whileprobabilities of transitions

between the pair HMMs capture the field structure of the strings. The model generates

string matchings by emitting alignments of individual fields in corresponding components,

transitioning between them at segment boundaries in both strings simultaneously.
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Figure 3.9: Segmented pair HMM

As in regular pair HMMs, edit distance between two stringsx andy in the spHMM

is computed as the negative logarithm of the probability of generating the string pair over

all possible alignments,d(x;y) = � logp(x;y), which can be computed using the standard
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forward (or backward) algorithm. This allows aggregating alignment probabilities over the

different possible segmentations of the two strings, whichis not achievable if segmentation

and matching are performed in isolation. The obtained distance value is length-corrected to

avoid penalizing longer stringsd(x;y) =� logp(x;y)(jxj+jyj) .
Training

As with the learnable affine-gap edit distance without segmentation described in Section 3.1.1,

transition and emission probabilities of the spHMM are learned using a training setD =f(x(1)i ;x(2)i )gf(xi ;yi)gN
i=1 consisting ofN string pairs. Training is performed using an exten-

sion of the Expectation-Maximization (EM) procedure shownin Figure 3.2 that learns an

extended set of emission and transition probabilities for all k pair HMMs in the spHMM:

Θ= fµ(i);δ(i);σ(i);γ(i)M ;γ(i)I ;τ(i)1 ; ::;τ(i)k ;P (i)
M ;P (i)

I1 ;P (i)
I2 gk

i=1. Probabilities of transitions between

pair HMMs, fτ(i)1 ; ::;τ(i)k gk
i=1, are learned by decomposing them into transitions outgoing

from individual statesM(i), I (i)1 , I (i)2 into any other state outside thei-th component, and

tying the parameters over all such transitions for any two pair HMMs.

Training can incorporate any combination of supervision used for segmentation and

string similarity computation tasks. There are three typesof training data that may be

available:

(i) pairs of coreferent segmented strings, e.g.
author

M.J. Kearns.
title

The Computational Complexity of Machine Learning.
other

MIT Press, Cambridge, MA
year

(1990).

Michael Kearns.
author

The Computational Complexity of Machine Learning.
title

MIT Press,
other

1990.
year

(ii) pairs of coreferent unsegmented strings, e.g.
M. Kearns, R. Schapire and L. Sellie, Towards efficient agnostic learning. COLT, 1992
Kearns, M., Schapire, R., and Sellie, L. (1992) Toward efficient agnostic learning. In Proc. 5th Ann. Workshop on
Computational Learning Theory. Pittsburgh, PA: Morgan Kaufmann.

(iii) individual segmented strings, e.g.
author

Freund, Y.
year

(1995).
title

Boosting a weak learning algorithm by majority.
venue

Information and Computation,
other

121 (2), 256-285

Each individual segmented stringxi is converted to a pairwise training example

by creating a coreferent training pair(xi ;xi), which allows accumulating expectations of
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emissions for characters or tokens in that string along withaccumulating the expectations

of cross-component transitions. Forward and backward procedures are modified for seg-

mented string pairs so that expectations are only accumulated for component pair HMMs

that produce alignments for the corresponding fields, whilefor unsegmented string pairs,

expectations are accumulated over all component pair HMMs,thus considering alignments

over all possible segmentations of the two strings.

Because the proposed model is designed for settings where supervision is limited,

and the number of parameters in the above model can be very large, training may result

in poor parameter estimates due to sparsity of training data. To address this, we employ

a variant of shrinkage, or deleted interpolation – a smoothing technique previously used

in generative models for language modeling (Jelinek & Mercer, 1980) and information ex-

traction (Freitag & McCallum, 1999). We simultaneously train two models: one that emits

actual observations (individual characters or tokens for character-based and token-based

edit distances respectively), and another that distinguishes between several large classes of

emissions (characters, digits and punctuation for character-based edit distance, and vocab-

ulary, non-vocabulary, and numeric tokens for token-basededit distance). Parameters of

the two models are then interpolated (“shrunk”) using the method of Freitag and McCallum

(1999).

Experimental Results

We perform evaluation following the cross-validation procedure described in Section 3.1.1

on two datasets where segmentation is available:Restaurantand Cora. Restaurantis a

database obtained by Tejada et al. (2002), who integrated records from Fodor’s and Zagat’s

guidebooks to obtain 864 restaurant names and addresses that include 112 duplicates.Cora

is a collection of 1295 distinct citations to 122 Computer Science research papers from the

Cora Computer Science research paper search engine collected by McCallum et al. (2000).

The citations were automatically segmented into multiple fields such asauthor, title, venue,
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Figure 3.10: Sample coreferent records from theCoradataset
author title venue year

W. W. Cohen, R. E. Shapire,
and Y. Singer.

Learning to order things. In Advances in Neural Informa-
tion Processing Systems 10,

1998

William W. Cohen, Rob
Schapire, and Yoram Singer.

Learning to order things. To appear in NIPS-97, 1997

Figure 3.11: Sample coreferent records from theRestaurantdataset
name address city phone cuisine

Fenix 8358 Sunset Blvd. West Hollywood 213/848-6677 American
Fenix at the Argyle 8358 Sunset Blvd. W. Hollywood 213-848-6677 French(new)

etc. by an information extraction system, resulting in somenoise in the field values. Figures

3.10 and 3.11 present sample coreferent records from the twodatasets in segmented form.

SinceSPHMM is designed for domains where entities are represented by strings

containing multiple fields, we omit the available segmentation for all records in the test fold,

while retaining it in the training fold for segmented supervision of types of (i) and (iii) in the

list above. ForCora, five fields are distinguished:author, title, venue, year,andother, where

theotherfield may includes such information as page numbers, names ofeditors, location,

etc. ForRestaurant, fields name, street address, city, andcuisineare distinguished. We

employ token-based edit distance in all experiments, sincein these domains the differences

between the fields are mainly at the token, not character level.

We compare the accuracy of spHMM-learned affine-gap edit distance with the fol-

lowing baselines:� PHMM: learnable affine-gap edit distance without segmentation described in Sec-

tion 3.1.1;� SEQ: a baseline that uses labeled and unlabeled strings to train the IE system of Grenager,

Klein, and Manning [2005] that was specifically designed to handle unsupervised

data. Individual affine-gap edit distances are learned for all extracted fields, and

an SVM classifier is trained to combine them; Section 3.2 describes this process in
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detail. During testing, the IE system segments each string into fields. Learned affine-

gap edit distances are computed for all extracted fields, andthen combined using the

SVM classifier to obtain overall string similarity estimates.

Comparison with thePHMM baseline evaluates whether incorporating segmenta-

tion in learnable affine-gap edit distance yields improvements, while comparison with the

SEQ baseline evaluates performing the segmentation and string matching steps sequen-

tially.

We consider four combinations of training data for the spHMM: segmented string

pairs only, a mixture of segmented and unsegmented pairs, a mixture of unsegmented and

individual segmented strings, and unsegmented pairs only.In all experiments 50 string pairs

are used; the three numbers in identifiersSPHMM-50-0-0, SPHMM-25-25-0, SPHMM-

0-50-50, andSPHMM-0-50-0 represent the amount of supervision for the three super-

vision types in the order listed in the previous section. Forexample,SPHMM-25-25-0

uses 25 segmented coreferent pairs, 25 unsegmented coreferent pairs, and no individual

segmented strings for training. TheSPHMM-50-0-0, SPHMM-25-25-0, andSPHMM-0-

50-0 curves demonstrate the effects of training on various combinations of segmented and

unsegmented pairwise supervision, while theSPHMM-0-50-50 curve shows the effects of

adding some individual segmented supervision to the pairwise unsegmented supervision.

Figures 3.12 and 3.13 contain precision-recall curves for the two datasets. The

results demonstrate that affine-gap edit distance based on spHMM outperforms both regular

learnable affine-gap edit distance as well as the sequentialcombination of segmentation and

learnable affine-gap edit distance on both datasets. The improvement is less pronounced on

the Cora dataset compared to theRestaurantdataset: this is due to the fact that the field

structure in citations is more complex than in restaurant records, since the ordering of the

fields varies significantly. As a result, learning an accurate segmentation model is more

difficult for Cora. If field extraction is performed in isolation, segmentation errors degrade

the quality of similarity computations significantly as canbe seen from the SEQ results.
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Figure 3.12: Field-level linkage results for the unsegmentedRestaurantdataset
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Figure 3.13: Field-level linkage results for the unsegmentedCora dataset
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In contrast,SPHMM is able to improve over non-segmented learnable edit distance by

combining similarities from the multiple alignments.

The utility of training the model on segmented versus unsegmented string pairs is

also dependent on the difficulty of the segmentation task. Because segmentations produced

by the trained model are less reliable inCora than inRestaurant, utilizing more segmented

training data does not result in statistically significant improvements. InRestaurantrecords,

the field structure is more regular, and a small amount of either segmented pairs or in-

dividual segmented strings improves results obtained withjust unsegmented pairs, as the

differences between theSPHMM-0-50-0 and the otherSPHMM results demonstrate.

Overall, the results show that incorporating segmentationinto learnable edit dis-

tance yields an improved similarity function for string linkage even without segmented

training data, while increased improvements are obtained when small amounts of seg-

mented supervision is provided.

3.2 Learnable Record Similarity

3.2.1 Combining Similarity Across Fields

Because correspondence between overall record similarityand individual field similarities

can vary greatly depending on field importance, an accurate record similarity function must

weigh fields in proportion to their contribution to the true similarity between records. For

example, similarities of theauthorandtitle fields in bibliographic citation are more signif-

icant than similarity for theyearfield, and accurate distance measure for overall citations

must reflect this. While statistical aspects of combining similarity scores for individual

fields have been addressed in previous work on record linkage(Winkler, 1999), availability

of labeled duplicates allows a more direct approach that uses a binary classifier which com-

putes a similarity function (Tejada et al., 2002; Elfeky et al., 2002; Sarawagi & Bhamidi-

paty, 2002; Cohen & Richman, 2002). Given a database containing records composed ofk
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Fenix at the Argyle 8358 Sunset Blvd. W. Hollywood French (new)

8358 Sunset Blvd. WestFenix Hollywood American
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Figure 3.14: Computation of record similarity from individual field similarities

different fields and a set ofm similarity functions,fd1(�; �); : : : ;dm(�; �)g, we can represent

any pair of records by anmk-dimensional vector. Each component of the vector contains

similarity between two field values computed using one of them similarity functions.

As in training string similarity functions, pairs of coreferent records can be used

to construct a training set of such feature vectors by assigning them a positive class label.

Pairs of non-coreferent records form a complementary set ofnegative examples, which

can be very large due to the paiwise nature of the matching task, and therefore requires

subsampling; this problem is addressed in more detail in Section 3.3.

A binary classifier is then trained on such supervision to discriminate between pairs

of records corresponding to coreferent and non-coreferentpairs. Previous work in this area

relied on Bayesian classifiers (Winkler, 2002), decision trees (Tejada et al., 2002; Elfeky

et al., 2002), and logistic regression (Cohen & Richman, 2002). We employ a Support

Vector Machine (SVM) with an RBF kernel which in the last decade has proven to be a

top-performing classifier on a wide array of categorizationtasks (Shawe-Taylor & Cristian-

ini, 2000). Properties that make SVMs particularly appropriate for discriminating between

coreferent and non-coreferent record pairs include their resilience to noise, ability to handle

correlated features, and robustness to the relative sizes of training samples from different

classes. The latter requirement is particularly important, given that the proportion of coref-
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erent records in a database is very difficult to estimate in realistic record linkage applications

due to the pairwise nature of the task.

Once trained, the SVM provides a confidence estimate for eachrecord pair which

can be treated as an estimate of similarity between records.The confidence estimate is de-

rived from themarginof a particular example, that is, its distance from the hyperplane that

separates the two classes. It has been shown that margins canbe converted to confidence or

probability values via a logistic transformation (Wahba, 1999; Platt, 1999b).

Figure 3.14 illustrates the process of computing record similarity using multiple

similarity measures over each field and an SVM to categorize the resulting feature vector

as belonging to the class of duplicates or non-duplicates. For each field of the database,

two similarity functions,d1 andd2, are applied to compute similarity for that field. The

values computed by these measures form the feature vector that is then classified by a

support vector machine, producing a confidence value that represents similarity between

the database records.

The Overall Record Linkage Framework

An overall view of our system, MARLIN (Multiply Adaptive Record Linkage with INduc-

tion), is presented in Figure 3.15. The training phase consists of two steps. First, the

learnable string similarity functions are trained for eachrecord field. The training corpus of

field-level coreferent and non-coreferent pairs is obtained by taking pairs of values for each

field from the set of coreferent record pairs. Because equivalent records may contain indi-

vidual fields that are not coreferent, training data can be noisy. For example, if one record

describing a restaurant contains“Asian” in thecuisinefield, and an equivalent record con-

tains “Seafood”, a noisy training pair is formed that implies equivalence between these

two strings. However, this issue does not pose a serious problem for our approach for two

reasons. First, particularly noisy fields that are unhelpful for identifying record-level dupli-

cates will be considered irrelevant by the classifier that combines similarities from different
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Figure 3.15: MARLIN overview

fields. Second, the presence of such pairs in the database indicates that there is a degree

of similarity between such values, and using them in training allows the learnable record

similarity function to capture that likelihood as much as possible.

After individual string similarity functions are learned,they are used to compute

distances for each field of training record pairs to obtain training data for the binary classifier

in the form of vectors composed of distance features.

The record linkage phase starts with generation of potential coreferent pairs. Since

producing all possible pairs of records and computing similarity between them is too ex-

pensive for large databases, MARLIN incorporates several blocking strategies to efficiently

obtain candidate record pairs that are approximately similar and warrant detailed distance

computations. Blocking is discussed in detail in Chapter 5,in which we describe an adap-
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tive framework for training blocking functions.

Learned string similarity functions are then used to calculate distances for each field

of every candidate record pair, forming field feature vectors for the classifier. Confidence

estimates for belonging to the class of coreferent pairs areproduced by the binary classifier

for each candidate pair, and pairs are sorted by decreasing similarity to evaluate similarity

function accuracy as discussed in Section 3.1.1.

3.2.2 Experimental Results

We evaluated the performance of multi-field record linkage within the MARLIN framework

using the SVM implementation within the WEKA software toolkit (Witten & Frank, 1999)

that relies on the Sequential Minimal Optimization (SMO) training algorithm for the under-

lying quadratic optimization problem (Platt, 1999a). We conducted two sets of experiments.

First, we compared the performance of learnable and non-learnable variants of affine-gap

edit distance as components of a record-level similarity function that combines their predic-

tions for individual fields. We have again used theRestaurantandCora datasets, this time

using the field segmentation provided with the datasets.

Figures 3.16 and 3.17 present the precision-recall curves for record linkage us-

ing SVM as the combining classifier and different field-levelsimilarity functions: learned

edit distance, unlearned edit distance, and TF-IDF weighted cosine similarity. The results

demonstrate that using learnable string edit distance withaffine gaps leads to improved per-

formance even when similarities from multiple fields are combined. At high recall levels

(above 90%), using learnable edit distance performs particularly well, indicating that it pro-

vides better field similarity estimates for particularly difficult coreferent pairs, leading to

more accurate computation of the overall record similarity.

Second, we compared the performance of several classifiers that have been recently

employed for the record linkage task by different researchers. Using the implementations

in the WEKA toolkiet, we compared the following classifiers using both unlearned and
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learnable affine-gap edit distances as the underlying field similarity functions:� SVM-RBF: Support Vector Machine with the Gaussian kernel;� SVM-LINEAR : Support Vector Machine with the linear kernel;� ADABOOST: boosting algorithm of Freund and Schapire (1996) that usesJ48, WEKA ’s

implementation of C4.5 decision tree as the base classifier (Quinlan, 1993);� MAX ENT: logistic regression (le Cessie & van Houwelingen, 1992);� BAYESNET: a Bayesian Network learner that uses the K2 structure learning algo-

rithm (Cooper & Herskovits, 1992).

Figures 3.19 and 3.20 present results for the experiments that used learnable affine-

gap edit distance onRestaurantandCora datasets, while mean average precision (MAP)

values for all experiments are shown in Figure 3.18.

Overall, the results demonstrate that Support Vector Machines yield the best accu-

racy on both datasets, outperforming the other classifiers significantly. Both the Gaussian

and the linear kernel provide equivalently good performance, which is not surprising since

the classification is performed on a very low-dimensional problem. Other classifiers per-

form significantly worse for both datasets. We conclude thatSVM-based learnable record

similarity is a robust, accurate similarity function for combining similarities of multiple

fields in the record linkage setting. We also note that using learnable affine-gap edit distance

as the field similarity function provides better results than using unlearned edit distance, al-

though statistically significant differences are only observed on parts of the learning curve

for most classifiers (e.g., for SVM-RBF and SVM-LINEAR the improvements are statisti-

cally significant at 0.05 level using a two-tailed paired t-test only at 98% and 100% recall

respectively). However, the improvements are consistent and suggest that using learnable

edit distance for field-level comparisons leads to accuracyimprovements even when fields

are combined by a classifier.
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Figure 3.18: Mean average precision values for record-level linkage
Restaurant Cora

pHMM ED Unlearned ED pHMM ED Unlearned ED
SVM-RBF 0.999 0.996 0.998 0.997
SVM-LINEAR 0.994 0.994 0.998 0.997
ADABOOST 0.948 0.927 0.975 0.974
MAX ENT 0.938 0.937 0.824 0.815
BAYESNET 0.884 0.873 0.976 0.967

3.3 Training-Set Construction for Learning Similarity Fun ctions

Training string and record similarity functions in real-world scenarios requires selecting

a set of pairs for a human expert to label as coreferent or non-coreferent, or asking the

expert to identify all groups of coreferent records in the dataset, which is not feasible for

large datasets. Since typical corpora and databases contain few coreferent records, selecting

random pairs as potential training examples leads to training sets with extremely few coref-

erent pairs (positive examples). As a result, such randomlyselected training sets are highly

skewed toward non-coreferent pairs, which leads to suboptimal performance of similarity

functions trained on this data. We propose two heuristic approaches for collecting training

data: static-active learning and weakly-labeled selection, and present experimental results

on their effectiveness.

3.3.1 Likely-positive Selection of Training Pairs

Traditional active learning systems are “dynamic”: labelsof training examples selected in

earlier rounds influence which unlabeled examples are deemed most informative in sub-

sequent rounds. While prior work has examined dynamic active learning approaches to

adaptive record linkage (Sarawagi & Bhamidipaty, 2002; Tejada et al., 2002), such strate-

gies may not always be feasible due to high computational costs exacerbated by the large

number of potential training examples. We propose using a “static” active learning method

for selecting pairs of records that arelikely to be coreferent, as a middle ground between
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computationally expensive dynamic active learning methods that try to identify the most

informative training examples and random selection that isefficient but fails to select useful

training data.

Our approach relies on the fact that off-the-shelf string similarity functions, such

as TF-IDF cosine similarity, can accurately identify coreferent strings or records at low

recall levels (high confidence) even when coreferent and non-coreferent pairs are difficult

to distinguish at high recall levels (low confidence). Therefore, when a random sample of

records from a database is taken and similarity between themis computed using such an

off-the-shelf similarity function, string or record pairswith high similarity scores are likely

to be coreferent. By asking the user to label strings or records with high textual similarity,

a training sample with a high proportion of coreferent pairscan be obtained. At the same

time, non-coreferent pairs selected using this method are likely to be “near-miss” negative

examples that are more informative for training than randomly selected record pairs most

of which tend to be “obvious” non-coreferent pairs. Becausetraining sets constructed using

this method have a dramatically different distribution of coreferent and non-coreferent pairs

from their actual distribution in the dataset, adding some randomly selected non-coreferent

pairs is desirable to decrease the difference between the two distributions and provide the

learner more negative examples.

Figures 3.21 and 3.22 demonstrate the comparative utility of static-active selection

and random selection for choosing training record pairs onRestaurantandCora datasets

respectively. The record similarity function was trained on 40 training examples comprised

of randomly selected record pairs and/or the most similar pairs selected by a static-active

method using TF-IDF cosine similarity. Using a token-basedinverted index for the vector-

space model (Baeza-Yates & Ribeiro-Neto, 1999) allowed efficient selection of static-active

training examples without computing similarity between all pairs of records. All exper-

iments utilized SVMlight for computing learnable record similarity function and twoun-

learned string similarity functions for field comparisons:TF-IDF cosine similarity and edit
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distance with affine gaps.

For both datasets, the highest performance is achieved whenrecord similarity func-

tions are trained using a mix of static-active and randomly selected pairs. However, employ-

ing many random pairs with a few static-active examples yields the best results onCora,

while on Restaurantthe highest performance is achieved when the system is trained on a

balanced mix of static-active and random examples. This difference is explained by the

makeup of the two datasets.Cora has a higher absolute number of coreferent pairs than

Restaurant(8,592 versus 56 for each fold); coreferent pairs inCora also represent a larger

proportion of all record pairs (4.1% versus 0.06% for each fold). On Restaurant, random

selection results in training sets that contain almost no coreferent pairs, while including

a significant number of pairs selected using the static-active technique leads to balanced

training sets that contain sufficient positive and negativeexamples. OnCora, however, ran-

domly selected record pairs are likely to contain a few coreferent pairs. Including a limited

number of record pairs chosen using the static-active technique results in the best perfor-

mance, but as more static-active examples are added, performance decreases because highly

similar coreferent pairs take the place of informative non-coreferent pairs in the training set.

Thus, the worst performance onRestaurantoccurs when all training examples are chosen

randomly because coreferent pairs are almost never encountered, while onCorausing only

examples chosen by static-active selection results in the opposite problem: extremely few

non-coreferent pairs are found, and the class distributionof training data is highly skewed

toward non-coreferent pairs.

Based on these results, we conclude that best training sets for learnable record sim-

ilarity functions are obtained when randomly chosen pairs of records are combined with

pairs chosen using static-active selection. The specific proportion in which the two kinds of

training data should be mixed can be estimated based on the outcome of labeling randomly

chosen pairs. If coreferent pairs are exceptionally rare, asignificant number of static-active

examples is required to obtain a sufficient sample of coreferent pairs, while databases with a
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large number of coreferent records need only a small number of record pairs selected using

the static-active methodology to complete a representative training set.

Overall, we show that a reasonable baseline to which dynamicactive learning meth-

ods for adaptive similarity functions should be compared isnot the one that uses only ran-

domly selected training pairs, but one that employs the static-active method to overcome

the extreme skewness in class distribution that is typical for similarity function learning and

record linkage problems.

3.3.2 Weakly-labeled Selection

While the static-active method allows identifying coreferent training pairs for learnable

similarity functions, the inverse problem can be encountered in some real-world situations:

a “legacy” training set consisting of identified coreferentpairs may be available, while in-

formative non-coreferent pairs need to be collected. For such situations we consider an

unsupervised technique for obtaining negative examples. Since coreferent records are rare

in a typical database, two randomly selected records are likely to be non-coreferent, and

therefore can potentially be used as negative training examples for learning similarity func-

tions. To help ensure that no coreferent records are included among these pairs, only pairs of

records that donotshare a significant number of common tokens should be included as neg-

ative examples. Such selection of “weakly-labeled” (and potentially noisy) non-coreferent

record pairs is the unsupervised analog of static-active selection of coreferent pairs. The

process can also be thought of as the opposite of blocking or canopies techniques that use

off-the-shelf metrics to avoid comparing “obvious” non-coreferent records to speed up the

record linkage process.

We compared the record linkage accuracy of MARLIN trained on weakly-labeled

negatives with training on user-labeled negatives. Figures 3.23 and 3.24 present the results

of these experiments on theRestaurantandCora datasets. Weakly-labeled negatives were

selected randomly from record pairs that shared no more than20% of tokens to minimize the
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noise. All experiments used training sets composed of two parts: half the examples were

positives randomly selected among user-labeled coreferent pairs, and the other half was

composed of either weakly-labeled non-coreferent recordsor randomly selected labeled

record pairs. SVMlight was employed to compute record similarity, and TF-IDF cosine

similarity and edit distance with affine gaps were used as theunderlying string similarity

functions for individual fields.

The results again demonstrate that the utility of the heuristic selection of training

data for similarity function learning is dataset-dependent. OnRestaurant, where coreferent

pairs are scarce and randomly selected records are truely non-coreferent with very high

probability, using weakly-labeled non-coreferent pairs yields results identical to randomly

selected labeled coreferent pairs when a large number of examples is selected, and improves

slightly over random selection when the training set is small. We conjecture that biasing

the SVM with “negative but slightly similar” examples when very little training data is

available allows learning a better separating hyperplane.On Cora, using weakly-labeled

negatives leads to slight degradation of system accuracy, which is expected since coreferent

pairs are relatively frequent, and noise is likely to be introduced when negative examples

are collected in an unsupervised manner. However, the drop in performance is small, and in

situations where human labeling of negatives is expensive or infeasible (e.g. due to privacy

issues), using weakly-labeled selection is a viable avenuefor unsupervised acquisition of

negative training examples for similarity function learning.

3.4 Related Work

Several researchers described methods for learning stringsimilarity functions in prior work.

For string edit distance, Ristad and Yianilos (1998) proposed learning the costs of individual

edit operations of Levenshtein distance using a probabilistic generative model. In their

model, a string alignment is equivalent to a sequence of character pairs generated by edit

operations emitted by a hidden Markov model with a single non-terminal state. We have
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followed the same approach in developing a learning model for affine-gap edit distance,

which provides significantly better similarity estimates for natural text strings (Bilenko &

Mooney, 2002; Cohen et al., 2003a).

Both our model and the model of Ristad-Yianilos are instances of pair Hidden

Markov Models, proposed earlier for biological sequence alignments in bioinformatics (Durbin

et al., 1998). Using such models for record linkage requiresseveral modifications that we

have described. Among those, parameter tying, gap-to-gap transitions, and length normal-

ization are important for obtaining good performance of pair HMM-based edit distance in

natural language string similarity computations.

Two other models for learning the costs of individual edit operations have been

proposed by Zhu and Ungar (2000) and Yancey (2004). Zhu and Ungar (2000) have used

genetic algorithms for learning the costs of several manually constructed edit operations.

Yancey (2004) has employed a variant of Expectation-Maximization for learning the prob-

abilities of individual edit operations, where only highest-probability (Viterbi) alignments

were used to accumulate expectations. Both of these approaches are adaptive variants of

Levenshtein distance and do not include taking gaps into account.

In recent years, two models of learnable edit distance have been proposed based

on discriminative classifiers. Joachims (2003) formulatedthe problem of learning edit op-

eration costs as maximum-margin optimization, and showed how it can be solved using

SVMs. However, this formulation relies on availability of actual string alignments, not just

coreferent string pairs, and therefore requires significant labeling effort to obtain training

data. McCallum, Bellare, and Pereira (2005) described a model for learning the parameters

of affine-gap edit distance based on Conditional Random Fields (CRFs), a discriminative

analog of HMMs. While they have obtained improvements over the field-level results we

presented in Section 3.1.1 on some of the datasets, their method relies on a number of extra

matching features, some of which could also be implemented in the HMM-based model.

Additionally, training algorithms for CRF-based models are more complex than EM-based
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training of HMMs and incur significant computational costs.

A number of record linkage researchers have relied on classifiers to combine simi-

larity estimates across multiple fields. Approaches in the statistical literature has tradition-

ally relied on generative classifiers such as Naive Bayes andBayesian networks (Winkler,

2002), while in recent machine learning research a number ofclassifiers have been used,

including decision trees (Elfeky et al., 2002; Tejada et al., 2002; Sarawagi & Bhamidipaty,

2002) and logistic regression (Cohen & Richman, 2002). We have shown that Support Vec-

tor Machines outperform these methods significantly on bothdatasets that we considered.

Sarawagi and Bhamidipaty (2002) and Tejada et al. (2002) have proposed active

learning methods that obtain informative training examples for learning record-level sim-

ilarity functions between records. The training set construction strategies we described in

Section 3.3 approximate these methods without the computational cost of active learning

for selecting likely positives, and without the need for a human oracle for weak negatives.

Recent work on record linkage has focused on the third stage of the record link-

age process described in Section 2.2: clustering for obtaining groups of coreferent records.

In particular, a number of methods have been proposed forcollectivegrouping coreferent

records and obtaining the complete partitioning of datasets into such groups (Pasula et al.,

2003; Wellner et al., 2004; Li et al., 2004; Singla & Domingos, 2005). Our work addresses

an orthogonal problem, accurate computation of record and field similarities, and the meth-

ods presented in this chapter can be used as input to the collective linkage approaches, since

they rely on pairwise similarity estimates between recordsor their fields.

3.5 Chapter Summary

In this chapter, we have shown how learnable similarity functions lead to significant perfor-

mance improvements in the record linkage task. Because record linkage requires accurate

distance estimates between individual field values and overall records, adapting similarity

functions that provide these estimates allows learning domain-specific parameters to com-
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pute similarity with higher accuracy.

Two learnable variants of affine-gap edit distance based on pair HMMs that we

described learn edit operation and gap costs that discriminate between coreferent and non-

coreferent strings. For record-level similarity, we have shown that using Support Vector

Machines leads to accurate distance estimations between records composed of multiple

fields. We have demonstrated that employing learnable field-level similarity functions is

still advantageous over using unlearned methods in multi-field domains when field similar-

ities are combined by a classifier. Finally, we have shown that informative training examples

for these methods can be collected without relying on activelearning methods, and possibly

without even relying on human supervision.
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Chapter 4

Learnable Similarity Functions in

Semi-supervised Clustering

In this chapter, we show how learnable similarity functionsimprove clustering accuracy

when employed in a semi-supervised clustering setting. We describe a probabilistic model

for semi-supervised clustering based on Hidden Markov Random Fields (HMRFs) that ac-

commodates a wide variety of learnable similarity functions. This model yields a clustering

algorithm, HMRF-KMEANS, that integrates similarity function learning with constraint-

based clustering, improving on algorithms that perform these tasks in isolation.

4.1 Similarity Functions in Clustering

As discussed in Section 2.3, clustering inherently relies on similarity estimations as its goal

is to group instances that are alike while separating instances that are dissimilar. For many

datasets, off-the-shelf functions may fail in providing similarity estimates that place same-

cluster points nearby and different-cluster points far apart, preventing the discovery of a

desired partitioning of a dataset. Examples of same-cluster and different-cluster instance

pairs that are available in the semi-supervised clusteringsetting provide supervision for
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training the similarity function to produce appropriate distance estimates, making it easier

to create clusters that respect the pairwise supervision when grouping the unlabeled data.

For some datasets, clusters of different shapes may be desirable, which effectively

indicates that datapoints in these clusters lie in different subspaces of the overall data

space. Recovering such partitioning requires using an individual similarity function for

each cluster, a fact that is exploited in unsupervised clustering algorithms like Expectation-

Maximization that estimate distinct density parameters for different clusters. In the semi-

supervised setting, pairwise constraints provide additional information about the shape of

underlying clusters that can be captured if the similarity function is learned using both su-

pervised and unsupervised data.

The HMRF framework for semi-supervised clustering presented below addresses

the above considerations in a principled probabilistic model and leads to a clustering algo-

rithm, HMRF-KMEANS, that combines the advantages of constraint-based and similarity-

based approaches to semi-supervised clustering. The following section presents an overview

of the overall HMRF framework, more detailed description ofwhich can be found in (Basu

et al., 2006). Then, use of learnable similarity functions within the framework is described

in detail. Three examples of similarity functions and theirparameterizations for use with

HMRF-KMEANS are provided for squared Euclidean distance, cosine distance and KL

divergence. Through parameterization, each of these functions becomes adaptive in the

semi-supervised clustering setting, which allows learning the appropriate notion of similar-

ity using both the pairwise constraints and the unlabeled data.

4.2 The HMRF Model for Semi-supervised Clustering

We assume that we are given a set ofn data pointsX = fxign
i=1, where eachxi 2 Rd is a

d-dimensional vector. Supervision consists of two sets of pairwise constraints over points

in X : must-link constraintsCML = f(xi ;x j)g and cannot-link constraintsCCL = f(xi ;x j)g,
where(xi ;x j)2 CML implies thatxi andx j should belong to the same cluster, while(xi ;x j)2
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CCL implies thatxi and x j should belong to different clusters. The constraints may be

accompanied by associated violation costsW, wherewi j represents the cost of violating the

constraint between pointsxi andx j , if such a constraint exists.

The model relies on selecting adistortion measure dA to compute dissimilarity

between points:dA : Rd�Rd ! R. The distortion measure corresponds to a learnable sim-

ilarity function, with A being the set of parameters to learn, which is typically a matrix or

a vector of weights. The objective of semi-supervised clustering is to partition the data-

pointsX into K disjoint clustersfX1; : : : ;XKg so that the total distortion between the points

and the corresponding cluster representatives is minimized according to the given distortion

measuredA , while constraint violations are kept to a minimum.

4.2.1 HMRF Model Components

The Hidden Markov Random Field (HMRF) (Zhang, Brady, & Smith, 2001) probabilistic

framework for semi-supervised constrained clustering consists of the following compo-

nents:� An observablesetX = fxign
i=1 corresponding to the given data pointsX . Note that

we overload notation and useX to refer to both the given set of data points and their

corresponding random variables.� An unobservable(hidden) setY = fyign
i=1 corresponding to cluster assignments of

points inX . Each hidden variableyi encodes the cluster label of the pointxi and takes

values from the set of cluster indicesf1; : : : ;Kg.� An unobservable(hidden) set of generative model parametersΘ, which consists

of distortion measure parametersA and cluster representativesM = fµigK
i=1: Θ =fA ;M g.� An observableset of constraint variablesC = fc12;c13; : : : ;cn�1;ng. Eachci j is a

tertiary variable taking on a value from the setf�1;0;1g, whereci j = 1 indicates
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Hidden MRF

Observed data

Cannot−link

x3

x2x1

x5

y2= 1

y4= 1
y5= 3

x4

Must-link (c14= 1)

Must-link (c12= 1)

y1= 1

(c23=�1)

y3= 2

Figure 4.1: A Hidden Markov Random Field for semi-supervised clustering

that (xi ;x j) 2 CML, ci j = �1 indicates that(xi ;x j) 2 CCL, andci j = 0 corresponds to

pairs(xi ;x j) that are not constrained.

Fig. 4.1 shows the HMRF for a hypothetical five-point datasetX . The datapoints

correspond to variables(x1; : : : ;x5) that have cluster labelsY = (y1; : : : ;y5), which may

each take on values(1;2;3) denoting the three clusters. Three pairwise constraints are

provided: two must-link constraints(x1;x2) and (x1;x4), and one cannot-link constraint(x2;x3). Corresponding constraint variables arec12 = 1, c14 = 1, andc23 = �1; all other

variables inC are set to zero. The task is to partition the five points into three clusters.

Fig. 4.1 demonstrates one possible clustering configuration which does not violate any con-

straints. The must-linked pointsx1;x2 andx4 belong to cluster 1; the pointx3, which is

cannot-linked withx2, is assigned to cluster 2;x5, which is not involved in any constraints,

belongs to cluster 3.
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Figure 4.2: Graphical plate model of variable dependence inHMRF-based semi-supervised
clustering

4.2.2 Joint Probability in the HMRF Model

The graphical plate model (Buntine, 1994) of the dependencebetween the random variables

in the HMRF is shown in Figure 4.2, where the unshaded nodes represent the hidden vari-

ables, the shaded nodes are the observed variables, the directed links show dependencies

between the variables, while the lack of an edge between two variables implies conditional

independence. The prior probability ofΘ is assumed to be independent ofC . The probabil-

ity of observing the label configurationY depends on the constraintsC and current genera-

tive model parametersΘ. Observed datapoints corresponding to variablesX are generated

using the model parametersΘ based on cluster labelsY , independent of the constraintsC .

The variablesX are assumed to be mutually independent: eachxi is generated individually

from a conditional probability distribution Pr(xi jyi ;Θ). Then, the joint probability ofX , Y ,

andΘ, givenC , can be factorized as follows:

Pr(X ;Y ;ΘjC ) = Pr(Θ) Pr(Y jΘ;C ) n

∏
i=1

p(xi jyi ;Θ) (4.1)

wherep(�jyi ;Θ) is the parameterized probability density function for theyi-th cluster, from

which xi is generated. This probability density corresponds to the clustering distortion

measuredA , and is discussed in detail in Section 4.3 below.
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Each hidden random variableyi 2 Y representing the cluster label ofxi 2 X is as-

sociated with a set of neighborsN i , defined as all points to whichxi is must-linked or

cannot-linked:N i = fy j j(xi ;x j) 2 CML[ (xi ;x j) 2 CCLg. We make the Markov assumption

that each labelyi is conditionally independent of all other labels inY given the labels of

its neighbors. The resulting random field over the hidden variablesY is a Markov Ran-

dom Field (MRF), in which by the Hammersley-Clifford theorem (Hammersley & Clifford,

1971) the prior probability of a particular label configuration Y can be expressed as a Gibbs

distribution (Geman & Geman, 1984):

Pr(Y jΘ;C ) = 1
Z

exp

 �∑
i; j v(i; j)! (4.2)

whereZ is the partition function (normalizing term), and eachv(i; j) is the potential function

encoding the compatibility of cluster labelsyi andy j . Because label compatibility is only

relevant for pairs of points that participate in constraints, we definev(i; j) as follows:

v(i; j) =8>>><>>>: wi j fML(i; j) if ci j = 1 andyi 6= y j

wi j fCL(i; j) if ci j =�1 andyi = y j

0 otherwise

(4.3)

where fML and fCL arepenalty functionsthat encode the lowered probability of observing

configurations ofY where must-link and cannot-link constraints are violated respectively,

andwi j is the user-provided constraint weight that can be used to indicate its importance.

Penalty functions are chosen to correlate with the distortion measure by depending on the

distortion measure parametersA , and will be described in detail in Section 4.3 below. Over-

all, this formulation for observing the label assignment (clustering) Y results in higher

probabilities being assigned to configurations in which cluster assignments do not violate

the provided constraints.
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Then, joint probability on the HMRF can be expressed as follows:

Pr(X ;Y ;ΘjC ) = Pr(Θ)� 1
Z

exp

 � ∑(i; j):ci j 6=0

v(i; j)!�� n

∏
i=1

p(xi jyi ;Θ)� (4.4)

The first factor in the above expression describes a probability distribution over

the model parameters preventing them from attaining degenerate values, thereby providing

regularization. The second factor is the conditional probability of observing a particular

label configuration given the provided constraints, effectively assigning a higher probability

to configurations where the cluster assignments do not violate the constraints. Finally, the

third factor is the conditional probability of generating the observed data points given the

labels and the parameters: if maximum-likelihood estimation (MLE) was performed on the

HMRF, the goal would have been to maximize this term in isolation.

Overall, maximizing the joint HMRF probability in Eq.(4.4)is equivalent to jointly

maximizing the likelihood of generating datapoints from the model and the probability of

label assignments that respect the constraints, while regularizing the model parameters.

4.3 Learnable Similarity Functions in the HMRF Model

The Joint probability formulation in Eq.(4.4) provides a general framework for incorporat-

ing various similarity functions in clustering by choosinga particular form ofp(xi jyi ;Θ),
the probability density that generates thei-th instancexi from clusteryi . In this work, we

restrict our attention to probability densities from the exponential family, where the expec-

tation parameter corresponding to clusteryi is µyi , the mean of the points of that cluster.

Using this assumption and the bijection between regular exponential distributions and regu-

lar Bregman divergences (Banerjee et al., 2005b), the conditional density for observed data

can be represented as follows:

p(xi jyi ;Θ) = 1
ZΘ

exp
��dA(xi ;µyi )�; (4.5)
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wheredA (xi ;µyi ) is the Bregman divergence betweenxi andµyi , corresponding to the expo-

nential densityp, andZΘ is the normalizer. Different similarity functions can be expressed

via this exponential form:� If xi andµyi are vectors in Euclidean space, anddA is the square of theL2 distance

parameterized by a positive semidefinite weight matrixA , dA(xi ;µyi ) = kxi �µyik2
A ,

then the cluster conditional probability is ad-dimensional multivariate normal density

with covariance matrixA�1: p(xi jyi ;Θ) = 1(2π)d=2jAj�1=2 exp(�1
2(kxi �µyik2

A) (Kearns,

Mansour, & Ng, 1997);� If xi and µyi are probability distributions, anddA is KL-divergence (dA (xi ;µyi ) =
∑d

m=1xim log xim
µyi m

), then the cluster conditional probability is a multinomial distribu-

tion (Dhillon & Guan, 2003).

The relation in Eq.(4.5) holds even ifdA is not a Bregman divergence but a direc-

tional distance measure such as cosine distance. Then, ifxi andµyi are vectors of unit length

anddA is one minus the dot-product of the vectors
�
dA (xi ;µyi ) = 1� ∑d

m=1 ximµyi mkxikkµyik �, then the

cluster conditional probability is a von-Mises Fisher (vMF) distribution with unit concen-

tration parameter (Banerjee et al., 2005a), which is the spherical analog of a Gaussian.

Putting Eq.(4.5) into Eq.(4.4) and taking logarithms givesthe following clustering

objective function, minimizing which is equivalent to maximizing the joint probability over

the HMRF in Eq.(4.4):

Jobj = ∑
xi2X

dA(xi ;µyi )+ ∑
ci j2C

v(i; j)� logPr(Θ)+ logZ+nlogZΘ (4.6)

Thus, an optimal clustering is obtained by minimizingJobj over the hidden variables

Y and parametersΘ, which are comprised of cluster centroidsM and distortion measure

parametersA (note that given cluster assignmentsY , the meansM = fµigK
i=1 are uniquely

determined).
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Selecting an appropriate distortion measuredA for a clustering task typically in-

volves knowledge about properties of the particular domainand dataset. For example,

squared Euclidean distance is most appropriate for low-dimensional data, while cosine

similarity is most fitting for data described by vectors in high-dimensional space where

directional differences are important but vector lengths are irrelevant.

Once a distortion measure is chosen for a given domain, the functions fML and fCL

must be defined to penalize must-link and cannot-link constraint violations respectively,

as described in Section 4.2.2. Each violation penalty is scaled proportionally to the “egre-

giousness” of the violation with respect to the current similarity function. That is, a violated

must-link constraint carries a heavy penalty in the objective function if the distance between

its points is high: this indicates that the two points are highly dissimilar, and the current pa-

rameterization of the similarity function is grossly inadequate. Likewise, two if points of a

violated cannot-link constraints are similar, the penaltyis high since the parameterization

of the similarity function is inappropriate: the points should be dissimilar.

To reflect this intuition, the penalty functions are defined as follows:

fML(i; j) = ϕ(i; j) (4.7)

fCL(i; j) = ϕmax�ϕ(i; j) (4.8)

whereϕ : X�X ! R+ is a non-negative function that penalizes constraint violations, while

ϕmax is an upper bound on the maximum value ofϕ over any pair of points in the dataset;

examples of such bounds for specific distortion functions are described below. The func-

tion ϕ is chosen to be identical or proportional to the distortion measure, assigning higher

penalties to violations of must-link constraints between points that are distant with respect

to the current parameter values of the distortion measure. Conversely, penalties for violated

cannot-link constraints are higher for points that have lowdistance between them. With

this formulation of the penalty functions, constraint violations will lead to changes in the
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distortion measure parameters that attempt to mend the violations. The potential function

v(i; j) in Eq.(4.3) then becomes:

v(i; j) =8>>><>>>: wi j ϕ(xi ;x j) if ci j = 1 andyi 6= y j

wi j
�
ϕmax�ϕ(xi;x j)� if ci j =�1 andyi = y j

0 otherwise

; (4.9)

and the objective function for semi-supervised clusteringin Eq.(4.6) can be expressed as:

Jobj = ∑
xi2X

dA(xi ;µ(i))+ ∑(xi ;xj )2CML
s:t: yi 6=yj

wi j ϕ(xi ;x j)+ ∑(xi ;xj )2CCL
s:t: yi=yj

wi j
�
ϕmax�ϕ(xi;x j)�� logPr(A)+nlogZΘ (4.10)

Note that the MRF partition function term logZ has been dropped from the objective

function. Its estimation cannot be performed in closed formfor most non-trivial dependency

structures, and while approximate inference methods couldbe employed for computing

it (Kschischang, Frey, & Loeliger, 2001; Wainwright & Jordan, 2003), experiments with the

different methods have shown that minimizing the simplifiedobjective yields comparable

results (Bilenko & Basu, 2004).

4.3.1 Parameter Priors

Following the definition ofΘ in Section 4.2.1, the prior term logPr(Θ) in Eq.(4.6) and the

subsequent equations can be factored as follows:

logPr(Θ) = log
�
Pr(A)Pr(M )�= logPr(A)+PM
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where the distortion parametersA are assumed to be independent of the cluster centroids

M = fµigK
i=1, and uniform priors are considered over the cluster centroids (leading to the

constant termPM). For different distortion measures, parameter values mayexist that lead

to degenerate solutions of the optimization problem. For example, for squared Euclidean

distance, the zero matrixA= 0 is one such solution. To prevent degenerate solutions, Pr(A)
is used to regularize the parameter values using a prior distribution.

If the standard Gaussian prior was used on the parameters of the distortion function,

it would allow the parameters to take negative values. Sinceit is desirable to constrain the

parameter values to be non-negative, it is more appropriateto use the Rayleigh distribu-

tion (Papoulis & Pillai, 2001). Assuming independence of the parametersai 2 A, the prior

term based on the Rayleigh distribution is the following:

Pr(A) = ∏
ai2A

ai exp
��a2

i
s2

�
s2 (4.11)

wheres is the width parameter.

Next, we consider three examples of commonly used distortion measures and their

parameterizations for use with HMRF-KMEANS: squared Euclidean distance, cosine dis-

tance and KL divergence. Through learning, each of these similarity functions reflects the

correct notion of similarity provided by the pairwise constraints, leading to better clustering

accuracy.

4.3.2 Parameterized Squared Euclidean Distance

Squared Euclidean distance is parameterized using a symmetric positive-definite matrixA

as follows:

deucA(xi ;x j) = kxi �x jk2
A = (xi �x j)TA(xi �x j): (4.12)

This form of the parameterized squared Euclidean distance is equivalent to Ma-
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halanobis distance with an arbitrary positive semidefiniteweight matrixA in place of the

inverse covariance matrix, and it was previously used by (Xing, Ng, Jordan, & Russell,

2003) and (Bar-Hillel, Hertz, Shental, & Weinshall, 2003).Such formulation can also be

viewed as a projection of every instancex onto a space spanned byA1=2: x!A1=2x.

Theϕ function that penalizes constraint violations is defined asϕ(xi ;x j)=deucA(xi ;x j).
One possible initialization of the upper bound for cannot-link penalties isϕmax

eucA =∑(xi ;xj )2CCL
deucA(xi ;x j),

which guarantees that the penalty is always positive. Usingthese definitions in the objec-

tive in Eq.(4.10), the following objective function is obtained for semi-supervised clustering

with parameterized squared Euclidean distance:

JeucA = ∑
xi2X

deucA(xi ;µ(i))+ ∑(xi ;xj )2CML
s:t: yi 6=yj

wi j deucA(xi ;x j)+ ∑(xi ;xj )2CCL
s:t: yi=yj

wi j
�
ϕmax

eucA �deucA(xi ;x j)�� logPr(A)�nlogdet(A) (4.13)

Note that the logZΘ term in the general objective function in Eq.(4.10) is com-

putable in closed form for a Gaussian distribution with covariance matrixA�1, resulting in

the logdet(A) term.

4.3.3 Parameterized Cosine Distance

Cosine distance can be parameterized using a symmetric positive-definite matrixA, which

leads to the following distortion measure:

dcosA(xi ;x j) = 1� xT
i AxjkxikAkx jkA

: (4.14)

Because for realistic high-dimensional domains computingthe full matrixA is very expen-

sive computationally, diagonal matrix is considered in this case, such thata = diag(A) is

a vector of positive weights, intuitively corresponding tothe relative importance of each
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dimension.

To use parameterized cosine distance as the adaptive distortion measure for cluster-

ing, theϕ function is defined asϕ(xi ;x j) = dcosA(xi ;x j). Using this definition along with

Eq.(4.10), and settingϕmax = 1 as an upper bound onϕ(xi ;x j), the following objective

function is obtained for semi-supervised clustering with parameterized cosine distance:

JcosA = ∑
xi2X

dcosA(xi ;µ(i))+ ∑(xi ;xj )2CML
s:t: yi 6=yj

wi j dcosA(xi ;x j)+ ∑(xi ;xj )2CCL
s:t: yi=yj

wi j
�
1�dcosA(xi ;x j)�� logPr(A) (4.15)

Note that the logZΘ term is difficult to compute in closed form (Banerjee et al.,

2005a), so it is assumed to be constant during the clusteringprocess and therefore dropped

from the objective function. This assumption is reasonablegiven an appropriate prior Pr(A),
and experimentally we have not observed problems with algorithm convergence due to this

approximation.

4.3.4 Parameterized Kullback-Leibler Divergence

In domains where each instance can be described a probability distribution, Kullback-

Leibler divergence can be used to measure similarity between instances. In previous work,

(Cohn, Caruana, & McCallum, 2003) parameterized KL-divergence by multiplying every

component by a real weight:d0
KL(xi ;x j) = ∑d

m=1amxim log xim
xjm

.

We use a similar parameterization of KL divergence, where the vector of positive

weights, a, corresponds to a diagonal matrixA. However, since after the reweighting

each instance is no longer a probability distribution, thisparameterization requires using

I-divergence, a function that also belongs to the class of Bregman divergences (Banerjee

et al., 2005b). I-divergence has the form:dI (xi ;x j) = ∑d
m=1xim log xim

xjm
�∑d

m=1(xim� x jm),
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wherexi andx j no longer need to be probability distributions but can be anynon-negative

vectors.1 The parameterized I-divergence is expressed as follows:

dIA(xi ;x j) = d

∑
m=1

amxim log
xim

x jm
� d

∑
m=1

am(xim�x jm); (4.16)

which can be interpreted as scaling every component of the original probability distribution

by a weight contained in the corresponding component ofa, and then taking I-divergence

between the transformed vectors.

The HMRF framework requires defining an appropriate penaltyviolation function

ϕ that is symmetric, since the constraint pairs are unordered. To meet this requirement,

a sum of weighted I-divergences fromxi and x j to the mean vectorxi+xj

2 is used. This

parameterized I-divergence to the mean,dIMA, is equivalent to weighted Jensen-Shannon

divergence (Cover & Thomas, 1991), the symmetric KL-divergence to the mean, and is

defined as follows:

dIMA(xi ;x j) = d

∑
m=1

am
�
xim log

2xim

xim+x jm
+x jm log

2x jm

xim+x jm

�: (4.17)

Then, defining the constraint violation functionϕ asϕ(xi ;x j) = dIMA(xi ;x j) yields

the following objective function for semi-supervised clustering with parameterized I-divergence:

JIA = ∑
xi2X

dIA(xi ;µ(i))+ ∑(xi ;xj )2CML
s:t: yi 6=yj

wi j dIMA(xi ;x j)+ ∑(xi ;xj )2CCL
s:t: yi=yj

wi j
�
dmax

IMA
�dIMA(xi ;x j)�� logPr(A) (4.18)

The upper bounddmax
IMA

can be initialized asdmax
IMA

= ∑d
m=1am, which follows from

1For probability distributions, I-divergence and KL-divergence are equivalent.
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the fact that unweighted Jensen-Shannon divergence is bounded above by 1 (Lin, 1991).

As for cosine distance, the logZΘ term is difficult to compute in closed form for

parameterized I-divergence (Banerjee et al., 2005a), so itis assumed to be constant during

the clustering process and therefore dropped from the objective function. Again, this as-

sumption is reasonable given an appropriate prior Pr(A), and experimentally we have not

observed problems with algorithm convergence due to this approximation.

4.4 Learning Similarity Functions within the HMRF-KMeans

Algorithm

Since the cluster assignments and the generative model parameters are unknown in a clus-

tering setting, minimizing the general objective functionin Eq.(4.10) is an “incomplete-data

problem”. A popular solution technique for such problems istheExpectation-Maximization

(EM) algorithm (Dempster, Laird, & Rubin, 1977). The K-Means algorithm (MacQueen,

1967) is known to be equivalent to the EM algorithm with hard clustering assignments, un-

der certain assumptions (Kearns et al., 1997; Basu et al., 2002; Banerjee et al., 2005b). This

section describes a K-Means-type hard partitional clustering algorithm, HMRF-KMEANS,

that finds a local minimum of the semi-supervised clusteringobjective functionJobj in

Eq.(4.10).

The outline of the algorithm is presented in Fig. 4.3. The basic idea of HMRF-

KM EANS is as follows. First, the constraints are used to obtain a good initialization of the

cluster centroids. Then, in the E-step, given the current cluster representatives, every data

point is re-assigned to the cluster which minimizes its contribution to Jobj. In the M-step,

the cluster centroidsM = fµigK
i=1 are re-estimated given current assignments to minimize

Jobj for the current assignment of points to clusters. The clustering distortion measuredA

is subsequently updated in the M-step to reduce the objective function by modifying the

parametersA of the distortion measure.
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Algorithm: HMRF-KM EANS

Input: Set of data pointsX = {xi}
n
i=1

Set of constraintsC
Parameterized distortion measuredA(·, ·).
Constraint violation costsW
Desired number of clustersK

Output: Disjoint K-partitioning{Xi}
n
i=1 of X such that objective

functionJobj in Eqn. (3.9) is (locally) minimized.
Method:

1. Initialize theK clusters centroidsM (0) = {µ(0)
1 }K

i=1, set t← 0
2. Repeat untilconvergence
2a. E-step: Given centroidsM (t) and distortion parametersA(t),

re-assign cluster labelsY (t+1) = {y(t+1)
i }n

i=1 on X to minimizeJobj.
2b. M-step(A): Given cluster labelsY (t+1) and distortion parametersA(t+1),

re-calculate centroidsM (t+1) = {µ(t+1)
i }K

i=1 to minimizeJobj.
2c. M-step(B): Given cluster labelsY (t+1) and centroidsM (t+1),

re-estimate parametersA(t+1) of the distortion measure to reduceJobj.
2d. t← t+1

Figure 4.3: The HMRF-KMEANS algorithm

Note that this corresponds to the generalized EM algorithm (Dempster et al., 1977;

Neal & Hinton, 1998), where the objective function is reduced but not necessarily mini-

mized in the M-step. Effectively, the E-step minimizesJobj over cluster assignmentsY , the

M-step(A) minimizesJobj over cluster centroidsM , and the M-step(B) reducesJobj over

the parametersA of the distortion measuredA . The E-step and the M-step are repeated until

a specified convergence criterion is reached.

Detailed discussion of the initialization, E-step, and M-step(A) of the algorithm

along with the proof of convergence can be found in (Basu, 2005), while in this section we

focus on M-step(B) where the distortion measure parametersare updated to decrease the

objective function.

For certain distortion measure parameterizations, minimization via taking partial

derivatives and solving for the parameter values may be feasible, e.g., for squared Euclidean

distance with uniform parameter priors (Bilenko et al., 2004), in which case the weight

matrix A is obtained in M-Step(B) as:
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A= jX j�∑
xi2X

(xi �µyi )(xi �µyi )T + ∑(xi ;xj )2CML
s:t: yi 6=yj

wi j (xi �x j)(xi �x j)T+ ∑(xi ;xj )2CCL
s:t: yi=yj

wi j
�

∑(x0i ;x0j )2CCL

(x0i �x0j)(x0i �x0j)T � (xi �x j)(xi �x j)T���1

(4.19)

Since the weight matrixA is obtained by inverting the summation of covariance

matrices in Eq.(4.19), that summation (corresponding to1jX jA�1) must not be singular. If at

any iteration the summation is singular, it can be conditioned via adding the identity matrix

multiplied by a small fraction of the trace ofA�1: A�1 = A�1+ ε tr(A�1)I . If the weight

matrix A resulting from the inversion is negative definite, it is mended by projecting on the

setC = fA : A� 0g of positive semi-definite matrices, to ensure that the squared Euclidean

distance parameterized byA is a Mahalanobis distance (Golub & van Loan, 1989).

In general, for parameterized Bregman divergences or directional distances with

general parameter priors, it is difficult to obtain a closed form update for the parameters of

the distortion measure that can minimize the objective function. Gradient descent provides

an alternative avenue for learning the distortion measure parameters.

For squared Euclidean distance, a full parameter matrixA is updated during gradient

descent using the rule:A=A+η ∂JeucA
∂A (whereη is the learning rate). Using Eq.(4.13),

∂JeucA
∂A

can be expressed as:

∂JeucA

∂A
= ∑

xi2X

∂deucA(xi ;µ(i))
∂A

+ ∑(xi ;xj )2CML
s:t: yi 6=yj

wi j
∂deucA(xi ;x j)

∂A+ ∑(xi ;xj )2CCL
s:t: yi=yj

wi j

�
∂ϕmax

eucA

∂A
� ∂deucA(xi ;x j)

∂A

�� ∂ logPr(A)
∂A

�n
∂ logdet(A)

∂A
: (4.20)

The gradient of the parameterized squared Euclidean distance is given by:
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∂deucA(xi ;x j)
∂A

= (xi �x j)(xi �x j)T

The derivative of the upper boundϕmax
eucA is

∂ϕmax
eucA

∂A = ∑(xi ;xj )2CCL
(xi � x j)(xi � x j)T if

ϕmax
eucA is computed as described in Section 4.3.2. In practice, one can initializeϕmax

eucA with

a sufficiently large constant, which would make its derivative zero. Accordingly, an extra

condition must be then inserted into the algorithm to guarantee that penalties for violated

cannot-link constraints are never negative, in which case the constant must be increased.

When Rayleigh priors are used on the set of parametersA, the partial derivative of

the log-prior with respect to every individual parameteram2 A, ∂ logPr(A)
∂am

, is given by:

∂ logPr(A)
∂am

= 1
am

� am

s2 (4.21)

The gradient of the distortion normalizer logdet(A) term is as follows:

∂ logdet(A)
∂A

= 2A�1�diag(A�1): (4.22)

For parameterized cosine distance and KL divergence, a diagonal parameter matrix

A is considered, wherea= diag(A) is a vector of positive weights. During gradient descent,

each weightam is updated individually:am = am+η ∂Jobj

∂am
(η is the learning rate). Using

Eq.(4.10),∂Jobj

∂am
can be expressed as:

∂Jobj

∂am
= ∑

xi2X

∂dA(xi ;µ(i))
∂am

+ ∑(xi ;xj )2CML
s:t: yi 6=yj

wi j
∂ϕ(xi ;x j)

∂am+ ∑(xi ;xj )2CCL
s:t: yi=yj

wi j

�
∂ϕmax

∂am
� ∂ϕ(xi ;x j)

∂am

�� ∂ logPr(A)
∂am

(4.23)

The gradients of the corresponding distortion measures andconstraint potential

functions for parameterized cosine distance and KL divergence are the following:
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∂dcosA(xi ;x j)
∂am

= ximx jmkxikAkx jkA�xT
i Axj

x2
imkxj k2

A+x2
jmkxik2

A

2kxikAkxjkAkxik2
Akx jk2

A

;
∂dIA(xi ;x j)

∂am
= xim log

xim

x jm
� (xim�x jm);

∂dIMA(xi ;x j)
∂am

= xim log
2xim

xim+x jm
+x jm log

2x jm

xim+x jm
; (4.24)

while the gradient of the upper bound∂ϕmax

∂am
is 0 for parameterized cosine and 1 for parame-

terized KL divergence, as follows from the expressions for these constants in Sections 4.3.3

and 4.3.4.

For all distortion metrics, individual similarity function parameters can be learned

for each cluster, allowing the clusters to lie in different subspaces. To implement cluster-

specific similarity function learning, the above updates should be based only on points

belonging to the cluster, ignoring the rest of the dataset.

Overall, the distance learning step results in modifying the distortion measure pa-

rameters so that data points in violated must-link constraints are brought closer together,

while points in violated cannot-link constraints are pulled apart, and each dimension is

scaled proportionally to data variance. This process leadsto a transformed data space that

facilitates partitioning of the unlabeled data by attempting to mend the constraint violations

while capturing the natural variance in the data.

4.5 Experimental Results

This section describes the experiments that were performedto demonstrate the effectiveness

of using learnable similarity functions within HMRF-KMEANS.
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4.5.1 Datasets

Experiments were run on both low-dimensional and high-dimensional datasets to eval-

uate the HMRF-KMEANS framework with different distortion measures. For the low-

dimensional datasets, on which squared Euclidean distancewas used as the distortion mea-

sure, the following datasets were considered:� Three datasets from the UCI repository:Iris, Wine, andIonosphere(Blake & Merz,

1998);� TheProteindataset used by Xing et al. (2003) and Bar-Hillel et al. (2003);� Randomly sampled subsets from theDigits andLettershandwritten character recog-

nition datasets, also from the UCI repository. ForDigits andLetters, two sets of three

classes were chosen:fI, J, L g from Lettersandf3, 8, 9g from Digits, sampling 10%

of the data points from the original datasets randomly. These classes were chosen

since they represent difficult visual discrimination problems.

Table 4.1 summarizes the properties of the low-dimensionaldatasets: the number

of instances, the number of dimensions, and the number of classes.

Table 4.1: Low-dimensional datasets used in experimental evaluation

Iris Wine Ionosphere Protein Letters Digits
Instances 150 178 351 116 227 317
Dimensions 4 13 34 20 16 16
Classes 3 3 2 6 3 3

For the high-dimensional text data, 3 datasets that have thecharacteristics of being

sparse, high-dimensional, and having a small number of points compared to the dimension-

ality of the space were considered. This is done for two reasons:
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� When clustering sparse high-dimensional data, e.g., text documents represented us-

ing the vector space model, it is particularly difficult to cluster small datasets, as

observed by Dhillon and Guan (2003). The purpose of performing experiments on

these subsets is to scale down the sizes of the datasets for computational reasons but

at the same time not scale down the difficulty of the tasks.� Clustering small number of sparse high-dimensional data points is a likely scenario

in realistic applications. For example, when clustering the search results in a web-

search engine like Vivı́simo2, the number of webpages that are being clustered is

typically in the order of hundreds. However, the dimensionality of the feature space,

corresponding to the number of unique words in all the webpages, is in the order of

thousands. Moreover, each webpage is sparse, since it contains only a small number

of all the possible words. On such datasets, clustering algorithms can easily get stuck

in local optima: in such cases it has been observed that thereis little relocation of

documents between clusters for most initializations, which leads to poor clustering

quality after convergence of the algorithm (Dhillon & Guan,2003). Supervision in

the form of pairwise constraints is most beneficial in such cases and may significantly

improve clustering quality.

Three datasets were derived from the20-Newsgroupscollection.3 This collection

has messages harvested from 20 different Usenet newsgroups, 1000 messages from each

newsgroup. From the original dataset, a reduced dataset wascreated by taking a random

subsample of 100 documents from each of the 20 newsgroups. Three datasets were cre-

ated by selecting 3 categories from the reduced collection.News-Similar-3consists of 3

newsgroups on similar topics (comp.graphics, comp.os.ms-windows, comp.windows.x)

with significant overlap between clusters due to cross-posting. News-Related-3consists

of 3 newsgroups on related topics (talk.politics.misc, talk.politics.guns, and

2http://www.vivisimo.com
3http://www.ai.mit.edu/people/jrennie/20Newsgroups
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talk.politics.mideast). News-Different-3consists of articles posted in 3 newsgroups

that cover different topics (alt.atheism, rec.sport.baseball, sci.space) with well-

separated clusters. All the text datasets were converted tothe vector-space model by tok-

enization, stop-word removal, TF-IDF weighting, and removal of very high-frequency and

low-frequency words, following the methodology of Dhillonand Modha (2001). Table 4.2

summarizes the properties of the high-dimensional datasets.

Table 4.2: High-dimensional datasets used in experimentalevaluation

News-Different-3 News-Related-3 News-Similar-3
Instances 300 300 300
Dimensions 3251 3225 1864
Classes 3 3 3

4.5.2 Clustering Evaluation

Normalized mutual information(NMI) was used as the clustering evaluation measure. NMI

is an external clustering validation metric that estimatesthe quality of the clustering with

respect to a given underlying class labeling of the data: it measures how closely the cluster-

ing algorithm could reconstruct the underlying label distribution in the data (Strehl, Ghosh,

& Mooney, 2000). IfŶ is the random variable denoting the cluster assignments of the points

andY is the random variable denoting the underlying class labelson the points, then the

NMI measure is defined as:

NMI = I(Y;Ŷ)(H(Y)+H(Ŷ))=2
(4.25)

whereI(X;Y) = H(X)�H(XjY) is the mutual information between the random variables

X andY, H(X) is the Shannon entropy ofX, andH(XjY) is the conditional entropy of

X givenY (Cover & Thomas, 1991). NMI effectively measures the amountof statistical

information shared by the random variables representing the cluster assignments and the
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user-labeled class assignments of the data points. Though various clustering evaluation

measures have been used in the literature, NMI and it’s variants have become popular lately

among clustering practitioners (Dom, 2001; Fern & Brodley,2003; Meila, 2003).

4.5.3 Methodology

Learning curves were generated using two-fold cross-validation performed over 20 runs on

each dataset. In every trial, 50% of the dataset was set asideas the training fold. Every point

on the learning curve corresponds to the number of constraints on pairs of data points from

the training fold. These constraints are obtained by randomly selecting pairs of points from

the training fold and creating must-link or cannot-link constraints depending on whether the

underlying classes of the two points are the same or different. Unit constraint costsW were

used for all constraints (original and inferred), since thedatasets did not provide individual

weights for the constraints. The gradient step sizeη for learning the distortion measure

parameters and the Rayleigh prior width parameters were set based on pilot studies. The

gradient step size was set toη = 100:0 for clustering with weighted cosine distancedcosA

andη = 0:08 for weighted I divergencedIA. The Rayleigh prior width parameter was set

to s= 1. In a real-life setting, the free parameters of the algorithm could be tuned using

cross-validation with a hold-out set. The clustering algorithm was run on the whole dataset,

but NMI was calculated using points in the test fold.

Sensitivity experiments were performed with HMRF-KMEANS to study the ef-

fectiveness of employing learnable similarity functions.The proposed HMRF-KMEANS

algorithm was compared with three ablations, as well as withunsupervised K-Means clus-

tering. The following variants were compared for distortion measuresdcosA, dIA anddeucA :� HMRF-KMEANS-C-D-R is the complete HMRF-KMEANS algorithm that incor-

porates constraints in cluster assignments (C), performs distortion measure learning

(D), and also performs regularization (R) using a Rayleigh prior as described in Sec-

tion 4.3.1;
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� HMRF-KMEANS-C-D is the first ablation of HMRF-KMEANS that includes all

components except for regularization of distortion measure parameters;� HMRF-KMEANS-C is an ablation of HMRF-KMEANS that uses pairwise supervi-

sion for initialization and cluster assignments, but does not perform distortion mea-

sure learning;� RCA-KMEANS is K-Means algorithm that uses distortion measure parameters learned

using the Relevant Components Analysis (RCA) algorithm of Bar-Hillel et al. (2003);� KM EANS is the unsupervised K-Means algorithm;

The goal of these experiments was to evaluate the utility of distortion measure learn-

ing HMRF framework and identify settings in which particular components are beneficial.

For low-dimensional datasets, we also compared several distinct possibilities for parame-

terizing the distance metricdeucA:� HMRF-KMEANS-C-D-R is the complete HMRF-KMEANS algorithm that learns a

single diagonal weight matrix for the entire dataset (A is diagonal and identical for

all clusters);� HMRF-KMEANS-C-D-R-M is the complete HMRF-KMEANS algorithm that learns

K diagonal weight matricesAi; : : : ;Ak so that each cluster corresponds to a distinct

similarity function;� HMRF-KMEANS-C-D-R-FULL is the complete HMRF-KMEANS algorithm that

learns a single fully-parameterized Mahalanobis distance: A is a d� d positive-

definite matrix that is identical for all clusters.

The goal of these experiments is to study the utility of learning a full parameteri-

zation of the similarity function (effectively training a Mahalanobis distance) versus only

using a diagonal parameterization (learning weights for a Euclidean distance), since the
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latter is significantly cheaper computationally. Results obtained with learning individual

similarity functions for each cluster illustrate the utility of allowing different clusters to lie

in different subspaces, as opposed to learning a single set of similarity function parameters

for the entire dataset.

4.5.4 Results and Discussion

Low-dimensional datasets: Figures 4.4-4.15 show learning curves for the ablation ex-

periments on the six low-dimensional datasets. Across all datasets, the overall HMRF-

KM EANS approach without regularization (KMEANS-C-D) outperforms the constraints-

only ablation and unsupervised KMeans. Since the performance of KMEANS-C-D-R is

not substantially different from KMEANS-C-D, it can be concluded that regularization does

not lead to performance improvements on low-dimensional datasets. This can be explained

by the fact that the number of distortion measure parametersis small for low-dimensional

domains while estimates obtained from data do not have high variance, and therefore incor-

porating a prior in the probabilistic model is not necessary.

For theWine, Protein, andDigits-389 datasets, the difference between ablations

that utilize metric learning (KMEANS-C-D-R and KMEANS-C-D) and those that do not

(KM EANS-C and KMEANS) at the beginning of the learning curve indicates that even in

the absence of constraints, weighting features by their variance (essentially using unsuper-

vised Mahalanobis distance) improves clustering accuracy. For theWinedataset, additional

constraints provide an insubstantial improvement in cluster quality on this dataset, which

shows that meaningful feature weights are obtained from scaling by variance using just the

unlabeled data.

Comparing the performance of different variants of HMRF-KMEANS with RCA,

we can see that the ability to embed similarity function learning within the clustering al-

gorithm leads to significantly better results for HMRF-KMEANS. This is explained by
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Figure 4.4: Results fordeuc on theIris dataset

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0  100  200  300  400  500

N
M

I

Number of Constraints

HMRF-KMeans-C-D-R
HMRF-KMeans-C-D-R-M

HMRF-KMeans-C-D-R-Full

Figure 4.5: Results fordeuc on theIris dataset with full
and per-cluster parameterizations

81



 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0  100  200  300  400  500

N
M

I

Number of Constraints

HMRF-KMeans-C-D-R
HMRF-KMeans-C-D

HMRF-KMeans-C
RCA-KMeans

KMeans

Figure 4.6: Results fordeuc on theWinedataset
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Figure 4.10: Results fordeuc on theIonospheredataset
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Figure 4.12: Results fordeuc on theDigits-389dataset
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Figure 4.14: Results fordeuc on theLetters-IJLdataset
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the fact thatRCAutilizes only the pairwise constraints for learning the similarity function

parameters, while HMRF-KMEANS uses both the constraints and the unlabeled data, ad-

justing the parameters gradually in the course of clustering.

The results for learning full-matrix and per-cluster parameterizations of the similar-

ity function demonstrate that both of these extensions can lead to significant improvements

in clustering quality. However, the relative usefulness ofthese two techniques varies be-

tween the datasets. Multiple similarity functions are beneficial for all datasets except for

Proteinwhere they did not affect the results, andIris, where they had a negative effect. Us-

ing the full matrix parameterization also did not affectProtein results, and had a negative

effect onDigits, while it improved results on the other four datasets. This inconsistency can

be explained by the fact that the relative success of the two techniques depends on the prop-

erties of a particular dataset: using a full weight matrix helps when the features are highly

correlated, while using per-cluster parameterization lead to improvements when clusters in

the dataset are of different shapes or lie in different subspaces of the original space. A

combination of the two techniques is most helpful when both of these requirements are

satisfied, as forWineandLetters, which was observed by visualizing low-dimensional pro-

jections of these datasets. For other datasets with the exception ofProtein, either per-cluster

parameterization or the full weight matrix lead to maximum performance in isolation.

Some of the HMRF-KMEANS learning curves display a characteristic “dip”, where

clustering accuracy decreases as a few initial constraintsare provided, but after a certain

point starts to increase and eventually rises above the initial point on the learning curve.

One possible explanation of this phenomenon is overfitting:having just a few constraints

provides unreliable supervision, forcing the algorithm toconverge to inferior local op-

tima, while increasing the number of provided constraints allows overcoming this effect.

Overall, when both constraints and distortion measure learning are utilized, the unified ap-

proach benefits from the individual strengths of the two methods, as can be seen from the

KM EANS-C-D results.
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dataset
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High-dimensional datasets: Figures 4.16, 4.18 and 4.20 present the results for

the ablation experiments where weighted cosine similaritydcosA was used as the distortion

measure, while Figures 4.17, 4.19 and 4.21 summarize experiments where weighted I di-

vergencedIA was used.

As the results demonstrate, the full HMRF-KMEANS algorithm with regularization

(KM EANS-C-D-R) outperforms the unsupervised K-Means baseline as well as the ablated

versions of the algorithm for both distortion measuresdcosA anddIA. As can be seen from

results for zero pairwise constraints in Figs. 4.16-4.21, distortion measure learning is bene-

ficial even in the absence of any pairwise constraints, sinceit allows capturing the relative

importance of the different attributes in the unsuperviseddata. In the absence of super-

vised data or when no constraints are violated, distance learning attempts to minimize the

objective function by adjusting the weights given the distortion between the unsupervised

datapoints and their corresponding cluster representatives.

For high-dimensional datasets, regularization is clearlybeneficial to performance,

as can be seen from the improved performance of KMEANS-C-D-R over KMEANS-C-D

on all datasets. This can be explained by the fact that the number of distortion measure

parameters is large for high-dimensional datasets, and therefore algorithm-based estimates

of parameters tend to be unreliable unless they incorporatea prior.

Overall, the experimental results demonstrate that learning similarity functions within

the HMRF-KMEANS algorithm lead to significant improvements in clustering accuracy,

effectively exploiting both supervision in the form of pairwise constraints and the unsuper-

vised data.

4.6 Related Work

Several semi-supervised clustering approaches were proposed that incorporate adaptive dis-

tortion measures, including parameterizations of Jensen-Shannon divergence (Cohn et al.,

2003) as well as Euclidean and Mahalanobis distances (Klein, Kamvar, & Manning, 2002;
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Bar-Hillel et al., 2003; Xing et al., 2003). These techniques use only constraints to learn

the distortion measure parameters and ignore unlabeled data in the parameter learning step,

as well as separate training of the similarity function fromthe clustering process.

In contrast, the HMRF model provides an integrated framework which incorpo-

ratesboth learning the distortion measure parameters and constraint-sensitive cluster as-

signments. In HMRF-KMEANS, the parameters of the similarity function are learned iter-

atively as the clustering progresses, utilizing both unlabeled data and pairwise constraints.

The parameters are modified to decrease the parameterized distance between violated must-

linked constraints and increase it between violated cannot-link constraints, while allowing

constraint violations if they accompany a more cohesive clustering.

4.7 Chapter Summary

This chapter has demonstrated the utility of learnable similarity functions in semi-supervised

clustering, and presented a general approach for employingthem within a general proba-

bilistic framework based on Hidden Markov Random Fields (HMRFs). The framework

accommodates a broad class of similarity functions (Bregman divergences), as well as di-

rectional measures such as cosine distance, making it applicable to a wide variety of do-

mains.

The framework yields an EM-style clustering algorithm, HMRF-KMEANS, that

maximizes the joint probability of observed data points, their cluster assignments, and dis-

tortion measure parameters. The fact that the similarity functions are trained within the

clustering algorithm allows utilizing both labeled and unlabeled data in learning similarity

function parameters, which leads to results that are superior to learning similarity functions

in isolation.
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Chapter 5

Learnable Similarity Functions in

Blocking

In this chapter, we show how learnable similarity functionscan be employed not only for

improving the accuracy of tasks that rely on pairwise similarity computations, but also

for improving their scalability. We introduce an adaptive framework for learning blocking

functions that are efficient and accurate for a given domain by automatically constructing

them from combinations of blocking predicates. Our approach allows formulating this task

as an instance of the Red-Blue Set Cover problem, approximation algorithms for which can

be used for learning blocking functions.

5.1 Motivation

As discussed in Section 2.4, intelligent data analysis tasks that rely on computing pairwise

similarities require blocking methods for scaling up to large datasets due to the quadratic

number of instance pairs in a given dataset. Manual selection of fields and parameter tuning

are required by all existing blocking strategies to reduce the number of returned dissimilar

pairs while retaining the similar pairs.
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Since an appropriate blocking strategy can be highly domain-dependent, the ad-hoc

construction and manual tuning of blocking methods is difficult. They may lead to over-

selection of many dissimilar pairs which impedes efficiency, or, worse, under-selection of

important similar pairs which decreases accuracy. Becausethere can be many potentially

useful blocking criteria over multiple object attributes,there is a need for automating the

process of constructing blocking strategies so that all or nearly all same-entity or same-

cluster pairs are retained while the maximum number of dissimilar pairs is discarded.

In subsequent sections, we formalize the problem of learning an optimal blocking

strategy using training data. In many record linkage domains, some fraction of instances

contains true entity identifiers, e.g., UPC (bar code) numbers for retail products, SSN num-

bers for individuals, or DOI identifiers for citations. Presence of such labeled data allows

evaluating possible blocking functions and selecting fromthem one that is optimal, that is,

one that selects all or nearly all positive record pairs (that refer to the same entity), and a

minimal number of negative pairs (that refer to different entities).

We propose to construct blocking functions based on sets of generalblocking pred-

icateswhich efficiently select all instance pairs that satisfy some binary similarity criterion.

Figure 5.1 contains examples of predicates for specific record fields in different domains.

We formulate the problem of learning an optimal blocking function as the task of finding

a combination of blocking predicates that captures all or nearly all coreferent object pairs

and a minimal number of non-coreferent pairs. Our approach is general in the sense that we

do not place restrictions on the similarity predicates computed on instance pairs selected

by blocking, such as requiring them to be an inner product or to correspond to a distance

metric.

Domain Blocking Predicate

Census Data Same 1st Three Chars inLast Name
Product Normalization Common token inManufacturer
Citations Publication Yearsame or off-by-one

Figure 5.1: Examples of blocking functions from different record linkage domains
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We consider two types of blocking functions: (1) disjunctions of blocking pred-

icates, and (2) predicates combined in disjunctive normal form (DNF). While finding a

globally optimal solution for these formulations is NP-hard, we describe an effective ap-

proximation method for them and discuss implementation issues. Empirical evaluation on

synthetic and real-world record linkage datasets demonstrates the efficiency of our tech-

niques.

5.2 Adaptive Blocking Formulation

Let us formally define the problem of learning an optimal blocking function. We assume

that a training datasetDtrain = fX ;Y g is available that includes a setX = fxign
i=1 of n

records known to refer tom true objects:Y = fyign
i=1, where eachyi is the true object

identifier for thei-th record:yi 2 f1; : : : ;mg. Each recordxi may have one or more fields.

We assume that a set ofs generalblocking predicatesfpigs
i=1 is available, where

each predicatepi corresponds to two functions:� Indexing function hi(�) is a unary function that is applied to a field value from some

domain Dom(hi) (e.g., strings, integers, or categories) and generates oneor morekeys

for the field value:hi : Dom(hi)! U�, whereU is the set of all possible keys;� Equality function pi(�; �) returns 1 if the intersection of the key sets produced by

the indexing function on its arguments is non-empty, and returns zero otherwise:

pi(x j ;xk) = 1 iff hi(x j)\ hi(xk) 6= /0. Any pair (x j ;xk) for which pi(x j ;xk) = 1 is

coveredby the predicatepi .

Each general blocking predicate can be instantiated for a particular field (or a com-

bination of fields) in a given domain, resulting in severalspecificblocking predicates for the

domain. Given a database withd fields and a set ofsgeneral blocking predicates, we obtain

t � s�d specific predicatesP = fpigt
i=1 by applying the general predicates to all fields of
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Sample record:

author

Freund, Y.
year

(1995).
title

Boosting a weak learning algorithm by majority.
venue

Information and Computation,
other

121(2), 256-285

Blocking predicates and key sets produced by their indexingfunctions for the record:

author title venue year other

Contain
Common
Token

ffreund, yg fboosting,
a, weak,
learning,
algorithm,
by,
majorityg finformation,

computationg f1995g f121, 2, 256, 285g
Exact Match f’freund y’g f’boosting a

weak
learning
algorithm by
majority’g f’information

and
computation’g f’1995’g f’121 2 256 285’g

Same 1st

Three Chars
ffreg fboog finfg f199g f121g

Contains
Same or
Off-By-One
Integer

/0 /0 /0 f19941995,
19951996g f120 121, 121122,

1 2, 2 3, 255256,
256 257, 284285,
285 286g

Figure 5.2: Blocking key values for a sample record

the appropriate type. For example, suppose we have four general predicates defined for all

textual fields:“Contain Common Token”, “Exact Match”, and“Same1st Three Chars”,

“Contains Same of Off-By-One Integer”. When these general predicates are instantiated

for the bibliographic citation domain with five textual fields, author, title, venue, year, and

other, we obtain 5�4= 20 specific blocking predicates for this domain. Figure 5.2 demon-

strates the values produced by the indexing functions of these specific blocking predicates

on a sample citation record (we assume that all strings are converted to lower-case and

punctuation is removed before the application of the indexing functions):

Multiple blocking predicates are combined by an overallblocking function fP con-

structed using the setP of predicates. Like the individual predicates,fP corresponds to an
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indexing function that can be applied to any record, and an equality function for any pair of

records. Pairs for which this equality function returns 1 are covered: they comprise the set

of candidate pairs returned for subsequent similarity computation, while pairs for which the

blocking function returns 0 are ignored (uncovered). Efficient generation of the set of can-

didate pairs requires computing the indexing function for all records, followed by retrieval

of all candidate pairs using inverted indices.

Given the setP = fpigt
i=1 containingt specific blocking predicates, the objective

of the adaptive blocking framework is to identify an optimalblocking function f �P that

combines all or a subset of the predicates inP so that the set of candidate pairs it returns

contains all or nearly all coreferent (positive) record pairs and a minimal number of non-

coreferent (negative) record pairs.

Formally, this objective can be expressed as follows:

f �P = argmin
fP

∑(xi ;xj )2R

fP (xi ;x j)
s.t. jB j� ∑(xi ;xj )2B

fP (xi ;x j) < ε
(5.1)

whereR = f(xi ;x j) : yi 6= y jg is the set of non-coreferent pairs,B = f(xi ;x j) : yi = y jg is

the set of coreferent pairs, andε is a small value indicating that up toε coreferent pairs may

remain uncovered, thus accommodating noise and particularly difficult coreferent pairs.

The optimal blocking functionf �P must be found in a hypothesis space that corresponds to

some method of combining the individual blocking predicates. In this paper, we consider

two classes of blocking functions:� Disjunctive blocking selects record pairs that are covered by at least one blocking

predicate from the subset of predicates that comprise the blocking function. This

strategy can be viewed as covering pairs for which a the equality function for at least

one of the selected predicates returns 1. The blocking function is trained by selecting
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a subset of blocking predicates fromP .� Disjunctive Normal Form (DNF) blocking selects object pairs that are covered by

at least one conjunction of blocking predicates from a constructed set of conjunctions.

This strategy can be viewed as covering record pairs for which at least one equality

function of a conjunction of predicates returns 1. The blocking function is trained by

constructing a DNF formula from the blocking predicates.

Each type of blocking functions leads to a distinct formulation of the objective (5.1),

and we consider them individually in the following subsections.

5.2.1 Disjunctive blocking

Given a set of specific blocking predicatesP = fpigt
i=1, a disjunctive blocking function

corresponds to selecting some subset of predicatesP 0 � P , performing blocking using

eachpi 2 P 0, and then selecting record pairs that share at least one common key in the

key sets computed by the indexing functions of the selected predicates. Thus, the equality

function for the disjunctive blocking function based on subsetP 0 = fpi1; : : : ; pikg of pred-

icates returns 1 if the equality function for at least one predicate returns 1:fP 0(xi ;x j) =[pi1(xi ;x j)+ � � �+ pik(xi ;x j)℄ where[π℄ = 1 if π > 0, and 0 otherwise. If the equality func-

tion for the overall blocking functionfP 0 returns 1 for a pair(xi ;x j), we say that this pair is

coveredby the blocking function.

Learning the optimal blocking functionf �P requires selecting a subsetP � of predi-

cates that results in all or nearly all coreferent pairs being covered by at least one predicate

in P �, and a minimal number of non-coreferent pairs being covered. Then the general

adaptive blocking problem in Eq.(5.1) can be written as follows:
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Positive

Negative pairs

pairs

Blocking predicates
P = fp1; : : : ; ptg

R = fr1; : : : ; rρg= f(xi;x j) : yi 6= y jg

B = fb1; : : : ;bβg= f(xi;x j) : yi = y jg
Figure 5.3: Red-blue Set Cover view of disjunctive blocking

w� = argminw ∑(xi ;xj )2R

[wTp(xi ;x j)> 0℄
s.t. jB j� ∑(xi ;xj )2B

[wTp(xi ;x j)> 0℄ < εw is binary

(5.2)

wherew is a binary vector of lengtht encoding which of the blocking predicates are se-

lected as a part off �P , andp(xi;x j) = [p1(xi ;x j); : : : ; pt(xi ;x j)℄T is a vector of binary values

returned by equality functions of thet predicates for the pair(xi ;x j).
This formulation of the learnable blocking problem is equivalent to theRed-Blue Set

Coverproblem ifε= 0 (Carr, Doddi, Konjevod, & Marathe, 2000). Figure 5.3 illustrates the

equivalence. The task of selecting a subset of predicates isrepresented by a graph with three

sets of vertices. The bottom row ofβ vertices corresponds to positive (coreferent) record

pairs designated as the set ofblue elementsB = fb1; : : : ;bβg. The top row ofρ vertices

corresponds to negative (non-coreferent) record pairs designated as the set ofred elements

R = fr1; : : : ; rρg. The middle row oft vertices represents the set of blocking predicatesP ,

where eachpi 2 P corresponds to a set covering some red and blue elements. Every edge

between an element vertex and a predicate vertex indicates that the record pair represented

by the element vertex is covered by the predicate. Learning the optimal disjunctive blocking
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function is then equivalent to selecting a subset of predicate vertices with their incident

edges so that at leastβ� ε blue (positive) vertices have at least one incident edge, while the

cover cost, equal to the number of red (negative) vertices with at leastone incident edge, is

minimized.

5.2.2 DNF Blocking

In some domains, a disjunctive combination of blocking predicates may be an insufficient

representation of the optimal blocking strategy. For example, in US Census data, conjunc-

tions of predicates such as“Same Zipcode AND Same1st Char in Surname”yield useful

blocking criteria (Winkler, 2005). To incorporate such blocking criteria, we must extend the

disjunctive formulation described above to a formulation based on combining predicates in

disjunctive normal form (DNF). Then, the hypothesis space for the blocking function must

include disjunctions of not just individual blocking predicates, but also of their conjunc-

tions.

A search for the optimal DNF blocking function can be viewed as solving an ex-

tended variant of the red-blue set cover problem. In that variant, the cover is constructed

using not only the sets representing the original predicates, but also using additionally

constructed sets representing predicate conjunctions. Because the number of all possible

conjunctions is exponential, only conjunctions up to fixed lengthk are considered. In Fig-

ure 5.3, considering a conjunction of blocking predicates corresponds to adding a vertex to

the middle row, with edges connecting it to the red and blue vertices present in the intersec-

tion of covered vertex sets for the individual predicates inthe conjunction.

The learnable blocking problem based on DNF blocking functions is then equiv-

alent to constructing a set of conjunctions followed by selection of a set of predicate and

conjunction vertices so that at leastβ� ε positive (blue) vertices have at least one incident

edge, while the cost, equal to the number of negative (red) nodes with at least one incident

edge, is minimized.
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5.3 Algorithms

5.3.1 Pairwise Training Data

For clustering settings, supervision corresponds to sets of must-link (same-cluster) and

cannot-link (different-cluster) pairs. For record linkage, supervision is available in many

domains in the form of records for which the true entities to which they refer are known,

as discussed in Section 5.1. Such labeled records comprise the training datasetDtrain =fX ;Y g that can be used to generate the pairwise supervision for learning the blocking

function in the form of coreferent (positive) and non-coreferent (negative) record pairs. For

large databases, it is impractical to explicitly generate and store in memory all positive pairs

and negative pairs. However, the set of covered pairs for each predicate can be computed

using the indexing function of the predicate to form an inverted index based on the key

values returned by the indexing function. Then, bit arrays can be used to store the cover of

each predicate, obtained by iteration over the inverted index.

If training data is unavailable, it can be obtained automatically by performing link-

age or clustering without blocking, and then using the linkage or clustering results as train-

ing data for learning a blocking function for the given domain.

5.3.2 Learning Blocking Functions

Disjunctive Blocking

The equivalence of learning optimal disjunctive blocking and the red-blue set cover problem

described in Section 5.2.1 has discouraging implications for the practitioner. The red-blue

set cover problem is NP-hard, and Carr et al. (2000) have shown that unless P=NP, it cannot

be efficiently approximated within a factorO(2log1�δ t);δ = 1=log logc t, wheret is the num-

ber of predicates under consideration. On the other hand, several approximate algorithms

have been proposed for the red-blue set cover problem (Carr et al., 2000; Peleg, 2000). We

base our approach on a modified version of Peleg’s greedy algorithm that has an approxi-
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Algorithm: APPROXRBSETCOVER

Input: Training setB = {b1, . . . ,bβ} andR = {r1, . . . , rρ} where
eachbi ∈ B is a pair of coreferent records(xi1,xi2) s.t. yi1 = yi2
eachr i ∈ R is a pair ofnon-coreferent records(xi1,xi2) s.t. yi1 6= yi2

Set of blocking predicatesP = {p1, . . . , pt}
Maximum number of coreferent pairs allowed to be uncoveredε
Maximum number of pairs that any predicate may coverη

Output: A disjunctive blocking function based on subsetP ∗ ⊂ P

Method:
1. Discard fromP all predicatespi for which r(pi) ≥ η:

P ←{pi ∈ P |r(pi) ≤ η}.
2. If |B |− |B(P )| > ε returnP (cover is not feasible,η is too low)
3. Setγ =

√

t/ logβ.
4. Discard allr i covered by more thanγ predicates:

R ←{r i ∈ R |deg(r i ,P ) ≤ γ}
5. Construct an instance of weighted set coverT by discarding

elements ofR , creating a setτi for eachpi ∈ P , and setting
its weightω(τi) = r(pi).

6. T ∗ ← /0
7. while |B| ≥ ε
8. selectτi ∈ T that maximizesb(τi)/ω(τi)
9. B ← B −B(τi)
10. T ∗ ← T ∗∪{τi}
11. Return the set of predicatesP ∗ corresponding toT ∗.

Figure 5.4: The algorithm for learning disjunctive blocking

mation ratio of 2
p

t logβ (Peleg, 2000). This algorithm is particularly appropriatefor the

adaptive blocking setting as it involves early discarding of particularly costly sets (block-

ing predicates that cover too many non-coreferent pairs), leading to more space-efficient

learning of the blocking function. In the remaining discussion, we use the term “blocking

predicates” in place of “sets” considered in the original set cover problem.

The outline of the algorithm APPROXRBSETCOVER is shown in Figure 5.4. The

algorithm is provided with training data in the form ofβ coreferent record pairsB =fb1; : : : ;bβg andρ non-coreferent records pairsR = fr1; : : : ; rβg, where eachr i andbi rep-

resents a record pair(xi1;xi2). For each predicatepi 2 P , let covered negativesR (pi) be

the set of negative pairs it covers,predicate cost r(pi) be the number of negative pairs it

coversr(pi) = jR (pi)j, covered positivesB(pi) be the set of positive pairs it covers, and
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coverage b(pi) be the number of covered positives,b(pi) = jB(pi)j. For each negative pair

r i = (xi1;xi2), let thedegreedeg(r i ;P ) be the number of predicates inP that cover it; degree

for a positive pair, deg(bi ;P ), is defined analogously. In step 1 of the algorithm, blocking

predicates that cover too many negative pairs are discarded, where the parameterη can be

set to a fraction of the total number of pairs in the dataset. Then, negative pairs covered

by too many predicates are discarded in step 4, which intuitively corresponds to disregard-

ing non-coreferent pairs that are highly similar and are placed in the same block by most

predicates. Again, this parameter can be set as a fraction ofthe available predicate set.

Next, a standard weighted set cover problem is set up for the remaining predicates

and pairs by setting the cost of each predicate to be the number of negatives it covers and

removing the negatives. The resulting weighted set cover problem is solved in steps 6-11

using Chvatal’s greedy approximation algorithm (Chvatal,1979). The algorithm iteratively

constructs the cover, at each step adding the blocking predicatepi that maximizes a greedy

heuristic: the ratio of the number of previously uncovered positives over the predicate cost.

To soften the constraint requiring all positive pairs to be covered, we add an early stopping

condition permitting up toε positives to remain uncovered. In practice,ε should be set to

0 at first, and then gradually increased if the cover identified by the algorithm is too costly

for the application at hand (that is, when covering all positives incurs covering too many

negatives).

DNF Blocking

Learning DNF blocking can be viewed as an extension of learning disjunctive blocking

where not only individual blocking predicates may be selected, but also their conjunctions.

We assume that conjunctions that include up tok predicates are considered. Because enu-

merating over all possible conjunctions of predicates results in an exponential number of

predicate sets under consideration, we propose a two-stageprocedure, shown in Figure 5.5.

First, a set oft(k�1) predicate conjunctions of lengths from 2 tok is created in
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Algorithm: APPROXDNF
Input: Training setB = {b1, . . . ,bβ} andR = {r1, . . . , rρ} where

eachbi is a pair of coreferent records(xi1,xi2) s.t. yi1 = yi2
eachr i is a pair ofnon-coreferent records(xi1,xi2) s.t. yi1 6= yi2

Set of blocking predicatesP = {p1, . . . , pt}
Maximum number of coreferent pairs allowed to be uncoveredε
Maximum number of pairs that any predicate may coverη
Maximum conjunction length,k

Output: A DNF blocking function based onP :
(pi1 ∧·· ·∧ pi′1

)∨·· ·∨ (pin ∧·· ·∧ pi′n), eachi′j ≤ k
Method:
1. Discard fromP all predicatespi for which r(pi) ≥ η:

P ←{pi ∈ P |r(pi) ≤ η}.
2. P (c) = /0
3. For eachpi ∈ P

4. Constructt −1 candidate conjunctionsp(c)
i = pi ∧·· ·∧ pik

by greedily selecting eachpi j that maximizes coverb(p(c)
i )/r(p(c)

i ),

adding eachp(c)
i to P (c).

5. Return APPROXRBSETCOVER(R ,B ,P ∪P (c),ε,η).

Figure 5.5: The algorithm for learning DNF blocking

a greedy fashion. Candidate conjunctions are constructed iteratively starting with each

predicatepi 2 P . At each step, another predicate is added to the current conjunction so

that the ratio between the number of positives and the numberof negatives covered by the

conjunction is maximally improved.

After the candidate set of conjunctions of lengths from 2 tok is constructed, the

conjunctions are added toP , the set of individual predicates. Then, the APPROXRBSET-

COVER algorithm described in the previous section is used to learna blocking function that

corresponds to a DNF formula over the blocking predicates.

5.3.3 Blocking with the Learned Functions

Efficiency considerations, which are the primary motivation for this work, require the

learned blocking functions to perform the actual blocking on new, unlabeled data in an

effective manner. After the blocking function is learned using training data, it should be
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applied to the test data (for the actual linkage or clustering task) without explicitly con-

structing all pairs of records and evaluating the predicates on them. This is achieved by

applying the indexing function for every blocking predicate or conjunction in the learned

blocking function to every record in the test dataset. Thus,an inverted index is constructed

for each predicate or conjunction in the blocking function.In each inverted index, every key

is associated with a list of instances for which the indexingfunction of the corresponding

predicate returns the key value. Disjunctive and DNF blocking can then be performed by

iterating over every key in all inverted indices and returning all pairs of records that occur

in the same list for any key.

5.4 Experimental Results

5.4.1 Methodology and Datasets

We evaluate the efficiency of the our methods for learning blocking functions using two

metrics, speedup ratio and recall. They are are defined with respect to the number of

coreferent and non-coreferent record pairs that get covered by a blocking functionfP in

a database ofn records:

ReductionRatio= 1:0� ∑(xi ;xj )2R fP (xi ;x j)+∑(xi ;xj )2B fP (xi ;x j)
n(n�1)=2

Recall= ∑(xi ;xj )2B fP (xi ;x j)jB j
Intuitively, recall captures blocking accuracy by measuring the proportion of truly

coreferent record pairs that have been covered by the blocking function. an ideal blocking

function would have recall of 1.0, indicating that all coreferent pairs are covered. Reduction

ratio measures the efficiency gain due to blocking by measuring what proportion of all pairs

in the dataset is filtered out by the blocking function. Without blocking, reduction ratio is 0
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since all record pairs are returned, while a higher number indicates what proportion of pairs

is not covered, and therefore will not require similarity computations in the subsequent

record linkage stages or in the clustering algorithm. Note that efficiency savings due to

blocking are more substantial if collective (graph-based)inference methods are used for

linkage or clustering (Pasula et al., 2003; McCallum & Wellner, 2004a; Singla & Domingos,

2005; Bhattacharya & Getoor, 2006), as the time complexity of these methods increases

superlinearly with the number of record pairs under consideration.

Results are obtained using 10 runs of two-fold cross-validation. Using a higher

number of folds would result in fewer coreferent records in the test fold, which would

artificially make the blocking task easier. During each run,the dataset is split into two

folds by randomly assigning all records for every underlying entity to one of the folds. The

blocking function is then trained using record pairs generated from the training fold. The

learned blocking function is used to perform blocking on thetest fold, based on which recall

and reduction ratio are measured.

We present results on two datasets:Cora andAddresses. TheCora dataset is de-

scribed in Section 3.1.1. While it is a relatively small-scale dataset, results of Chapter 3

illustrate that good linkage performance on this domain requires computationally intensive

string similarity functions; it has also been shown that linkage on that dataset benefits from

collective linkage methods (Singla & Domingos, 2005), justifying the need for blocking.

Addressesis a dataset containing names and addresses of 50,000 9-fieldrecords for 10,000

unique individuals that was generated using the DBGEN program provided by Hernández

and Stolfo (1995).

We use the following general predicates are for constructing learnable blocking

functions:� Exact Match: covers instances that have the same value for the field;� Contain Common Token: covers instances that contain a common token in the field

value;
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� Contain Common Integer: covers instances that contain a common token consisting

of digits in the field value;� Contain Same or Off-by-One Integer: covers instances that contain integer tokens

that are equal or differ by at most 1;� Same N First Chars, N=3;5;7: covers instances that have a common character prefix

in the field value;� Contain Common Token N-gram, N= 2;4;6: covers instances that contain a common

length-N subsequence of tokens;� Token-based TF-IDF> δ; δ = 0:2;0:4;0:6;0:8;1:0: covers instances where token-

based TF-IDF cosine similarity between field values is greater than the thresholdδ;� N-gram-based TF-IDF> δ; δ = 0:2;0:4;0:6;0:8;1:0; N = 3;5: covers instances

where TF-IDF cosine similarity between n-gram representations of field values is

greater than the thresholdδ.

As described in Section 5.2, these general predicates are instantiated for all fields

in the given database. Algorithms presented in Section 5.3.2 are used to construct blocking

functions by selecting subsets of the resulting field-specific predicates. For DNF blocking,

conjunctions of length 2 were employed, as experiments withlonger conjunctions did not

lead to improvements over blocking based on a 2-DNF.

We vary the value of parameterε (which specifies the number of coreferent pairs

allowed to remain uncovered) by setting torβ for different values of desired recallr between

0.0 and 1.0, whereβ is the number of coreferent record pairs in the training fold. This

parameter captures the dependence between the reduction ratio and recall: ifε is high, fewer

predicates are selected resulting in lower recall since notall coreferent pairs are retrieved.

At the same time, the reduction ratio is higher for higherε since fewer pairs are covered by

the learned blocking function, leading to higher efficiency. By varyingε, we obtain a series
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of results that demonstrate the trade-off between obtaining higher recall and improving the

reduction ratio.

We compare the proposed methods with CANOPIES (McCallum et al., 2000), a

popular blocking method relying on token-based or n-gram-based TF-IDF similarity com-

puted using an inverted index. In a previous study, Baxteret al. (Baxter et al., 2003) have

compared several manually-tuned blocking strategies and found CANOPIES to produce best

overall results. CANOPIESalso allows trading off precision and the reduction ratio byvary-

ing the threshold parameter that controls the coverage of the blocking.1 We tried both

token-based CANOPIESand tri-gram based CANOPIESand chose the best-performing vari-

ants as baselines: token-based indexing forCora, and tri-gram indexing forAddresses. This

difference is due to the fact that most variation between coreferent citations inCora is due

to insertions and deletions of whole words, making token-based similarity more appropri-

ate. Coreferent records inAddresses, on other hand, mostly differ due to misspellings and

character-level transformations that n-gram similarity is able to capture.

5.4.2 Results and Discussion

Figures 5.6 and 5.7 show the reduction ratio versus recall curves for the two types of learned

blocking functions described above and for CANOPIES. From these results, we observe that

both variants of adaptive blocking outperform the unlearned baseline: combining multiple

predicates allows achieving higher recall levels as well asachieving higher reduction ratios.

DNF blocking is more accurate than disjunctive blocking, and onAddressesit also achieves

higher recall, while forCora the maximum recall is comparable. Because DNF blocking

is based on predicate conjunctions, non-coreferent pairs are easier avoided by the blocking

function: conjunctions effectively form high-precision,low-recall rules that cover smaller

subsets of coreferent pairs but fewer non-coreferent pairscompared to single predicates.

1The original CANOPIESalgorithm allows varying two separate threshold parameters, however, empirical
results have shown that using the same value for both thresholds yields highest performance (McCallum et al.,
2000).
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Figure 5.6: Blocking accuracy results for theCoradataset
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Figure 5.7: Blocking accuracy results for theAddressesdataset
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While none of the methods achieve 100% recall (as it would effectively require returning

all record pairs), for both datasets adaptive blocking is able to achieve higher recall than

CANOPIES. Thus, using learnable blocking functions leads tobothaccuracy and efficiency

improvements.

Cora Addresses

DNF Blocking, 23,499 4,890,410
Disjunctive Blocking 41,439 4,090,283
Canopies 125,986 1,745,995
Total number of pairs 606,182 312,487,500

Table 5.1: Average number of pairs covered by the learned blocking functions and highest
achieved recall

Table 5.1 shows the actual number of record pairs returned bythe different block-

ing methods at highest achieved recall. These results demonstrate the significance of dif-

ferences in the reduction ratio between the different blocking functions: because the total

number of pairs is very large, differences in the reduction ratio translate into significant sav-

ings in the number of pairs for which similarity must be computed. Note that the smaller

number of pairs returned by CANOPIESand disjunctive blocking onAddressescorresponds

to a significantly lower recall, while for a fixed recall levelDNF blocking either does as

well or better.

Cora Addresses

DNF Blocking 26.9 735.81
Disjunctive Blocking 32.4 409.4
Canopies 16.0 572.7

Table 5.2: Average blocking time, CPU seconds

Table 5.2 show the blocking times for the different methods measured at maximum

achieved recall. Learnable blocking functions incur a relatively modest increase in compu-

tational time despite the fact that they utilize many predicates. This is due to the fact that

the learned predicates that cover few negatives typically require smaller inverted indices
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than the one built by canopies using tokens or n-grams where each token or n-gram occurs

in many strings. Many predicates employed by the adaptive blocking functions, on other

hand, map each string to a single key, resulting in more efficient retrieval of covered pairs.

Inverted indices corresponding to conjunctions are even more efficient as they contain many

keys (the cross product of the key sets for the predicates in the conjunction) and incur less

chaining, which is the reason for better performance of DNF blocking compared to disjunc-

tive blocking onCora, where the number of predicates in the constructed blockingfunction

is similar for the two methods. OnAddresses, DNF blocking constructs blocking functions

containing more predicates, which on one hand incurs a computational penalty, but on other

allows it to achieve higher recall.

Overall, the results demonstrate that adaptive blocking functions significantly im-

prove the efficiency of record linkage, and provide an attractive methodology for scaling up

data mining tasks that rely on similarity computations between pairs of instances.

5.5 Related Work

A number of blocking methods have been proposed by researchers for speeding up record

linkage and clustering (Fellegi & Sunter, 1969; Kelley, 1985; Newcombe, 1988; Jaro, 1989;

Hernández & Stolfo, 1995; McCallum et al., 2000; Baxter et al., 2003; Chaudhuri et al.,

2003; Jin et al., 2003; Gu & Baxter, 2004; Winkler, 2005); seethe summary of these

methods in Section 2.4. A key distinction between prior workand our approach is that

previously described methods focus on improving blocking efficiency while assuming that

an accurate blocking function is known and its parameters have been tuned manually. In

contrast, our approach attempts to construct an optimal blocking function automatically.

Because blocking functions can be learned using any combination of similarity predicates

on different record fields, and no assumptions are made aboutthe number of record fields

or their type, our approach can be used for adapting the blocking function in any domain,

while allowing human experts to add domain-specific predicates.

111



Our predicate-based blocking approach is most closely related to key-based meth-

ods developed by researchers working on record linkage for Census data (Kelley, 1985;

Newcombe, 1988; Jaro, 1989; Winkler, 2005). Techniques described by Kelley (Kelley,

1985) and Winkler (Winkler, 2005) are particularly relevant as they describe methodolo-

gies for evaluating the accuracy of individual blocking predicates, and could be integrated

with our approach for further speedup of blocking function learning.

Our formulation for training disjunctive and DNF blocking functions is related to

machine learning algorithms for learning disjunctive rules and DNFs (Mitchell, 1997). A

principal difference between that work and the learnable blocking problem is that in our

setting the learned disjunctions must cover all positive record pairs while minimizing the

number of covered negative pairs, while rule learning methods generally attempt to equally

minimize the number of errors on both positive and negative examples. Cost-sensitive

machine learning methods (Elkan, 2001) may provide a foundation for other approaches

to adaptive blocking, and we hope that our initial work will encourage the development of

alternative learnable blocking techniques.

5.6 Chapter Summary

In this chapter, we formulated the adaptive blocking problem as the task of learning a func-

tion that returns a minimal number of non-coreferent recordpairs while returning all or

nearly all coreferent pairs. We described two types of blocking functions: disjunctive and

DNF blocking. Formulating the learning problem as an instance of the Red-Blue Set Cover

problem allowed us to adopt a well-known approximation algorithm for that problem to

construct blocking functions. Experimental results demonstrated the ability of our approach

to learn efficient and accurate blocking functions automatically.
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Chapter 6

Future Work

Because learnable similarity functions are a part of many machine learning and data analy-

sis tasks, there is a large number of applications where adapting distance computations can

have a significant effect on performance. These applications can be found in such fields

as natural language processing, information retrieval, vision, robotics and bioinformatics,

where application-specific similarity functions are oftenemployed. Adapting such func-

tions in situ in these applications can be achieved using the framework used in the three

applications considered in this thesis: learning from pairwise supervision. While specific

applications in the above areas are beyond the scope of this thesis, in subsequent sections

we describe several directions for future work that are directly related to the applications

and similarity functions considered in prior chapters.

6.1 Multi-level String Similarity Functions

Improvements obtained using learnable affine-gap edit distance over its unlearned equiv-

alent demonstrated the benefits of adapting string similarity computations to a given do-

main. However, edit distance has certain properties that may limit its suitability in some

domains. For example, it does not directly handle transpositions of entire fragments (e.g.,

113



token swaps), and while edit operations for short-range transpositions can be added at

considerable computational cost, handling long-term transpositions is problematic. Order-

insensitive similarity functions such as cosine similarity, on other hand, have no trouble

dealing with token transpositions, yet they depend on accurate tokenization and suffer when

edit operations occur at the character level.

The SoftTFIDF variant of cosine similarity recently proposed by Cohen et al. (2003a)

attempts to amend this drawback of cosine similarity, yet itcannot adapt to a given domain

beyond the IDF weighting. An exciting challenge for future work lies in developing learn-

able string similarity functions that integrate adaptive string comparison at the character,

token, and document (string) levels. Such similarity functions must rely on joint similarity

computation across the levels while remaining computationally efficient. While segmented

pair HMMs presented in Section 3.1.2 are a first step in this direction, developing string

similarity models that perform further structural analysis of strings remains an open re-

search issue. Progress in this area will have impact in all tasks that rely on string similarity

functions such as record linkage and information retrieval.

6.2 Discriminative Pair HMMs

The Expectation-Maximization algorithm that we describedin Chapter 3 for training pair

HMMs only utilizes positive supervision: the learning procedure maximizes the likelihood

of observing alignments of coreferent pairs. However, it may be advantageous to exploit

negative supervision, that is, pairs of non-coreferent strings, since some “near-miss” nega-

tive examples can be very informative.

A recently proposed edit distance model based on Conditional Random Fields (CRFs)

has structure that allows training with both positive and negative examples so that the model

directly learns to discriminate between the two kinds of pairs (McCallum et al., 2005). The

CRF edit distance model consists of two three-state edit distance transducers, one of which

computes the alignment probabilities for coreferent strings, while the other computes align-
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ment probabilities for non-coreferent strings.

Although the CRF-based model has different probabilistic semantics (alignments

are not generated since the model is conditioned on the fact that any two strings under con-

sideration are aligned), the coupled structure of that model can be implemented as a pair

HMM. Considering such coupled structures within the pair HMM framework is an interest-

ing area for future work, since it would allow applying discriminative training methods that

explicitly attempt to learn model parameters that effectively distinguish between coreferent

and non-coreferent strings (Eisner, 2002). Another avenuefor future work on alternative

pair HMM structures involves deriving learnable models forlocal alignment that focus

on scoring matching alignment fragments while disregarding the mismatched sequences

around them (Gusfield, 1997). In domains where large gaps arecommonplace yet small

matching sequences may be very informative, e.g., in linkage of retail product descriptions,

pair HMM structures that model local alignment may yield better performance, and inves-

tigating this possibility is an interesting future direction.

6.3 Active Learning of Similarity Functions

As discussed in Section 3.3, the goal of active learning methods for similarity functions is

identifying pairs of objects whose equivalence or non-equivalence is informative for im-

proving distance estimates. The classifier-based record similarity described in Section 3.2

lends itself nicely to active learning techniques developed for classification, which has been

explored by Sarawagi and Bhamidipaty (2002) and Tejada et al. (2002) in the record linkage

context.

One of the biggest challenges in selecting useful training example pairs lies with

the fact that the space of possible pairs grows quadratically with the number of examples,

and static-active and weakly-labeled methodologies we proposed in Section 3.3 address this

challenge. However, these methods are based on heuristics,while developing more princi-

pled active learning methods remains an interesting direction for future work. Such methods
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must directly attempt to identify example pairs that would lead to maximal improvement

of similarity estimates. Traditional active learning approaches such as uncertainty sam-

pling (Lewis & Catlett, 1994), query-by-committee (Seung et al., 1992), estimation error

reduction (Lindenbaum et al., 1999; Roy & McCallum, 2001), and version space reduc-

tion (Tong, 2001) could be adopted for this task, and developing such methods for directly

improving the learning of similarity functions like edit distance or distortion measures de-

scribed in Chapter 4 is an area yet to be explored.

6.4 From Adaptive Blocking to Learnable Metric Mapping

The predicate-based methodology that we proposed in Chapter 5 for automatically obtain-

ing accurate blocking functions requires specifying an initial set of blocking predicates.

Although a sufficiently general set of predicates for textual data is easy to encode, in future

work it would be interesting to explore learnable blocking methods that are not predicate-

based but rely on mapping records to metric spaces. Several existing blocking methods rely

on such mapping, such as those of Jin et al. (2003) and Chaudhuri et al. (2003). Learning

algorithms that would make these methods adaptive could pursue two directions: searching

for an optimal mapping of data to metric space, or transforming the metric space after the

mapping to allow efficient yet accurate selection of approximately similar records.

This problem is related to methods for fast nearest-neighbor searching, a number

of which have been developed in the past decade (Indyk & Motwani, 1998; Liu, Moore,

Gray, & Yang, 2004; Beygelzimer, Kakade, & Langford, 2006).However, using these

techniques for domains where data is described by multiple fields of heterogeneous types

is non-trivial as they typically rely on strong metric assumptions on the data space, and do

not scale efficiently to high-dimensional data. Developingadaptive nearest-neighbor search

methods for heterogeneous data is an interesting area for future work that has applications in

blocking as well as in other tasks where retrieving approximately similar objects efficiently

is important, e.g., in classification methods and database retrieval.
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Chapter 7

Conclusions

Research presented in this thesis has focused on learning similarity functions from pairwise

supervision. We have shown that by parameterizing several popular distance functions and

learning parameter values from examples of similar and dissimilar instance pairs, we obtain

increases in accuracy of similarity computations, which lead to performance improvements

in tasks that rely on them: record linkage, semi-supervisedclustering, and blocking.

First, we have considered learning similarity functions inthe context of record link-

age where they are used for two tasks: computing similarity between individual field values

and combining these similarities across multiple fields. For field-level similarity computa-

tions, we have described two adaptive variants of affine-gapedit distance in which the costs

of string transformations are learned on a corpus of coreferent string pairs. Our approach is

based on pair HMMs, a probabilistic model for generating string alignments. Learning the

costs of affine-gap edit distance parameters allows adapting the underlying string match-

ing algorithm to each field’s domain, while using segmented pair HMMs integrates such

adaptation with performing string segmentation that is helpful in domains where strings are

composed of multiple fields from different domains.

For computing similarity between records in linkage, we have demonstrated that

Support Vector Machines (SVMs) effectively combine similarities from individual fields in

117



proportion to their relative importance. Using learnable similarity functions at both field and

record levels leads to improved results over using record-level learnable similarity functions

that combine unlearned field-level similarities.

We have proposed two strategies for selecting informative pairs of coreferent or

non-coreferent examples for training similarity functions in record linkage. One of the

proposed strategies, weakly-labeled negative selection does not require labeled supervision,

while the other, likely positive pair selection, avoids thecomputational costs of the standard

active learning methods. Both of these strategies facilitate efficient selection of training

pairs that allows learning accurate similarity functions on small training sets.

Second, we have demonstrated the utility of employing learnable similarity func-

tions in semi-supervised clustering. By incorporating similarity function learning within the

HMRF-KMEANS algorithm for semi-supervised clustering, we were able to leverage both

labeled pairwise supervision and unlabeled data when adapting the similarity functions.

Our approach allows learning individual similarity functions for different clusters which is

useful for domains where clusters have different shapes. The proposed framework can be

used with a variety of distortion (distance) functions thatinclude directional measures such

as cosine similarity, and Bregman divergences that includeEuclidean distance and Kull-

back Leibler divergence. Ablation experiments have demonstrated that the HMRF-based

approach combines the strengths of learnable similarity functions and constrained cluster-

ing to obtain significant improvements in clustering quality.

In the context of blocking, the third application we considered, we have proposed

methods for learning similarity functions that efficientlyselect approximately similar pairs

of examples. Because blocking is required for scaling record linkage and many pairwise

clustering algorithms up to large datasets, our technique shows that learnable similarity

functions can be employed not only for increasing accuracy of data mining tasks, but also

for improving their scalability. Unlike previous blockingmethods that require manual tun-

ing and hand-construction of blocking functions, our approach is adaptive as it optimizes
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the blocking function for a given domain using pairwise supervision that can be naturally

obtained in linkage and clustering tasks.

For the three tasks under consideration, we have evaluated the effectiveness of uti-

lizing learnable similarity functions, comparing their accuracy on standard benchmarks

with that of unlearned similarity functions typically usedin these tasks. Our experiments

demonstrate that learnable similarity functions effectively utilize the pairwise training data

to make distance estimates more accurate for a given domain,resulting in overall perfor-

mance improvements on the tasks.

Overall, the work presented in this thesis contributes methods leading to state-of-

the art performance on the considered tasks and provides a number of useful algorithms

for practitioners in record linkage, semi-supervised clustering, and blocking. This research

demonstrates the power of using similarity functions that can adapt to a given domain using

pairwise supervision, and we hope that it will motivate further research in trainable distance

functions, as well as encourage employing such functions invarious applications where

distance estimates between instances are required.
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