
Ph.D. Proposal, Department of Computer Sciences,
University of Texas at Austin, 1997

Relational Learning Techniques for Natural Language

Information Extraction

Mary Elaine Cali�

Department of Computer Sciences

University of Texas at Austin

Austin, TX 78712

mecali�@cs.utexas.edu

Abstract

The recent growth of online information available in the form of natural language
documents creates a greater need for computing systems with the ability to process
those documents to simplify access to the information. One type of processing appro-
priate for many tasks is information extraction, a type of text skimming that retrieves
speci�c types of information from text. Although information extraction systems have
existed for two decades, these systems have generally been built by hand and con-
tain domain speci�c information, making them di�cult to port to other domains. A
few researchers have begun to apply machine learning to information extraction tasks,
but most of this work has involved applying learning to pieces of a much larger sys-
tem. This paper presents a novel rule representation speci�c to natural language and
a learning system, Rapier, which learns information extraction rules. Rapier takes
pairs of documents and �lled templates indicating the information to be extracted and
learns patterns to extract �llers for the slots in the template. This proposal presents
initial results on a small corpus of computer-related job postings with a preliminary
version of Rapier. Future research will involve several enhancements to Rapier as
well as more thorough testing on several domains and extension to additional natural
language processing tasks. We intend to extend the rule representation and algorithm
to allow for more types of constraints than are currently supported. We also plan to
incorporate active learning, or sample selection, methods, speci�cally query by com-
mittee, into Rapier. These methods have the potential to substantially reduce the
amount of annotation required. We will explore the issue of distinguishing relevant
and irrelevant messages, since currently Rapier only extracts from the any messages
given to it, assuming that all are relevant. We also intend to run much larger tests with
Rapier on multiple domains including the terrorism domain from the third and fourth
Message Uncderstanding Conferences, which will allow comparison against other sys-
tems. Finally, we plan to demonstrate the generality of Rapier`s representation and
algorithm by applying it to other natural language processing tasks such as word sense
disambiguation.

1

1 Introduction

There has been an explosive growth in the amount of information available on networked
computers around the world, much of it in the form of natural language documents. An
increasing variety of search engines exist for retrieving such documents using keywords;
however, answering many questions about available information requires a deeper \under-
standing" of natural language. One way of providing more \understanding" is with infor-
mation extraction. Information extraction is the task of locating speci�c pieces of data from
a natural language document, and has been the focus of ARPA's MUC program (Lehnert
& Sundheim, 1991). The extracted information can then be stored in a database which
could then be queried using either standard database query languages or a natural language
database interface. However, a di�culty with information extraction systems is that they
are di�cult and time-consuming to build, and they generally contain highly domain-speci�c
components, making porting to new domains also time-consuming. Thus, more e�cient
means for developing information extraction systems are desirable.

Recent research in computational linguistics indicates that empirical or corpus-based
methods are currently the most promising approach to developing robust, e�cient natu-
ral language processing (NLP) systems (Church & Mercer, 1993; Charniak, 1993; Brill &
Church, 1996). These methods automate the acquisition of much of the complex knowledge
required for NLP by training on suitably annotated natural language corpora, e.g. treebanks
of parsed sentences (Marcus, Santorini, & Marcinkiewicz, 1993).

Most of these empirical NLP methods employ statistical techniques such as n-gram mod-
els, hidden Markov models (HMMs), and probabilistic context free grammars (PCFGs). There
has also been signi�cant research applying neural-network methods to language processing
(Reilly & Sharkey, 1992; Miikkulainen, 1993). However, there has been relatively little recent
language research using symbolic learning, although some recent systems have successfully
employed decision trees (Magerman, 1995; Anoe & Bennett, 1995), transformation rules
(Brill, 1993, 1995), and other symbolic methods (Wermter, Rilo�, & Scheler, 1996).

Given the successes of empirical NLP methods, researchers have recently begun to ap-
ply learning methods to the construction of information extraction systems (McCarthy &
Lehnert, 1995; Soderland, Fisher, Aseltine, & Lehnert, 1995, 1996; Rilo�, 1993, 1996; Kim
& Moldovan, 1995; Hu�mann, 1996). Several di�erent symbolic and statistical methods
have been employed, but most of them are used to generate one part of a larger information
extraction system. Our system Rapier (Robust Automated Production of Information Ex-
traction Rules) learns rules for the complete information extraction task, rules producing the
desired information pieces directly from the documents without prior parsing or any post-
processing. We do this by using a structured (relational) symbolic representation, rather
than learning classi�cations.

Using only a corpus of documents paired with �lled template, Rapier learns Eliza-like
patterns (Weizenbaum, 1966) that make use of limited syntactic and semantic information,
using freely available, robust knowledge sources such as a part-of-speech tagger or a lexicon.
The rules built from these patterns can consider an unbounded context, giving them an
advantage over more limited representations. This relatively rich representation requires a

2

learning algorithm capable of dealing with its complexities. Therefore, Rapier employs a
relational learning algorithm which uses techniques from several Inductive Logic Program-
ming (ILP) systems. These techniques are appropriate because they were developed to work
on a rich, relational representation (�rst-order logic clauses). Our algorithm incorporates
ideas from several ILP systems, and consists primarily of a speci�c to general (bottom-up)
search.

In this paper, we present preliminary experimental results with Rapier on a small corpus
of computer-related job postings. The precision and recall are comparable to those reported
for information extraction systems operating in a variety of domains. We believe these results
indicate that this approach shows considerable promise. We plan to test the algorithm more
thoroughly on multiple information extraction tasks and to apply the system to other areas
of natural language processing.

The remainder of this proposal is organized as follows. Section 2 presents background
material on information extraction and learning. Section 3 describes the rule representation
and Rapier's learning algorithm. Section 4 presents and analyzes preliminary results ob-
tained with Rapier. In Section 5, we outline our future research plan, including extensions
to Rapier and plans for extensive testing in multiple domains. Section 6 discusses related
work in applying learning to information extraction tasks. The �nal section discusses the
goals and signi�cance of this research.

2 Background

2.1 Information Extraction

Information extraction is the task of locating speci�c pieces of data from a natural language
document, and has been the focus of ARPA's Message Understanding Conferences (MUC)
(Lehnert & Sundheim, 1991; ARPA, 1992, 1993). Usually the data to be extracted is de-
scribed by a template specifying a list of slots to be �lled, though sometimes it is speci�ed
by annotations in the document. In either case, slot-�llers may be of two types: they may
be one of a set of speci�ed values or they may be strings taken directly from the document.
Figures 1 and 2 show paired documents and templates from information extraction tasks
in two very di�erent domains. The job posting template includes only slots that are �lled
by strings taken directly from the document, while the Latin American terrorism template
includes slots of both types.

Information extraction can be useful in a variety of domains. The various MUC's have
focused on tasks such as Latin American terrorism, joint ventures, microelectronics, and
company management changes. Others have used information extraction to track medical
patient records (Soderland et al., 1995) and to track company mergers (Hu�mann, 1996).
Another domain which seems appropriate, particularly in the light of dealing with the wealth
of online information, is to extract information from text documents in order to create easily
searchable databases from the information, thus making the wealth of text online more easily
accessible. For instance, information extracted from job postings in USENET newsgroups
such as misc.jobs.offered can be used to create an easily searchable database of jobs. Such

3

Posting from Newsgroup

Subject: US-TN-SOFTWARE PROGRAMMER

Date: 17 Nov 1996 17:37:29 GMT

Organization: Reference.Com Posting Service

Message-ID: <56nigp$mrs@bilbo.reference.com>

SOFTWARE PROGRAMMER

Position available for Software Programmer experienced in generating

software for PC-Based Voice Mail systems. Experienced in C Programming.

Must be familiar with communicating with and controlling voice cards;

preferable Dialogic, however, experience with others such as Rhetorix

and Natural Microsystems is okay. Prefer 5 years or more experience

with PC Based Voice Mail, but will consider as little as 2 years.

Need to find a Senior level person who can come on board and pick up

code with very little training. Present Operating System is DOS.

May go to OS-2 or UNIX in future.

Please reply to:

Kim Anderson

AdNET

(901) 458-2888 fax

kimander@memphisonline.com

Filled Template

computer_science_job

id: 56nigp$mrs@bilbo.reference.com

title: SOFTWARE PROGRAMMER

salary:

company:

recruiter:

state: TN

city:

country: US

language: C

platform: PC \ DOS \ OS-2 \ UNIX

application:

area: Voice Mail

req_years_experience: 2

desired_years_experience: 5

req_degree:

desired_degree:

post_date: 17 Nov 1996

Figure 1: Sample Message and Filled Template from the Job Posting Domain

4

Document

DEV-MUC3-0011 (NOSC)

LIMA, 9 JAN 90 (EFE) -- [TEXT] AUTHORITIES HAVE REPORTED THAT FORMER

PERUVIAN DEFENSE MINISTER GENERAL ENRIQUE LOPEZ ALBUJAR DIED TODAY IN LIMA

AS A CONSEQUENCE OF A TERRORIST ATTACK.

LOPEZ ALBUJAR, FORMER ARMY COMMANDER GENERAL AND DEFENSE MINISTER UNTIL

MAY 1989, WAS RIDDLED WITH BULLETS BY THREE YOUNG INDIVIDUALS AS HE WAS

GETTING OUT OF HIS CAR IN AN OPEN PARKING LOT IN A COMMERCIAL CENTER IN THE

RESIDENTIAL NEIGHBORHOOD OF SAN ISIDRO.

LOPEZ ALBUJAR, 63, WAS DRIVING HIS OWN CAR WITHOUT AN ESCORT. HE WAS SHOT

EIGHT TIMES IN THE CHEST. THE FORMER MINISTER WAS RUSHED TO THE AIR FORCE

HOSPITAL WHERE HE DIED.

Filled Template

0. MESSAGE: ID DEV-MUC3-0011 (NCCOSC)

1. MESSAGE: TEMPLATE 1

2. INCIDENT: DATE 09 JAN 90

3. INCIDENT: LOCATION PERU: LIMA (CITY): SAN ISIDRO (NEIGHBORHOOD)

4. INCIDENT: TYPE ATTACK

5. INCIDENT: STAGE OF EXECUTION ACCOMPLISHED

6. INCIDENT: INSTRUMENT ID -

7. INCIDENT: INSTRUMENT TYPE GUN: ``-''

8. PERP: INCIDENT CATEGORY -

9. PERP: INDIVIDUAL ID ``THREE YOUNG INDIVIDUALS''

10. PERP: ORGANIZATION ID -

11. PERP: ORGANIZATION CONFIDENCE -

12. PHYS TGT: ID -

13. PHYS TGT: TYPE -

14. PHYS TGT: NUMBER -

15. PHYS TGT: FOREIGN NATION -

16. PHYS TGT: EFFECT OF INCIDENT -

17. PHYS TGT: TOTAL NUMBER -

18. HUM TGT: NAME ``ENRIQUE LOPEZ ALBUJAR''

19. HUM TGT: DESCRIPTION ``FORMER ARMY COMMANDER GENERAL AND DEFENSE MI

NISTER'': ``ENRIQUE LOPEZ ALBUJAR''

20. HUM TGT: TYPE FORMER GOVERNMENT OFFICIAL / FORMER ACTIVE MIL

ITARY: ``ENRIQUE LOPEZ ALBUJAR''

21. HUM TGT: NUMBER 1: ``ENRIQUE LOPEZ ALBUJAR''

22. HUM TGT: FOREIGN NATION -

23. HUM TGT: EFFECT OF INCIDENT DEATH: ``ENRIQUE LOPEZ ALBUJAR''

24. HUM TGT: TOTAL NUMBER -

Figure 2: Sample Message and Filled Template from the MUC Terrorism Domain

5

information
extraction

 NL
messages semantic

 lexicon

database

logical
 query

 query
processor

query
parser

 NL
query

answer

Figure 3: Complete System Architecture

databases would be particularly useful as part of a complete NLP system which supported
natural language querying of the system. The architecture for such a complete system is
shown in �gure 3. A query parser can be learned using Chill (Zelle & Mooney, 1996), a
system which learns parsers from example sentences paired with their parses, and a semantic
lexicon could be produced usingWolfie (Thompson, 1995), a system which learns a lexicon
from sentences paired with their semantic representations.

Information extraction systems are generally complex, with several modules, some of
which are very domain speci�c. They usually incorporate parsers, specialized lexicons, and
discourse processing modules to handle issues such as coreference. Most information extrac-
tion systems are built entirely by hand, though a few have incorporated learning in some
modules.

2.2 Relational Learning

2.2.1 Why Symbolic Relational Learning?

Since most empirical work in natural language processing has employed statistical tech-
niques, this section discusses the potential advantages of symbolic relational learning. In
order to accurately estimate probabilities from limited data, most statistical techniques base
their decisions on a very limited context, such as bigrams or trigrams (2 or 3 word contexts).
However, NLP decisions must frequently be based on much larger contexts that include a
variety of syntactic, semantic, and pragmatic cues. Consequently, researchers have begun to
employ learning techniques that can handle larger contexts, such as decision trees (Mager-
man, 1995; Miller, Stallard, Bobrow, & Schwartz, 1996; Anoe & Bennett, 1995) or exemplar
(case-based) methods (Cardie, 1993; Ng & Lee, 1996). However, these techniques still re-
quire the system developer to specify a manageable, �nite set of features for use in making
decisions. Developing this set of features can require signi�cant representation engineering
and may still exclude important contextual information.

In contrast, relational learning methods (Birnbaum & Collins, 1991) allow induction over
structured examples that can include �rst-order logical predicates and functions and un-
bounded data structures such as lists and trees. In particular, inductive logic programming
(ILP) (Lavra�c & D�zeroski, 1994; Muggleton, 1992) studies the induction of rules in �rst-
order logic (Prolog programs). ILP systems have induced a variety of basic Prolog programs

6

(e.g. append, reverse, sort) as well as potentially useful rule bases for important bio-
logical problems (Muggleton, King, & Sternberg, 1992; Srinivasan, Muggleton, Sternberg, &
King, 1996). Detailed experimental comparisons of ILP and feature-based induction have
demonstrated the advantages of relational representations in two language related tasks, text
categorization (Cohen, 1995) and generating the past tense of an English verb (Mooney &
Cali�, 1995).

Two other advantages of ILP-based techniques are comprehensibility and the ability to
use background knowledge. The comprehensibility of symbolic rules makes it easier for the
system developer to understand and verify the resulting system and perhaps even edit the
learned knowledge (Cohen, 1996). With respect to background knowledge, ILP systems are
given Prolog de�nitions for a set of predicates that can be used in the body of learned rules.

While Rapier is not an ILP system, it is a relational learning algorithm learning a
structured rule representation, and its algorithm was inspired by ideas from ILP systems.
The ILP-based ideas are appropriate because they were designed to with rich, unbounded
representations. The following sections brie
y describe the three systems which most directly
in
uenced Rapier's algorithm.

2.2.2 Golem

Golem (Muggleton & Feng, 1992) is a bottom-up (speci�c to general) ILP algorithm based
on the construction of relative least-general generalizations, rlggs (Plotkin, 1970). The idea
of least-general generalizations (LGGs) is, given two items (in ILP, two clauses), �nding the
least general item that covers the original pair. This is usually a fairly simple computation.
Rlggs are the LGGs relative to a set of background relations. Because of the di�culties
introduced by non-�nite rlggs, background predicates must be de�ned extensionally. The
algorithm operates by randomly selecting several pairs of positive examples and computing
the determinate rlggs of each pair. Determinacy constrains the clause to have for each
example no more than one possible valid substitution for each variable in the body of the
clause. The resulting clause with the greatest coverage of positive examples is selected, and
that clause is further generalized by computing the rlggs of the selected clause with new
randomly chosen positive examples. The generalization process stops when the coverage of
the best clause no longer increases.

2.2.3 Chillin

The Chillin (Zelle & Mooney, 1994) system combines top-down (general to speci�c) and
bottom-up ILP techniques. The algorithm starts with a most speci�c de�nition (the set of
positive examples) and introduces generalizations which make the de�nition more compact.
Generalizations are created by selecting pairs of clauses in the de�nition and computing
LGGs. If the resulting clause covers negative examples, it is specialized by adding antecedent
literals in a top-down fashion. The search for new literals is carried out in a hill-climbing
fashion, using an information gain metric for evaluating literals. This is similar to the search
employed by Foil (Quinlan, 1990). In cases where a correct clause cannot be learned with
the existing background relations, Chillin attempts to construct new predicates which

7

will distinguish the covered negative examples from the covered positives. At each step, a
number of possible generalizations are considered; the one producing the greatest compaction
of the theory is implemented, and the process repeats. Chillin uses the notion of empirical
subsumption, which means that as new, more general clauses are added, all of the clauses
which are not needed to prove positive examples are removed from the de�nition.

2.2.4 Progol

Progol (Muggleton, 1995) also combines bottom-up and top-down search. Using mode
declarations provided for both the background predicates and the predicate being learned,
it constructs a most speci�c clause for a random seed example. The mode declarations
specify for each argument of each predicate both the argument's type and whether it should
be a constant, a variable bound before the predicate is called, or a variable bound by the
predicate. Given this most speci�c clause, Progol employs a A*-like search through the set
of clauses containing up to k literals from that clause in order to �nd the simplest consistent
generalization to add to the de�nition. Advantages of Progol are that the constraints
on the search make it fairly e�cient, especially on some types of tasks for which top-down
approaches are particularly ine�cient, and that its search is guaranteed to �nd the simplest
consistent generalization if such a clause exists with no more than k literals. The primary
problems with the system are its need for the mode declarations and the fact that too small
a k may prevent Progol from learning correct clauses while too large a k may allow the
search to explode.

2.3 NLP Resources

Part of the purpose of this research is to make use of the available resources for natural
language processing to provide syntactic and semantic information rather than spending
human time developing specialized parsers or lexicons. We plan to use two primary types of
existing systems. For basic syntactic information we are employing a part-of-speech tagger, a
program which takes sentences as input and labels each word or symbol in the sentence with
a part-of-speech tag (eg. noun, verb, adjective, preposition). This doesn't provide as much
information as a parser, but a tagger is faster and more robust than a full parser. At present
we are using Eric Brill's tagger as trained on a Wall Street Journal corpus (Brill, 1994). One
advantage to this particular tagger is that it can be trained on a new domain to improve
performance. For semantic information, we plan to employ a domain-independent lexicon
which includes a semantic hierarchy, possibly supplemented by domain speci�c lexicons.
Initially, we plan to use WordNet (Miller, Beckwith, Fellbaum, Gross, & Miller, 1993), a
lexical database of over 50,000 words which contains a semantic hierarchy in the form of
hypernym links.

8

Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:
1) word: leading 1) list: max length: 2 1) word: [�rm, company]

syntactic: [nn, nns]

Figure 4: A Rule Extracting an Area Filler

3 Rapier Algorithm

3.1 Rule Representation

Rapier's rule representation uses Eliza-like patterns (Weizenbaum, 1966) that make use of
limited syntactic and semantic information. For the initial implementation, we did not use a
parser, primarily because of the di�culty of producing a robust parser for unrestricted text
and because simpler patterns of the type we propose can represent useful extraction rules for
at least some domains. The extraction rules are indexed by template name and slot name
and consist of three parts: 1) a pre-�ller pattern that matches text immediately preceding
the �ller, 2) a pattern that must match the actual slot �ller, and 3) a post-�ller pattern that
must match the text immediately following the �ller. Each pattern is a sequence (possibly
of length zero in the case of pre- and post-�ller patterns) of pattern items or pattern lists. A
pattern item matches exactly one word or symbol from the document that meets the item's
constraints. A pattern list speci�es a maximum length N and matches 0 to N words or
symbols from the document that each must match the list's constraints. Possible constraints
are: a list of words, one of which must match the document item; a list of part-of-speech
(POS) tags, one of which must match the document item's POS tag; a list of semantic classes,
one of which must be a class that the document item belongs to; or the negation of each of
the above: lists of words, tags, or semantic classes, none of may match the document item.
Figure 4 shows a rule created by hand that extracts the area �ller (telecommunications)
from an example document containing a phrase such as \Leading telecommunications �rm
in need of . . .". The values nn and nns for the syntactic constraint indicate that the
matching words must be tagged as a common noun or a plural common noun.

3.2 Learning Algorithm

Rapier, as noted above, is inspired by ILP methods, particularly by Golem, Chillin, and
Progol, and primarily consists of a speci�c to general (bottom-up) search. Like Chillin,
Rapier begins with a most speci�c de�nition and then attempts to compact that de�nition
by replacing rules by more general rules. Therefore, for each slot, most-speci�c patterns are
created from each �ller for that slot in each example, specifying word and tag for the �ller
and its context, the context being the entire document. Thus, the pre-�ller pattern contains
an item for each word from the beginning of the document to the word immediately preceding
the �ller with constraints on the item consisting of the word and its POS tag. Likewise, the
�ller pattern has one item from each word in the �ller, and the post-�ller pattern has one
item for each word from the end of the �ller to the end of the document.

9

Given this maximally speci�c rule-base, Rapier attempts to compress and generalize
the rules for each slot. New rules are created by selecting two existing rules and creating a
generalization. The aim is to make small generalization steps, covering more positive exam-
ples without covering negatives, so a standard approach would be to generate the LGG of
the pair of rules. However, in this particular representation which allows for unconstrained
disjunction, the LGG may be overly speci�c. Therefore, in cases where the LGG of two
constraints is their disjunction, we want to create two generalizations: one would be the
disjunction and the other the removal of the constraint. Thus, we often want to consider
multiple generalization of a pair of items. This, combined with the fact that patterns are
of varying length, making the number of possible generalizations of two long patterns ex-
tremely large, makes the computational cost of producing all interesting generalizations of
two complete rules prohibitive. But, while we do not want to arbitrarily limit the length of a
pre-�ller or post-�ller pattern, it is likely that the important parts of the pattern will be close
to the �ller. Therefore, we start by computing the generalizations of the �ller patterns of the
two rules and create rules from those generalizations. We maintain a list of the best n rules
created and specialize the rules under consideration by adding pieces of the generalizations
of the pre- and post-�ller patterns of the two seed rules, working outward from the �llers.
The rules are ordered using an information value metric (Quinlan, 1990) weighted by the
size of the rule (preferring smaller rules):

ruleV al = �log2(p=(p + n)) + ruleSize=10

where p is the number of correct �llers extracted by the rule. Because in this type of task
there are no provided negative examples, we use a notion of implicit negatives and count the
number of spurious �llers a rule extracts from the training examples as n. The size of the
rule is computed using a simple heuristic, counting 1 for each constraint disjunct, 2 for each
pattern item, and 3 for each pattern list. The rule size is divided by 10 simply to keep the
values commensurate with the information value since the purpose of the size component is
simply to encourage the system to prefer more general rules, especially to prefer the smaller
rule in the case where two rules have the same information value. When the best rule under
consideration produces no negative examples, specialization ceases; that rule is added to
the rule base, and all rules empirically subsumed by it are removed. Specialization will be
abandoned if the value of the best rule does not improve across k specialization iterations.
Compression of the rule base for each slot is abandoned when the number of successive
iterations of the compression algorithm which fail to produce a compressing rule exceed
either a pre-de�ned limit or the number of rules for that slot. An outline of the algorithm
appears in Figure 5 where RuleList is a prioritized list of no more than Beam-Width rules.
The search is somewhat similar to a beam search in that a limited number of rules is kept
for consideration, but all rules in RuleList are expanded at each iteration, rather than only
the best.

As an example of the creation of a new rule, consider generalizing the rules based on the
phrases \located in Atlanta, Georgia." and \o�ces in Kansas City, Missouri." The rules
created from these phrases for the city slot would be

10

Initialization
AllRules = most speci�c rules from example documents

For each slot, S in the template being learned
SlotRules = rules in AllRules for S
while compression has failed fewer than lim times

randomly select 2 rules, R1 and R2, from S

�nd the set L of generalizations of the �llers of R1 and R2

create rules from L, evaluate them, and initialize RuleList

let n = 0
while best rule in RuleList produces spurious �llers and the weighted

information value of the best rule is improving
increment n
specialize each rule in RuleList with generalizations of the last n

items of the pre-�ller patterns of R1 and R2 and
add specializations to RuleList

specialize each rule in RuleList with generalizations of the �rst n
items of the post-�ller patterns of R1 and R2 and
add specializations of RulesList

if best rule in RuleList produces only valid �llers
Add it to SlotRules and AllRules and remove empirically subsumed rules

Figure 5: Rapier Algorithm for Inducing Information Extraction Rules

11

Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:
1) word: located 1) word: atlanta 1) word: ,

tag: vbn tag: nnp tag: ,
2) word: in 2) word: georgia

tag: in tag: nnp
3) word: .

tag: .

and

Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:
1) word: o�ces 1) word: kansas 1) word: ,

tag: nns tag: nnp tag: ,
2) word: in 2) word: city 2) word: missouri

tag: in tag: nnp tag: nnp
3) word: .

tag: .

The �llers are generalized to produce two possible rules with empty pre-�ller and post-�ller
patterns. Because one �ller has two items and the other only one, they generalize to a list
of no more than two words. The word constraints generalize to either a disjunction of all
the words or no constraint. The tag constraints on all of the items are the same, so the
generalized rule's tag constraints are also the same. Since the three words do not belong
to a single semantic class in the lexicon, the semantics remain unconstrained. The �llers
produced are:

Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:
1) list: max length: 2

word: [atlanta, kansas, city]
tag: nnp

and

Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:
1) list: max length: 2

tag: nnp

Either of these rules is likely to cover spurious examples, so we add pre-�ller and post-
�ller generalizations. The items produced from the \in"'s and the commas are identical
and, therefore, unchanged. Assuming that our lexicon contains a semantic class for states,
generalizing the state names produces a semantic constraint of that class along with a tag
constraint nnp and either no word constraint or the disjunction of the two states. Thus, a
�nal best rule would be:

Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:
1) word: in 1) list: max length: 2 1) word: ,

tag: in tag: nnp tag: ,
2) tag: nnp

semantic: state

12

4 Experimental Evaluation

This section presents preliminary results obtained with the current version of Rapier on
computer-related job posting domain.

The task we have chosen for initial tests of Rapier is to extract information from
computer-related job postings that could be used to create a database of available jobs.
The computer-related job posting template contains 17 slots, including information about
the employer, the location, the salary, and job requirements. Several of the slots, such as
the languages and platforms used, can take multiple values. All of the slots take values that
are strings taken directly the text, since Rapier does not yet handle the other type of slots.
The current results do not employ semantic categories, only words and the results of Brill's
POS tagger. It also does not use negative constraints.

The experiments presented here use a data set of 100 documents paired with �lled tem-
plates. The average document length is over 200 words. We did a ten-fold cross-validation,
dividing the data into 10 distinct testing sets and training on the remaining 90 documents.
To evaluate the performance of the system with varying amounts of training data, we also
ran tests with smaller subsets of the training examples for each test set and produced learn-
ing curves. Tests of machine learning systems usually measure simple accuracy: the number
of examples that are correctly classi�ed. In this type of task, however, since we don't have
a set number of examples to be classi�ed, simple accuracy has no clear meaning. There
are really two measures which are important: precision, which is the percentage of the slot
�llers which the system �nds which are correct, and recall, which is the percentage of the
slot �llers in the correct templates which are found by the system. If both precision and
recall are 100%, then the results are completely correct. Lower precision indicates that the
system is producing spurious �llers: that its rules are overly general. Lower recall indicates
that the system is failing to �nd correct �llers: that its rules are too speci�c. Recent MUC
conferences have introduced an F-measure (ARPA, 1992), combining precision and recall
in order to provide a single number measurement for information extraction systems. We
report the precision, recall, and F-measure with precision and recall weighted equally. For
these experiments, we used the default values for all parameters of the Rapier algorithm: a
beam-width of 10, stopping after 5 failures to compress, and abandoning specialization after
3 specialization iterations fail to produce a new best rule.

Figure 6 shows the performance of Rapier on the test data. At 90 training examples,
the average precision was 83.7% and the average recall was 53.1%. These numbers look
quite promising when compared to the measured performance of other information extrac-
tion systems on various domains. This performance is comparable to that of Crystal on
a medical domain task (Soderland et al., 1996), and better than that of AutoSlog and
AutoSlog-TS on part of the MUC4 terrorism task (Rilo�, 1996). It also compares favor-
ably with the typical system performance on the MUC tasks (ARPA, 1992, 1993). All of
these comparisons are only general, since the tasks are di�erent, but they do indicate that
Rapier is doing relatively well.

It should be noted that the precision is close to 80% even with only 15 example documents.
The \bottom-up" nature of the algorithm, coupled with the fact that the algorithm does

13

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90

P
er

ce
nt

Training Examples

Precision
Recall

F-Measure

Figure 6: Performance on job postings

not allow coverage of negatives, encourage it to create fairly speci�c rules, leading to this
high precision. While the recall is less encouraging, it is likely that recall with continue to
improve as the number of training examples increases.

The rules Rapier learns are of several di�erent types. Some are fairly simple memoriza-
tions of words or phrases that consistently appear in particular slots: these include things
like programming languages and operating systems. For example, AIX and MVS always �ll
the platform slot when they appear, so one rule for that slot is:

Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:
1) word: [aix, mvs]

tag: nnp

This constrains the �ller to be either aix or mvs, tagged as a proper noun. Some rules
memorize particular words or phrases but also require them to be in speci�c contexts, because
the phrase may appear in circumstances where it is not a valid �ller.

Clearly, mere memorization of words and phrases is seldom interesting, and other rules
learn the context of the �ller, usually also constraining the parts of speech of the �ller. One
example of this is the following rule for extracting slot �llers for area:

Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:
1) word: [knowledge, areas] 1) list: max length: 3 1) word: [technology,',']
2) tag: in tag: [nnp, nn] 2) tag: [endsent, nnp]

endsent is a token added by the system to denote the ends of sentences (or other distinct
fragments of text) since these may not be denoted by punctuation in netnews postings.

14

5 Future Research

We plan to address a number of issues in future research. These fall into three primary
areas. First there are several enhancements which we plan to make to Rapier's algorithm.
We also plan to incorporate active learning into the Rapier system in order to reduce both
the work involved in tagging corpora and the amount of training data needed to achieve
acceptable levels of performance. Next, we wish to do far more extensive evaluations of
Rapier on both the job postings domain and additional domains. Finally, we intend to
explore the applicability of Rapier's representation and basic algorithm to other natural
language processing tasks. Each of these areas of future research is discussed in some detail
below.

5.1 Enhancing Rapier

The version of Rapier described thus far is a preliminary implementation, and we plan
several enhancements. First, an examination of the rules produced byRapier indicates that
the decision to select a single random pair at a time from which to produce generalizations
was probably unwise. This was done because each pair of rules can generate a large number of
potential generalizations. However, while some rules produced by the system are clearly good
generalizations covering a number of examples, others are simply disjunctions of completely
unrelated items. As an example, one rule produced the following rule for the area slot:

Pre-�ller Pattern: Filler Pattern: Post-�ller Pattern:
1) word: [experience, +] 1) list: max length: 3 1) word: [and, oop]
2) tag: [endsent, sym] : [:, nnp, njj, n] 2) word: [data, rt]

Clearly, this rule is the result of generalizing two fairly unrelated examples, and it is not an
intuitively good generalization. Studies of traces of the algorithm show that a lot of time
and e�ort is wasted exploring pairs of rules that have no hope of producing a useful new rule.
Therefore, we intend to modify the algorithm to be more similar to Golem and Chillin,
starting with several randomly selected pairs of rules instead of a single pair. This should
help the algorithm to �nd more useful pairs of rules to generalize.

Second, although mechanisms for dealing with semantic constraints are present in the
system, we have not yet implemented an interface to a lexicon to provide the semantic
information needed to make use of semantic constraints. We plan to connect the system
to WordNet initially, since this is a freely available lexicon which can provide the kind of
semantic information we're looking for. We may also use domain-speci�c sources of semantic
information such as dictionaries of places, companies, programming languages, etc. Besides
using a lexicon to introduce semantic constraints, we plan to allow the algorithm to create
semantic classes. If a single pattern item had a word constraint consisting of the disjunction of
a long list of words, a new semantic class would be created whose memberwords would consist
of the words in the word constraint, and the constraint would be replaced by a semantic
constraint. This semantic class would then be available to the system as it generalized
other rules. The development of this \new" background knowledge is analogous to predicate

15

invention in ILP (Kijsirikul, Numao, & Shimura, 1992; Zelle & Mooney, 1994). It would be
interesting also to attempt to incorporate new words into an existing semantic class. For
example, we might have a semantic class consisting of programming languages which we
would like to expand automatically to incorporate new languages.

Another addition we plan for the algorithm is to add negative constraints: that is words,
tags, or semantic classes that must not appear in the text matching the item or list with the
constraint. These constraints would be found by comparing correct �llers found by a rule
with the spurious �llers it produces and producing constraints from elements of the spurious
�llers. Constraints the match a large percentage of the spurious �llers, but none, or few, of
the correct �llers would be added to the rule, and the resulting new rule(s) would be added
to the list of considered rules.

We may also extend Rapier`s rule representation in other ways. One possibility that
we've considered is incorporating morphological information. To do this, we would use
the morphological functions in WordNet and then allow for constraints on the roots and
in
ections of words as well as on the surface form of the word. We may also consider
using some form of syntactic parsing eventually. In order to use this information, we can
simply use pattern elements that are syntactic phrases such as \noun phrase," \subject" or
\prepositional phrase," along with the single word and arbitrary lists that the representation
currently employs.

We also plan to explore alternate rule evaluation metrics. The current metric for eval-
uating rules is based on the information value of the rule penalized by the size of the rule.
We would like to explore variations on this metric. We would also like to explore metrics
based on the minimum description length (MDL) principle(Quinlan & Rivest, 1989). The
idea behind MDL is that the \best" generalization is one that minimizes the size of the
description of the data. Thus, in developing a theory that describes data, an MDL metric
seeks to minimize the size of the theory plus the corrections to the theory to handle ex-
amples not correctly handled by the theory (usually simply the examples not yet covered).
The di�culty of using MDL is that we will have to determine how to calculate the size of
corrections for spurious �llers produced. We wish to determine empirically whether any of
these metrics seems to have an advantage over the others in the domains we're examining.
We may also explore the possibility of allowing for noise and accepting rules which produce
a few spurious �llers if they also cover a large number of postives. One advantage of the
MDL metric is that it does allow for noise handling, but we may also want to look at other
metrics which are better for handling noise (Lavra�c & D�zeroski, 1994).

There are also several parameters to the system which should be empirically tuned.
These parameters include the width of the beam in the beam search, the number of failures
to improve the best rule in the beam allowed before the search is terminated, and the number
of failures to �nd a new rule to compress the rule base before compression of rules for a slot
is abandoned. In all these cases, increasing the size of the parameter might lead to better
rule bases and will lead to longer training times. The values used in the trials presented here
have been simply choices that seemed reasonable default values, but these parameters have
not been tested to see where the ideal tradeo� seems to fall.

16

As discussed above, the current Rapier system only extracts values that are strings
taken directly from the original document text. However, for some tasks, it may be more
appropriate to select one of a pre-speci�ed set of values. Several slots in the terrorism
task template are of this type: the type of incident, the stage of execution of the incident
(accomplished, attempted, or threatened), the category of instrument used (gun, bomb,
grenade, etc.), and the category of the physical target, among others. It should be possible
to extend the algorithm to handle extracting values of this type. Changes to the system itself
should be relatively straightforward. First, the rule representation would need to be modi�ed
to include the value to be extracted, which would be either the value from the set in the case
of the pre-de�ned set of values or an indication that the string matching the �ller pattern is
the value to be extracted (the case handled currently). Second, the generalization process
would need to be modi�ed slightly to take into account the value to extracted. Clearly
the only interesting pairs of rules to generalize are those which extract the same value or
which both extract a string from the document. Finally, the training data provided to the
system would need some extension. Besides the actual value to be extracted, the system
needs to know what portion of the document it should create patterns from to extract that
value. In the case of strings taken from the document, this is very straightforward: we
simply use all occurrences of the string in the document to anchor rules. In other cases,
however, the value and the portion of the document which should anchor the rule must
both be speci�ed. For example, a rule that identi�es the stage of execution of a terrorist
incident as \accomplished" might be anchored by the phrase \HAVE BEEN KIDNAPPED"
or \THE MASS KIDNAPPING TOOK PLACE" since these are points in the document
which indicate that the incident was, in fact, accomplished rather than merely attempted
or threatened. The anchor is necessary to provide the Rapier heuristics a starting point to
work from. We may, however, explore the possibility of �nding words or phrases common to
documents sharing a particular slot value but rare in other documents as AutoSlog-TS
does(Rilo�, 1996), and then using those words or phrases as anchors for rules.

A �nal issue which we need to address in theRapier system is that of identifying relevant
documents. In the experiments presented here, all of the documents for training and testing
are relevant for the task, i.e. all are job postings about a computer-related job. However,
a fully automated system will have to deal with both relevant and irrelevant documents,
or with choosing the relevant template to use: eg. given a job posting, the system might
need to categorize it as a computer-related job, an engineering job, some other kind of job
posting, or an irrelevant post.

The Rapier system as it now stands does not address this issue, but we have considered
a few di�erent alternatives as to how to deal with it. One option is to run each document
though Rapier's extraction rules for all possible templates and then use the results of the
extraction to determine which template, if any, is appropriate for the document. Presumably
the most relevant template would have the highest percentage of slots �lled, and documents
which are completely irrelevant should have very few slots �lled. However, the system would
probably need to learn which slots were actually useful in making the relevance decisions.
Some slots might be highly speci�c to a particular template, while others might be easily
�lled even for irrelevant documents. For example, the date a job o�ering was posted is useful
information to extract, but it is information that will be extracted for any netnews post.

17

Being able to extract a �ller for the number of years of experience required is strong evidence
that the message is a job posting, but does nothing to distinguish a computer job from any
other kind of job.

A second option for dealing with the issue of distinguishing between relevant and irrele-
vant documents and for determining which of a set of templates is most appropriate would be
to use standard information retrieval techniques (Salton, 1989; Frakes & Baeza-Yates, 1992)
to classify the documents initially and then to pass the document on to the information
extraction system, the decision as to which template to use having already been made.

Finally, we might try to extend Rapier to handle the document classi�cation task as a
separate slot with �xed values. The primary di�culty here may be the issue of anchoring
the rules, since it does not seem feasible to have a person identify a particular portion of
each document that is the right place to anchor a rule determining the classi�cation of the
document. However, the idea of �nding phrases that distinguish particular �ller values and
using that phrases to anchor rules, as described above, would alleviate this problem.

All of these options seem potentially viable, though all have weaknesses as well as
strengths. Empirical tests will be required to determine what the best method of handling
the classi�cation issue is.

5.2 Active Learning

In addition to the above, we intend to use active learning techniques, speci�cally selective
sampling (Cohn, Atlas, & Ladner, 1994; Lewis & Catlett, 1994; Dagan & Engelson, 1995), to
reduce annotation e�ort. Not all training examples are equally useful to a learning system,
and by carefully selecting useful examples, annotation e�ort can be dramatically reduced.
This approach has been successfully used in training part-of-speech taggers (Engelson &
Dagan, 1996), and we believe that it will be helpful in the information extraction domain,
as well.

Active learning involves constructing or selecting informative training examples rather
than passively accepting them. Since raw text is widely available, sample selection, choosing
a subset of examples to annotate from an unanalyzed corpus, is the style of active learning
most useful for natural language applications (Engelson & Dagan, 1996). In committee-based
sampling, the learner maintains multiple de�nitions consistent with the current training data
(i.e. multiple elements of the version space (Mitchell, 1982)), categorizes unlabelled exam-
ples with each de�nition, and selects for labelling those examples with the most disagreement
amongst the \committee members" (Seung, Opper, & Sompolinsky, 1992; Cohn et al., 1994).
By singling out only such potentially informative examples for annotation, equivalent accu-
racy can be gained from labelling signi�cantly fewer examples compared to random selection.

We intend to apply selective sampling by using a version of Query by Committee (Seung
et al., 1992):

Initialize the committee to two hypotheses formed from some initial labelled data
For each unlabelled example do

If the two committee members disagree on its label

18

Then Request the label of the example, add it to the training set, a nd
Update the two hypotheses to be consistent with all current training data

Alternatively, a larger committee can be used and each example selected for annotation with
a probability proportional to the amount of disagreement over its label (Engelson & Dagan,
1996). Since the learning algorithm is not incremental, retraining after each selected example
may be too time consuming, so samples will probably need to be selected in batches (Lewis
& Catlett, 1994).

Since Rapier employs a random sampling of pairs as seeds to the bottom-up generaliza-
tion algorithm, committee member can be generated by using di�erent random samples. In
order to more fairly sample the version space and avoid over-agreement, it may be prefer-
able to encourage one hypothesis to be quite speci�c and the other to be quite general, as
in (Cohn et al., 1994). Since the induction algorithm performs a combination of top-down
and bottom-up search, it should be possible to alter these in various ways to control the
generality of the learned rules. One option might be to require a certain level of compression
of the rules for each slot and thus vary the level of compression in the two rule sets.

In information extraction, each slot can be treated separately since the user can be asked
to provide only the values for some slots for a message. However, if a value for a slot is not
found by any of the committee members, it may be because it appears in a novel context
which is not recognized by any of the learned rules, as opposed to being truly absent. This
is particularly likely given the tendency of the Rapier algorithm to produce rules with
high precision but relatively low recall. Consequently, even for examples where committee
members agree there is no �ller for a particular slot, we propose to probabilistically request
the value of the slot according to the a priori probability that messages provide a value for
this slot (as determined from the existing training data).

Besides using active learning to reduce annotation e�orts, we propose to test the useful-
ness of the active learning techniques by comparing the performance of the system as trained
on sets of randomly selected examples to the performance when selective sampling is used
to build a training set of the same size. We believe that the use of active learning may be
valuable for helping to raise recall more quickly. The learning curve shows that in the job
postings domain, Rapier clearly learns some very useful rules from only a few examples,
but then other more sparsely represented cases require much more data. Active learning
would eliminate the new examples that �t those common, easily learned cases and focus the
learning on the less common ones.

5.3 Extension to Additional Domains

One of the important reasons for building an information extraction system which learns
rules from data is that it should be easy to apply the system to multiple domains. Therefore,
an important part of our research will be demonstrating that the system does work within
multiple domains.

One way in which we will expand the testing of the system will be to incorporate addi-
tional types of jobs into the job postings database. Our intention is to create information

19

extraction templates for several additional types of jobs that are commonly posted, such as
engineering jobs and also to create a general job template which would provide information
for job postings that don't fall into any of the more speci�c categories.

Another domain we wish to examine is that of Latin American terrorism as used in the
Third and Fourth Message Understanding Conferences. The data for this domain consist of
1700 documents plus the �lled templates for those documents. About half of the documents
are considered irrelevant for the task. There are 25 slots in the templates; seven of these are
�lled by taking strings directly from the original text. We plan to do experiments involving
these seven slots initially, and then to experiment with the full templates after Rapier is
modi�ed to handle other types of slot �llers. We feel that these experiments are important
as an opportunity to compare the performance of an information extraction system which
learns its rules to systems which were hand-built.

We also plan to look for additional domains to apply Rapier to. We are considering
additional types of newsgroups. We also believe that there may be appropriate applications
involving web pages. For example, intelligent agents for searching the web might be looking
for speci�c types of information (eg. products and their prices in the case of a shopping
agent). Rules of the type learned by Rapier may be appropriate for extracting this needed
information from pages, in which case the system could be used to learn the rules.

5.4 Extension to Other Natural Language Processing Tasks

We believe that the representation used by Rapier as well as the basic algorithm will also
prove useful for natural language processing tasks other than information extraction. One
such task is learning rules for word sense disambiguation. This task seems particularly
appropriate because it can be easily mapped into the current system. A template would be
created for the word to be disambiguated, with the template slots being the various senses
of the word. The �ller in all cases would be the word. The system would then learn pre-�ller
and post-�ller patterns that would select the word only if it had the desired sense. Of course,
the content of the �ller would be the same in all rules for each word, and the interesting
result of running the rules would be determining which sense of the word had a �ller selected
for it. An alternative way to map the word sense disambiguation task to the information
extraction task would be to have the template consist of a single slot with a �xed set of values
(the possible word senses). We intend to run some experiments with word disambiguation
corpora that have been used with other learning systems (Mooney, 1996) to see whether
Rapier's representation and algorithm are successful at this task.

We also hope to �nd additional natural language processing tasks for which our repre-
sentation and algorithm seem appropriate. One possibility would be text classi�cation using
patterns automatically anchored as described above for �xed-value slots. Good text classi-
�cation may, however, require that multiple patterns anchored in di�erent parts of the text
be learned for a single rule.

20

6 Related Work

Previous researchers have generally applied machine learning only to pieces of the infor-
mation extraction task and their systems have typically required more human interaction
than just providing texts with �lled templates. One of the earliest attempts to use learning
in an information extraction system was AutoSlog (Rilo�, 1993). AutoSlog creates a
dictionary of extraction patterns by specializing a set of general syntactic patterns. These
patterns are used by a larger information extraction system including a parser and a dis-
course analysis module. AutoSlog has two major drawbacks. First, it requires a human
expert to examine the patterns that it produces to determine which should be kept in the
extraction pattern dictionary. Thus, it is speeding up the construction of the dictionary, but
not fully automating it. Second, the specialization of the set of general patterns is done by
looking at one example at a time. It doesn't take into account the number of other correct
examples the specialization might also cover, or the number of times in the sample data that
the pattern could trigger incorrectly. This is one reason why a human expert is necessary
to examine the validity of the patterns generated. A newer version{AutoSlog-TS (Rilo�,
1996){generates potentially useful patterns by using statistics about those patterns matching
relevant and irrelevant documents. This system has better precision tha AutoSlog because
it does rely on scoring patterns based on the number of times they appear in the documents,
but it does not use templates or annotation at all. A human must determine which slot a
given extraction pattern is for, and as with the earlier system a human must go through the
generated patterns and select those that will actually be used by the system.

Crystal (Soderland et al., 1995, 1996) is a more recent attempt to apply machine learn-
ing to the creation of information extraction patterns. Its training instances are created
by a sentence analyzer which identi�es syntactic constituents such as subject, verb, object
and tags each word with a semantic class. Crystal also requires a semantic hierarchy for
the domain and a lists of concepts for the domain. Like AutoSlog, Crystal's extraction
patterns are syntactically based; the \concept de�nitions" consist of constraints on the syn-
tactic constituents of an instance. The constraints can be on such things as words appearing
in the constituent, semantic class, or the root of a verb. The de�nition also indicates what
constituent(s) of the instance are to be extracted for what slots. Crystal generalizes its
initial concept de�nitions by taking a seed instance and relaxing the constraints on its con-
stituents to cover additional instances that extract the same slots. Generalization ends when
too many negative examples will be covered by further relaxation of the constraints.

Another system that learns information extraction patterns is Palka (Kim & Moldovan,
1995). Palka represents it rules as FP-structures, which constrain the root of the verb and
have semantic constraints on the phrases to be extracted. It generalizes and specializes the
rules by moving up and down in a semantic hierarchy or adding disjunctions of semantic
classes. Palka's representation is limited by its inability to place word constraints on noun
or prepositional phrases, and by its failure to place semantic constraints on any noun or
prepositional phrases that are not to be extracted. Like the previous systems, Palka relies
on prior sentence analysis to identify syntactic elements and their relationships.

Liep (Hu�mann, 1996) also learns information extraction patterns. In many ways, Liep
functions like AutoSlog except that it learns only patterns that extract multiple slots,

21

rather than a single slot per pattern. Liep's extraction rules have syntactic constraints on
pair-wise syntactic relationship between sentence elements. It �nds the relationships that
link elements to be extracted, adding non-extracted elements as need to form a path between
the extracted elements. Extraction patterns also contain semantic constraints, but these are
not generalized. The learning algorithm uses seed examples, proposing up to three rules
from each example. Liep tests each rule on the training set and keeps the one with the
best F-measure. Liep's primary limitations are that it also requires a sentence analyzer to
identify noun groups, verbs, subjects, etc.; it makes little use of semantic information; and
it assumes that all information it needs is between two entities to be extracted.

Two primary things distinguish Rapier from other systems that learn extraction pat-
terns. First, Rapier is intended to handle the information extraction task on its own, rather
than being a part of a larger information extraction system. All of these systems require a
sentence analyzer, and most require later parts of the full information extraction system to
clean up their output. Crystal and Palka require domain-speci�c semantic hierarchies.
On the other hand, we use only freely available taggers and lexicons and do not do any
post-processing of Rapier`s output.

The second distinguishing characteristic is Rapier's learning algorithm. Of the systems
described, only Crystal uses generally applicable machine learning techniques to create
generalizations of the training examples. AutoSlog uses a set of heuristics to create gener-
alizations from single examples, but it does not evaluate those generalizations on the training
set and thus makes no guarantees about the performance of its patterns on the training data.
Liep does evaluate the generalizations it proposes based on their coverage of the training ex-
amples, but it simply proposes three generalizations based on one example and picks the best
of those; thus, it doesn't really make use of the other training examples in its generalization
process. Palka does use training examples to guide its generalization and specialization, but
its algorithm is highly domain speci�c since generalization and specialization consist entirely
in moving up and down within a domain-speci�c semantic hierarchy or adding disjunctions
of semantic classes. Rapier is based on general relational learning techniques, and while its
representation is speci�c to domains that can be represented as strings, we believe that it
will prove to be applicable to NLP tasks other than information extraction.

7 Conclusion

The ability to extract desired pieces of information from natural language texts is an impor-
tant task with a growing number of potential applications. Tasks requiring locating speci�c
data in newsgroup messages or web pages are particularly promising applications. Manu-
ally constructing such information extraction systems is a laborious task; however, learning
methods have the potential to help automate the development process. The Rapier system
described in this proposal uses relational learning to construct unbounded pattern-match
rules for information extraction given only a database of texts and �lled templates. The
learned patterns employ limited syntactic and semantic information to identify potential
slot �llers and their surrounding context. Results on extracting information from news-
group jobs postings have shown that for one realistic application, fairly accurate rules can

22

be learned from relatively small sets of examples. Future enhancements to Rapier include
improvements to the learning algorithm, the incorporation of more semantic information,
and the incorporation of active learning techniques. Rapier with be tested on additional
information extraction tasks, including some in which its performance can be more directly
compared to other information extraction systems. Finally, Rapier will be applied to other
areas of natural language processing.

References

Anoe, C., & Bennett, S. W. (1995). Evaluating automated and manual acquisition of
anaphora resolution strategies. In Proceedings of the 33rd Annual Meeting of the As-
sociation for Computational Lenguistics, pp. 122{129 Cambridge, MA.

ARPA (Ed.). (1992). Proceedings of the Fourth DARPA Message Understanding Evaluation
and Conference, San Mateo, CA. Morgan Kaufman.

ARPA (Ed.). (1993). Proceedings of the Fifth DARPA Message Understanding Evaluation
and Conference, San Mateo, CA. Morgan Kaufman.

Birnbaum, L. A., & Collins, G. C. (Eds.). (1991). Proceedings of the Eighth International
Workshop on Machine Learning: Part VI Learning Relations, Evanston, IL.

Brill, E. (1993). Automatic grammar induction and parsing free text: A transformation-
based approach. In Proceedings of the 31st Annual Meeting of the Association for
Computational Linguistics, pp. 259{265 Columbus, Ohio.

Brill, E. (1995). Transformation-based error-driven learning and natural language processing:
A case study in part-of-speech tagging. Computational Linguistics, 21 (4), 543{565.

Brill, E., & Church, K. (Eds.). (1996). Proceedings of the Conference on Empirical Methods
in Natural Language Processing. University of Pennsylvania, Philadelphia, PA.

Brill, E. (1994). Some advances in rule-based part of speech tagging. In Proceedings of the
Twelfth National Conference on Arti�cial Intelligence.

Cardie, C. (1993). A case-based apprach to knowledge acquisition for domain-speci�c sen-
tence analysis. In Proceedings of the Eleventh National Conference on Arti�cial Intel-
ligence, pp. 798{803.

Charniak, E. (1993). Statistical Language Learning. MIT Press.

Church, K., & Mercer, R. L. (1993). Introduction to the special issue on computational
linguistics using large corpora. Computational Linguistics, 19 (1), 1{24.

Cohen, W. W. (1995). Text categorization and relational learning. In Proceedings of the
Twelfth International Conference on Machine Learning, pp. 124{132 San Francisco,
CA. Morgan Kaufman.

23

Cohen, W. W. (1996). Learning rules that classify e-mail. In Papers from the AAAI Fall
Symposium on AI Applications in Knowledge Navigation & Retrieval, pp. 18{25. AAAI
Press.

Cohn, D., Atlas, L., & Ladner, R. (1994). Improving generalization with active learning.
Machine Learning, 15 (2), 201{221.

Dagan, I., & Engelson, S. P. (1995). Committee-based sampling for training probabilistic
classi�ers. In Proceedings of the Twelfth International Conference on Machine Learn-
ing, pp. 150{157 San Francisco, CA. Morgan Kaufman.

Engelson, S., & Dagan, I. (1996). Minimizing manual annotation cost in supervised train-
ing from corpora. In Proceedings of the 34th Annual Meeting of the Association for
Computational Lenguistics Santa Cruz, CA.

Frakes, W., & Baeza-Yates, R. (Eds.). (1992). Information Retrieval: Data Structures and
Algorithms. Prentice Hall.

Hu�mann, S. B. (1996). Learning information extraction patterns from examples. In
Wermter, S., Rilo�, E., & Scheller, G. (Eds.), Connectionist, Statistical, and Symbolic
Approaches to Learning for Natural Language Processing, Lecture Notes in Arti�cial
Intelligence, pp. 246{260. Springer.

Kijsirikul, B., Numao, M., & Shimura, M. (1992). Discrimination-based constructive induc-
tion of logic programs. In Proceedings of the Tenth National Conference on Arti�cial
Intelligence, pp. 44{49 San Jose, CA.

Kim, J.-T., & Moldovan, D. I. (1995). Acquisition of linguistic patterns for knowledge-based
information extraction. IEEE Transactions on Knowledge and DataEngineering, 7 (5),
713{724.

Lavra�c, N., & D�zeroski, S. (1994). Inductive Logic Programming: Techniques and Applica-
tions. Ellis Horwood.

Lehnert, W., & Sundheim, B. (1991). A performance evaluation of text-analysis technologies.
AI Magazine, 12 (3), 81{94.

Lewis, D. D., & Catlett, J. (1994). Heterogeneous uncertainty sampling for supervised
learning. In Proceedings of the Eleventh International Conference on Machine Learning,
pp. 148{156 San Francisco, CA. Morgan Kaufman.

Magerman, D. M. (1995). Statistical decision-tree models for parsing. In Proceedings of the
33rd Annual Meeting of the Association for Computational Lenguistics, pp. 276{283
Cambridge, MA.

Marcus, M., Santorini, B., & Marcinkiewicz, M. (1993). Building a large annotated corpus
of English: The Penn treebank. Computational Linguistics, 19 (2), 313{330.

24

McCarthy, J., & Lehnert, W. (1995). Using decision trees for coreference resolution. In
Proceedings of the Fourteenth International Joint Conference on Arti�cial Intelligence,
pp. 1050{1055.

Miikkulainen, R. (1993). Subsymbolic Natural Language Processing: An Integrated Model of
Scripts, Lexicon, and Memory. MIT Press, Cambridge, MA.

Miller, G., Beckwith, R., Fellbaum, C., Gross, D., & Miller, K. (1993). Introduction to
WordNet: An on-line lexical database. Available by ftp to clarity.princeton.edu.

Miller, S., Stallard, D., Bobrow, R., & Schwartz, R. (1996). A fully statistical approach to
natural language interfaces. In Proceedings of the 34th Annual Meeting of the Associ-
ation for Computational Lenguistics, pp. 55{61 Santa Cruz, CA.

Mitchell, T. M. (1982). Generalization as search. Arti�cial Intelligence, 18 (2), 203{226.

Mooney, R. J. (1996). Comparative experiments on disambiguating word senses: An illus-
tration of the role of bias in machine learning. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing, pp. 82{91 Philadelphia, PA.

Mooney, R. J., & Cali�, M. E. (1995). Induction of �rst-order decision lists: Results on
learning the past tense of English verbs. Journal of Arti�cial Intelligence Research, 3,
1{24.

Muggleton, S., & Feng, C. (1992). E�cient induction of logic programs. In Muggleton, S.
(Ed.), Inductive Logic Programming, pp. 281{297. Academic Press, New York.

Muggleton, S., King, R., & Sternberg, M. (1992). Protein secondary structure prediction
using logic-based machine learning. Protein Engineering, 5 (7), 647{657.

Muggleton, S. H. (Ed.). (1992). Inductive Logic Programming. Academic Press, New York,
NY.

Muggleton, S. (1995). Inverse entailment and Progol. New Generation Computing Journal,
13, 245{286.

Ng, H. T., & Lee, H. B. (1996). Integrating multiple knowledge sources to disambiguate
word sense: An exemplar-based approach. In Proceedings of the 34th Annual Meeting
of the Association for Computational Lenguistics, pp. 40{47 Santa Cruz, CA.

Plotkin, G. D. (1970). A note on inductive generalization. In Meltzer, B., & Michie, D.
(Eds.), Machine Intelligence (Vol. 5). Elsevier North-Holland, New York.

Quinlan, J. R., & Rivest, R. L. (1989). Inferring decision trees using the minimumdescription
length principle. Information and Computation, 80, 227{248.

Quinlan, J. (1990). Learning logical de�nitions from relations. Machine Learning, 5 (3),
239{266.

25

Reilly, R. G., & Sharkey, N. E. (Eds.). (1992). Connectionist Approaches to Natural Language
Processing. Lawrence Erlbaum and Associates, Hilldale, NJ.

Rilo�, E. (1993). Automatically constructing a dictionary for information extraction tasks.
In Proceedings of the Eleventh National Conference on Arti�cial Intelligence, pp. 811{
816.

Rilo�, E. (1996). Automatically generating extraction patterns from untagged text. In
Proceedings of the Thirteenth National Conference on Arti�cial Intelligence, pp. 1044{
1049.

Salton, G. (1989). Automatic Text Processing: The Transformation, Analysis and Retrieval
of Information by Computer. Addison-Wesley.

Seung, H. S., Opper, M., & Sompolinsky, H. (1992). Query by committee.. In Proceedings
of the ACM Workshop on Computational Learning Theory Pittsburgh, PA.

Soderland, S., Fisher, D., Aseltine, J., & Lehnert, W. (1995). Crystal: Inducing a concep-
tual dictionary. In Proceedings of the Fourteenth International Joint Conference on
Arti�cial Intelligence, pp. 1314{1319.

Soderland, S., Fisher, D., Aseltine, J., & Lehnert, W. (1996). Issues in inductive learning of
domain-speci�c text extraction rules. In Wermter, S., Rilo�, E., & Scheller, G. (Eds.),
Connectionist, Statistical, and Symbolic Approaches to Learning for Natural Language
Processing, Lecture Notes in Arti�cial Intelligence, pp. 290{301. Springer.

Srinivasan, A., Muggleton, S., Sternberg, M., & King, R. (1996). Theories for mutagenicity:
A study in �rst-order and feature-based induction. Arti�cial Intelligence, 85, 277{300.

Thompson, C. A. (1995). Acquisition of a lexicon from semantic representations of sentences.
In Proceedings of the 33rd Annual Meeting of the Association for Computational Lin-
guistics, pp. 335{337 Cambridge, MA.

Weizenbaum, J. (1966). ELIZA { A computer program for the study of natural language
communications between men and machines. Communications of the Association for
Computing Machinery, 9, 36{45.

Wermter, S., Rilo�, E., & Scheler, G. (Eds.). (1996). Connectionist, Statistical, and Symbolic
Approaches to Learning for Natural Language Processing. Springer Verlag, Berlin.

Zelle, J. M., & Mooney, R. J. (1994). Combining top-down and bottom-up methods in
inductive logic programming. In Proceedings of the Eleventh International Conference
on Machine Learning, pp. 343{351 New Brunswick, NJ.

Zelle, J. M., & Mooney, R. J. (1996). Learning to parse database queries using inductive
logic programming. In Proceedings of the Thirteenth National Conference on Arti�cial
Intelligence Portland, OR.

26

