
Appears in Connection Science, 5, pp.339-364, 1993
(Special issue on Architectures for Integrating Neural and Symbolic Processing)

Combining Connectionist and Symbolic Learning to

Re�ne Certainty-Factor Rule Bases

J. Je�rey Mahoney and Raymond J. Mooney

Dept. of Computer Sciences
University of Texas
Austin, TX 78712

mahoney@cs.utexas.edu, (512) 471-9589
mooney@cs.utexas.edu, (512) 471-9558

June 1, 1993

Abstract

This paper describes Rapture | a system for revising probabilistic knowledge

bases that combines connectionist and symbolic learning methods. Rapture uses a

modi�ed version of backpropagation to re�ne the certainty factors of a probabilistic

rule base and it uses ID3's information-gain heuristic to add new rules. Results on

re�ning three actual expert knowledge bases demonstrate that this combined approach

generally performs better than previous methods.

1

1 Introduction

In complex domains, learning needs to be biased with prior knowledge in order to produce
satisfactory results from limited training data. Recently, both connectionist and symbolic
methods have been developed for biasing learning with prior knowledge (Shavlik and Towell,
1989; Fu, 1989; Ourston and Mooney, 1990; Pazzani and Kibler, 1992; Cohen, 1992). Most of
these methods revise an imperfect knowledge base (usually obtained from a domain expert)
to �t a set of empirical data. Some of these methods have been successfully applied to real-
world tasks, such as recognizing promoter sequences in DNA (Towell et al., 1990; Ourston
and Mooney, 1990; Thompson et al., 1991). The results demonstrate that revising an expert-
given knowledge base produces more accurate results than learning from training data alone.

To date, research in this area has focused on revising knowledge bases initially speci�ed
in the form of logical, Horn-clause (if-then) rules. However, many real-world domains require
some form of probabilistic reasoning. Consequently, many knowledge bases obtained from
experts are represented using a probabilistic formalism, such as certainty factors, Dempster-
Shafer theory, or Bayesian networks (Shafer and J. Pearl, 1990). There has been recent
work on revising such probabilistic knowledge bases (Ginsberg et al., 1988; Fu, 1989). In
particular, by representing a probabilistic rule base as a connectionist network, backprop-
agation methods (Rumelhart et al., 1986) can be used to modify the weights representing
rule strengths (Fu, 1989; Lacher, 1992). However, these methods are restricted to revising
numerical parameters and are unable to make structural changes to the knowledge base,
such as adding new rules.

In this paper, we describe the Rapture system (Revising Approximate Probabilistic
Theories Using Repositories of Examples), which combines connectionist and symbolic
methods to revise both the parameters and structure of a certainty-factor rule base (Short-
li�e and Buchanan, 1975; Buchanan and E.H. Shortli�e, 1984). First, the initial rules are
mapped into an equivalent network in which certainty factors become the weights on con-
nections between nodes of the network. Unlike standard neural networks, in which the total
input to a node is determined by a linear sum of all incoming activations, for Rapture
networks, the total input is the probabilistic sum (x + y � xy) of the incoming activations.
No thresholding output function is needed since the probabilistic sum already provides the
required non-linearity.

Next, the network is modi�ed to correctly classify a set of training examples. Network
training is performed in two phases. First, a modi�ed version of backpropagation is used to
adjust the certainty factors on the existing rules. The normal backpropagation equations are
changed in order to perform gradient descent for certainty-factor combination functions such
as probabilistic sum, MIN, and MAX. This is similar to methods employed in Fu (1989);
Lacher (1992). If all of the examples can be classi�ed correctly through backpropagation
alone, then the network is considered trained. Otherwise, symbolic methods are used to alter
the network architecture. Speci�cally, features are added that help discriminate examples

2

according to ID3's information gain criterion (Quinlan, 1986b) and low-weighted links are
deleted. Backpropagation and node addition/deletion continue in a cycle until all of the
training examples are correctly classi�ed.

Once it has been trained, the revised rules can be read directly o� of the network. In the
Kbann system (Towell and Shavlik, 1992)(see next section), revised networks are mapped
back into rules to improve the comprehensibility of the �nal result. In Rapture, the
direct correspondence between weighted links and probabilistic rules removes any distinction
between the symbolic and connectionist representations. They are equivalent ways of looking
at the same knowledge. The approach therefore combines the e�ectiveness of connectionist
learning methods with the interpretability of rules. Comprehensibility is important since
it has been found that users will generally not accept a system's conclusions unless it can
present meaningful explanations for them (Swartout, 1981).

Rapture has been tested on revising several real-world knowledge bases with encourag-
ing results. In particular, we present results for revising rule bases for promoter recognition
in DNA sequences (Towell et al., 1990), soybean disease diagnosis (Michalski and Chilausky,
1980), and diagnosis of bacterial infections (Buchanan and E.H. Shortli�e, 1984). In the last
domain,Rapture successfully revised a version of theMycin knowledge-base. We compare
our results to those obtained for purely inductive methods (ID3, standard backpropagation,
and Rapture given no initial knowledge), a purely connectionist method for knowledge-
base re�nement (Kbann), and a purely symbolic method for knowledge-base re�nement
(Either (Ourston and Mooney, 1990)). Rapture generally produces more accurate results
from fewer training examples than these competing approaches. In the promoter domain, it
also produces a simpler revised rule base than Kbann or Either.

The rest of this paper is organized as follows. Section 2 presents relevant background
information, and Section 3 discusses the details of the Rapture algorithm. Section 4
presents our results on revising several real-world knowledge bases. Section 5 discusses
related work, Section 6 discusses future work, and Section 7 presents our conclusions.

2 Background

This section presents background information that is required for understanding the rest
of this paper. This includes overviews of two recent theory revision systems (Kbann and
Either), as well as the certainty-factor formalism upon which Rapture is based.

2.1 EITHER

Either (Ourston and Mooney, 1990) is a recent theory revision system that uses proposi-
tional Horn-clause logic to represent its theories. It begins with an expert-given rule base,
and a set of correctly labelled (training) examples.

3

Either revises its rule base whenever a training example is classi�ed incorrectly. One of
Either's primary objectives is to ensure that the rule base correctly classi�es all training
examples. A negative example that the rules are able to prove (as positive) indicates that the
rule base needs to be specialized. Similarly, a positive example that the rules are unable to
prove indicates the need to generalize the rule base. An overriding assumption is made that
the original rules are not very far from being correct, hence an attempt is made to modify
the rule base as little as possible, while achieving consistency with the training examples.

Either supports two means for specializing its rule bases|removing rules from the
rule base, and adding conjuncts to existing rules. Both of these have the net e�ect of
making rules less likely to �re in a given situation, which will strictly specialize the rule
base. Specialization is done in a manner that guarantees that no negative examples are
provable, while simultaneously insuring that no positive examples become unprovable.

Generalizing the rule base proceeds similarly whenever an unprovable positive example is
encountered. Either contains analogous mechanisms for generalization. These are adding
new rules to the rule base, deleting conjuncts from existing rules, and adding new disjuncts.
Each of these mechanisms facilitates rule �ring, allowing more examples to be classi�ed
positively, which generalizes the rule base.

It is hoped that via minimal modi�cation to the original rule base, much of the expert-
given domain knowledge will remain intact, enabling the rules to perform at satisfactory
levels of accuracy on unseen examples. Ourston and Mooney (in press) illustrate the success
of this heuristic with results in several domains.

2.2 KBANN

Kbann (Towell, 1991) is a revision system that combines a rule base with neural network
learning. An expert-supplied rule base is converted into a neural network, which is then
trained using connectionist techniques. After training, the network is translated into sym-
bolic rules.

The conversion process into a neural network proceeds in a straightforward manner. Each
unique literal from the original rule base is translated into a unique node of the network.
All antecedents for a particular consequent literal become nodes that are linked as inputs to
the consequent node, using weights that approximate the conjunctions and disjunctions of
the original rule. Also, all features from the domain theory that are not mentioned in the
rules are added into the network with low-weighted links. All neighboring layers are fully
connected.

Once the network is built, it is trained using backpropagation, after which symbolic rules
can be extracted from the network. This translation proceeds exactly as before, except that
now nodes from the network revert back to literals of the rule base. Links with su�ciently
low weights (less than some threshold) are deemed inconsequential, and are not incorporated
into the symbolic rules. This has the bene�cial e�ect of simplifying the resulting rule base,

4

though there is now no guarantee that the two representations are equivalent.

2.3 Certainty Factors

2.3.1 The Certainty-Factor Formalism

Rapture is a rule-base revision system that combines elements from both Either and
Kbann. Rapture uses propositional certainty-factor rules to represent knowledge. These

rules have the following form: A
0:8
! D. This expresses the idea that belief in proposition A

gives a 0:8 measure of belief in proposition D.
Certainty factors can range in value from �1 to +1, and indicate a degree of con�dence

in a particular proposition. These numbers are not meant to be an indication of one's belief
in the rule itself, but rather indicate the degree to which the presence of one (or several)
proposition(s) gives evidence for belief in another. For example, knowing that someone has
the sni�es will give some evidence that the person has a cold. The more evidence that
accumulates, the stronger our belief becomes.

A certainty factor of +1 represents absolute certainty (true), whereas one of �1 represents
total disbelief (false). A certainty factor of 0 suggests no evidence is being o�ered. Knowing
that someone has blonde hair has no bearing on our belief that s/he has a cold. Certainty-
factor rules allow updating of these beliefs based upon observed evidence. Given the rule

A
0:8
! D, we can update our belief in D based upon observation of A. If A is observed to be

true, we then have a measure of belief in D of 0:8 (= 1 � 0:8). Observing A false turns our
belief in D to one of disbelief (belief < 0), with a measure of disbelief �0:8.

As mentioned previously, rules combine evidence via probabilistic sum, which is de�ned

(for positive evidence) as a� b � a+ b� ab. Adding a second rule to our rule base, B
:5
! D,

demonstrates this. Given A and B (to be true), our measure of belief in D becomes 0:9
(= 0:8 + 0:5 � 0:8 � 0:5).

Negative certainty factors combine using a�b � a+b+ab. Given A and B with certainty
factors �0:5 and �0:2 respectively,D's certainty factor becomes �0:46 (= �0:4�0:1+0:04).
In general, all positive evidence is combined to determine the measure of belief (MB) for a
given proposition. Similarly, all negative evidence is combined to obtain ameasure of disbelief
(MD). The certainty factor is then calculated using CF =MB +MD.

Certainty-factor rules may also contain multiple antecedents, as in A ^ B ^ C
:7
! D.

Conjunction is handled by using MIN . The minimum certainty factor from among A, B,
and C combines with the 0:7 to determineD's certainty factor. Similarly, theMAX function
is used with antecedent disjunction.

A common misconception about certainty factors is that they represent probabilities.

They do not. A rule of the form sniffles
0:45
!cold, states that the observance of sni�es

gives one reason to believe that the person has a cold. This does not mean that there is a
45% probability of a cold, but only that there is some evidence (0:45 on scale from �1 to

5

1) for believing that the person has one. The probabilistic interpretation would imply that
observing sni�es indicates a 55% probability of not having a cold, which is not intended.
The rule simply states that sni�es suggests increased evidence in our belief that a person
has a cold, but does not increase our belief that the person does not have a cold.

2.3.2 A Case For Certainty Factors

Rapture grew out of a desire to build a rule-base revision system that was capable of
working in a probabilistic framework. This was due to the existence of a number of domains
where it appeared that such reasoning was necessary in order to successfully represent goal
concepts. What was needed in particular, was a formalism that was capable of handling the
evidence-summing feature of uncertain reasoning, which enables small pieces of evidence to
accumulate into signi�cant evidence in favor of a conclusion.

Certainty factors were chosen for a variety of reasons. First, it is perhaps the simplest
method that retains the desired evidence-summing aspect of uncertain reasoning. As each
rule �res, additional evidence is contributed towards belief in the rule's consequent. All
evidence can then be combined giving an overall degree of con�dence in the consequent.
The use of probabilistic sum enables many small pieces of evidence to add up to signi�cant
evidence. This is lacking in formalisms that use only MIN or MAX for combining evidence
(Ling and Valtorta, 1991). Second, probabilistic sum is a simple, di�erentiable, non-linear
function. This is crucial for implementing gradient descent using backpropagation. Further,
other formalisms of uncertain reasoning (e.g. Bayesian networks) have been shown to be NP-
Hard to evaluate in the general case (Cooper, 1987). Even more signi�cantly, however, is the
widespread use of certainty factors. Despite recent criticism of certainty factors (Shafer and
J. Pearl, 1990), there have been numerous knowledge-bases implemented using the certainty-
factor model, which immediately gives our approach a large base of applicability. Finally,
and perhaps most importantly, are the empirical results. Results to date seem to indicate
that this approach is one that is worth pursuing.

3 The Rapture Algorithm

TheRapture algorithm breaks down into three main phases. First, an initial rule base (cre-
ated by a human expert) is converted into aRapture network. The result is then trained us-
ing certainty-factor backpropagation (CFBP). The theory is further revised through network
architecture modi�cation. Once the network is fully trained, the solution is at hand|there
is no need for retranslation. Each of these steps is outlined in full below.

6

3.1 The Initial Rule Base

It has been demonstrated (Shavlik and Towell, 1989; Ourston and Mooney, 1990) that dra-
matic increases in learning performance can be achieved by initializing a learning algorithm
with human expertise. This initial theory can be represented in many forms, and as previ-
ously stated, Rapture has adopted the certainty-factor formalism for its rule representation.
An expert is needed to provide a set of rules expressed using certainty factors that approxi-
mate his expertise in de�ning a given concept. Since only an approximation of the expertise
is needed, much of the knowledge acquisition bottleneck can be alleviated, as the �ne-tuning
is left to the automated system.

3.2 Converting the Theory into a Network

Once the initial rule base is obtained, it is converted into a Rapture -network. This process
is straightforward. Building the network begins by mapping all identical propositions in the
rule base to the same node in the network. Input features (those only appearing as rule-
antecedents) become input nodes, and are placed at the bottom of the network. Output
symbols (those only appearing as rule-consequents) become output nodes, and are placed
at the top of the network. The certainty factors of the rules become the weights on the
links that connect nodes. Networks for classi�cation problems contain one output for each
category. When an example is presented, the certainty factor for each of the categories is
computed and the example is assigned to the category with the highest value.

Consider a simple example of three rules:

A
:7
! D B

:2
! D C

:5
! D

The network of Figure 1(a) is the Rapture -network for this rule set.
These rules state that A,B, and C all contribute evidence towards D in varying degrees.

Note the di�erence between these rules, and the single rule A ^B ^ C^
x
! D, which states

that all of A,B, and C must be true (to some degree) in order for there to be any evidence
for D.

Figure 1(b) illustrates the following more complete set of rules.

ABC
:5
! D E

:7
! D C

:1
! G

EF
:8
! G HI

:3
! C I

:2
! E

As shown in the network, conjuncts must �rst pass through a MIN node before any acti-
vation reaches the consequent node. Note that each of the conjuncts is connected to the
corresponding MIN mode with a solid line. This represents the fact that the link is non-
adjustable, and simply passes its full activation value onto the MIN node. The standard
(certainty-factor) links are drawn as dotted lines indicating that their values are adjustable.

7

A

MIN

D G

MIN

B C E F

.5
.7 .1

.8

MIN

IH

.2

.3

D

A B C

.5.2.7

A D B D C D
.7 .2 .5

(a)

(b)

ABC D E D C G.5 .7 .1

EF G HI C I E.2.8 .3

Figure 1: Converting Rules into Rapture-Networks

This construction shows how easily a Rapture network can model a certainty-factor
rule base. Each representation can be converted into the other, without loss or corruption
of information. They are two equivalent representations of the same set of rules.

3.3 Certainty-Factor Backpropagation

Using the constructed Rapture network, we desire to maximize its predictive accuracy
over a set of training examples. This is achieved by minimizing the overall error at each
of the output nodes with respect to all of the examples. Cycling through the examples
one at a time, and slightly adjusting all relevant network weights in a direction that will
minimize the output error, we can hill-climb until the overall output error reaches a local

8

minimum. This is the idea behind gradient descent, which is most commonly implemented
using backpropagation.

In order to train a neural network using backpropagation, the standard formula for ad-
justing the weight linking node i to node j (wji) after seeing pattern p is

�pwji = ��pjopi (1)

where � is the user-de�ned learning rate, opi is the output of unit i for input pattern p, and
�pj is the output error of unit j for pattern p. The output of a node j is f(netpj) where
the net input netpj =

P
wjiopi for all input connections i, and where f is a nondecreasing,

di�erentiable function (generally a logistic function). The value of �pj is determined by the
type of unit. If j is an output unit, then

�pj = (tpj � opj)f
0
j(netpj): (2)

where tpj is the correct output value for unit j. If j is not an output unit, then

�pj = f 0j(netpj)
X

k

�pkwkj: (3)

Rapture does not, however, use these standard formulas, since it is trying to model
certainty-factor summation of evidence, as opposed to a standard neural network. In or-
der to achieve gradient descent in a Rapture network, it is necessary to �rst derive the
corresponding formulas for Certainty-Factor Backpropagation (CFBP).

The main distinction is the manner in which inputs to a node combine to give its total net
input (netpj). A Rapture network uses probabilistic sum rather than the standard linear
summation of neural networks in determining net input. This is as described in Section 2.
As this value is passed directly on as the node's output, we are de�ning opj = netpj, hence
the output function is identity. In order to perform backpropagation on a network such as
this, the following equations must be utilized. For the derivation of these equations, see the
Appendix.

�pwji = ��pjopi(1 �
X

k 6=i

� wjkopk) (4)

If uj is an output unit

�pj = (tpj � opj) (5)

If uj is not an output unit

�pj =
X

kmin

�pkwkj(1 �
X

i6=j

� wkiopi) (6)

9

The \Sigma with circle" notation is meant to represent probabilistic sum over the index
value, and the � notation is shorthand for two separate cases. If wjiopi � 0, then � is
used, otherwise + is used. The kmin subscript refers to the fact that we do not perform
this summation for every unit k (as in standard backpropagation), but only those units that
received some contribution from unit j. Since a unit j may be required to pass through a
min or max-node before reaching the next layer (k), it is possible that its value may not
reach k.

Using these equations, CFBP performs gradient descent on Rapture networks in a
manner analogous to the way standard backpropagation works on neural networks. Examples
are fed into the network one at a time through its input lines, and weight-adjustment occurs
with each example as network error propagates down towards input lines. Each complete pass
through all of the examples de�nes one epoch, and numerous epochs are run while training
the network. This has the e�ect of adjusting all of the certainty factors in a direction that
will locally minimize the mean-squared error over all training examples.

Assuming the target output value is 1 for the correct category and 0 for all other cat-
egories, it is virtually impossible to achieve an overall mean-squared error of zero. When
combining evidence using probabilistic sum, an output of 1 is achieved only when there ex-
ists a rule(s) with a certainty factor of 1 whose antecedents are all true. Such cases are rare
in probabilistic classi�cation problems. Because of this, Rapture deems a classi�cation
correct when the output value for the correct category is greater than that of any other
category. No error propagation takes place in this case (�pj = 0).

One remaining issue is when to stop adjusting weights (i.e., how many epochs of CFBP
are to be executed?). The simplest stopping criteria would be when all examples are clas-
si�ed correctly, but this criteria is not used for two reasons. First, backpropagation is not
guaranteed to converge to 100% training accuracy|it may reach a local minimum. Further,
classifying all of the examples correctly does not mean that further weight adjustment is of
no use. Perhaps further adjustment would minimize error to an even greater extent. Correct
classi�cation does not imply 0 error, as explained in the preceding paragraph. A more useful
criteria for terminating weight adjustment is when overall error seems to have reached a local
minimum. Rapture checks the total mean-squared error after every 10 epochs, and halts
CFBP whenever training accuracy is observed to decrease, or mean-squared error decreases
by less than � (.001), without improving training accuracy.

3.4 Changing the Network Architecture

Whenever training accuracy fails to reach 100% through CFBP, it is very likely a sign that the
network architecture is inappropriate for the current classi�cation task. To date, Rapture
has been given two ways of changing network architecture. First, whenever the weight of a
link in the network approaches zero (jweightj< 0:001), it is removed from the network along
with all of the nodes and links that become detached due to this removal. This is reasonable

10

since any link with zero weight is not contributing towards the classi�cation of any of the
examples. Further, whenever an intermediate node loses all of its input links due to link
deletion, it too is removed from the network, along with its output link. This link/node
deletion is performed immediately following CFBP.

Rapture also has a method for adding new nodes into the network. Speci�c nodes
are added in an attempt to maximize the number of training examples that are classi�ed
correctly. The problems are in deciding which node to add, where to insert it, and how to
link it into the network. The simple solution employed by Rapture is to create new input
nodes that connect directly, either positively or negatively, to one or more output nodes.
These new nodes are created in a way that will best help the network distinguish among
training examples that are being misclassi�ed.

Rapture achieves this in the following manner. Let us de�ne C as the set of all possible
categories into which an example may be classi�ed, and Ci represent the ith category. We
de�ne FNi to be the set of false-negative examples for category Ci. These are those examples
whose target (correct) category is Ci, yet the network has classi�ed as Cj 6=i. In fact, the
network may have given a higher certainty factor to several Cj for any given example in FNi.
We can de�neMCi as the set of all mistaken categories Cj 6=i, such that for some example in
FNi, Cj had a higher certainty factor than Ci. Finally, de�ne CEi as the set of all examples
whose target category is among the categories in MCi.

This leaves us with two disjoint groups of examples. FNi|the false negatives for Ci, and
CEi|the true positives for all categories that are being confused with Ci. We need to �nd
a feature-value which can discriminate between these groups of examples. Quinlan's ID3
metric (Quinlan, 1986b) has been adopted by Rapture as the solution to this problem.

ID3 is designed to build decision trees that classify examples into pre-de�ned categories.
Given a set of examples described as feature vectors, ID3 selects the feature that best parti-
tions these examples into subsets that correlate with an expert's classi�cation. This is done
using an information-gain metric. Each node in the tree is the feature with the highest in-
formation gain among examples at this node, and each branch beneath this node represents
a particular value.

This idea can be easily modi�ed to work with Rapture. Rapture has two sets of exam-
ples to work with (FNi and CEi), and needs to �nd a feature-value pair that is highly promi-
nent in the former, yet lacking in the latter. Once this feature-value has been determined, it
can be used as positive evidence for category Ci and negative for all categories in MCi. ID3
information gain can �nd this feature-value for us if we consider every possible feature-value
pair in the domain as a binary feature. Instead of having a feature COLOR with values RED,
BLUE, and GREEN, we have 3 features COLOR=RED, COLOR=BLUE, and COLOR=GREEN, all with
values NO or YES. By labelling each example from FNi as negative, and those from CEi as
positive, Rapture can then use information gain to determine which binary feature maxi-
mally distinguishes these sets of examples. ID3's metric is designed to choose that feature
that produces the greatest reduction in the estimated entropy of information of the examples.

11

Speci�cally, this metric chooses the feature that minimizes

[(Pyes +Nyes) � INFO(yes) + (Pno +Nno) � INFO(no)]=N

where Pyes refers to the number of positive examples with value yes for the feature in
question. Nyes is the number of negative such examples. INFO() is a function of the value
(yes or no) de�ned as INFO(value) =

� 0 if Pvalue = 0 or Nvalue = 0

� �ulog2u� vlog2v otherwise,

where u = Pvalue=(Pvalue +Nvalue), and v = Nvalue=(Pvalue +Nvalue).

Rapture breaks any ties at random, and checks to make sure that the selected feature is
not already being used among the rules for Ci. Once this feature-value has been selected, a
new input node is added as positive evidence for Ci. It may be the case that the feature-value
selected is negative evidence for Ci, meaning that it is highly prominent in CEi yet lacking
in FNi. In this case, we invert the value of the feature (from COLOR=RED to COLOR 6=RED).

Placing a small positive weight (0.1) on the rule gives a rule of the form COLOR=RED
:1
! Ci,

or COLOR 6=RED
:1
! Ci which serves as new positive evidence for Ci. Similar rules (using the

same feature-value pair) are built for each of the categories in setMCi with negative weights
(-0.1). This gives new negative evidence for all of these categories. The examples in FNi

will now be more likely to be classi�ed in category Ci, and less likely to be classi�ed in a
category in MCi.

This is performed for each Ci 2 C. Note that for some Ci, the false negative list will be
empty. This happens whenever every example of this category is classi�ed correctly. This
produces no new nodes in the network. False positives are not dealt with explicitly. These
are examples that are not supposed to be classi�ed as Ci, but are nonetheless. These will
turn up as false negatives for some other Ci.

With these new nodes in place, we can now return to CFBP, where hopefully more train-
ing examples will be successfully classi�ed. This entire process (CFBP followed by deleting
links and adding new nodes) repeats until all training examples are correctly classi�ed. Once
this has occurred, the network is considered trained, and testing may begin. An overview of
the entire algorithm is depicted in Figure 2.

3.5 Special-Case Handling

There are certain types of examples that are handled specially by Rapture. The �rst of
these is examples with noise. If two or more examples are found to have identical feature-
value vectors, yet di�erent classi�cations, only one of them is kept in the set of examples (one
with the category shared by the majority). Clearly, no rule base has the ability to distinguish

12

Loop until 100% training accuracy is achieved.

1. Perform CFBP on the network. Use given training examples, and as many epochs as
necessary until mean-squared error decreases by < �. Delete any links whose weights
change sign.

2. If not 100% training accuracy, use ID3 information gain to add new input units. Make
one new rule for each output unit misclassifying positive examples.

Figure 2: Overview of the Rapture Algorithm

between two identical examples. Similarly, examples with missing features are handled in a
special manner. In order for an example to be classi�ed by the network, a value must be
assigned to each feature that is referenced by Rapture. An example with no value for a
given feature is assigned the value 1=n as its certainty factor for each of the n possible values
for this feature. This was shown to be an e�ective encoding in Shavlik et al. (1991) A similar
idea is utilized when an example is passed into the information-gain metric. The function
requires counts of the number of examples with and without a particular feature-value, and
a missing-valued example counts as 1=nth of an example with the value in question (and
(n� 1)=nth of an example without). This is the method used in Quinlan (1986a).

Finally, features that have continuous values (linear features), are handled in a fuzzy-
logic manner. A rule of the form ``if [AGE-OF-PATIENT < 50] then ...'' is evaluated
by using the value 1=(1+ eAGE�50) as its certainty factor. This gives a certainty factor of 0:5
to someone aged exactly 50, and drops to 0 rapidly as age increases. Similarly, the certainty
factor goes to 1 as age decreases. This allows for some exibility in the evaluation of rules
with strict threshold values.

4 Experimental Results

To date, Rapture has been tested on three real-world domains. The �rst of these is a
domain for recognizing promoter sequences in strings of DNA-nucleotides. The second uses
a theory for diagnosing soybean diseases, and the third is a version of theMycin knowledge-
base, designed to provide consultative advice on diagnosis and therapy for infectious diseases.
These data sets are discussed in detail in the following sections.

13

4.1 DNA Promoter Results

A prokaryotic promoter is a short DNA sequence that precedes the beginnings of genes, and
are locations where the protein RNA polymerase binds to the DNA structure (Towell et al.,
1990). A theory designed to recognize such strings composed of DNA-nucleotides was given
to Rapture for revision. The data set used for these experiments is one of 106 examples,
for which there are 53 positive examples (i.e. promoters), and 53 negative examples. An
example consists of a sequence of 57 DNA nucleotides, each of which can take on one of four
values|A, C, G, or T. The original theory for this recognition task, based on information
provided by O'Neill and Chiafari (1989), was written as a set of propositional Horn-clauses,
not as a set of certainty-factor rules. For this reason, the theory had to be modi�ed in order
to be utilized by Rapture. This theory was modi�ed by breaking up rules with multiple
antecedents, into several rules. This was done in order to allow each antecedent the ability
to contribute its own evidence towards belief in the consequent. This overcame one of the
di�culties with standard Horn-clause representations. If any one of several antecedents to
a rule is false, then the rule cannot �re. This representation allows it to �re a little less
strongly.

Initial certainty factors were assigned in such a way that if every antecedent (from the
original rule) were true, a certainty factor of 0:9 would result for the consequent. As an
example, one of the (original) rules looks like :

(p12 = t) ^ (p11 = a) ^ (p7 = t)! (minus10).
In Rapture format, this becomes:

(p12 = t)
:536
! (minus10), (p11 = a)

:536
! (minus10), (p7 = t)

:536
! (minus10).

Given an example (DNA strand) that has (p12 = t; p11 = a; p7 = t) , Rapture will
calculate a certainty factor of 0:9 for proposition minus10. If, however, only one or two
of these nucleotides match the rule, there will still be some evidence contributed towards
minus10.

Remembering that this problem is a single-category problem, where an example either is
or is not a promoter, Rapture's training and testing schemes have to be slightly adjusted.
Instead of assigning an example to the category with the highest certainty factor, a threshold
value is used. For training, a certainty factor of 0:9 or greater classi�es an example into the
promoter category. Less than 0:9 classi�es it as a non-promoter. Once the rule base is
trained to 100% accuracy (using the 0:9 threshold), the threshold is adjusted for testing. By
averaging the certainty factor of the lowest scoring positive example with the highest scoring
negative example, a threshold maximizing the distance between the two sets of examples is
obtained. The e�ect of this was minimal, as the new value never di�ered from the original
0:9 by more than 0:05.

In order to test Rapture using this data set, standard training and test runs were
performed, which resulted in the learning curve of Figure 3.

This graph is a plot of average performance in accuracy at classifying DNA strings over

14

RAPTURE

KBANN

BACKPROP

RAPTURE-0

EITHER

ID3

% Correct

#Train Exs45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

0.00 20.00 40.00 60.00 80.00

Figure 3: PROMOTER Testing Accuracy

25 independent trials. A single trial consists of providing each system with increasing num-
bers of examples to use for training, and then seeing how well it can classify unseen test
examples. Each system is given the same training examples, and tested on the same unseen
examples. This graph clearly demonstrates the advantages of an evidence summing system
likeRapture over a pure Horn-clause system such as Either, a pure inductive system such
as ID3, or a pure connectionist system, like backprop. Though they all start near 50% ac-
curacy, Rapture is very rapidly over the 90% mark. In fact, running statistical t-tests over
this data veri�es the fact that Rapture outperforms all other systems (except Kbann),
at the 0:05 level of signi�cance or better. It was not possible to run t-tests on Kbann due
to the fact that it was run on di�ering splits of the data, which were not available. It does
appear, however, that Rapture's performance is superior. Also plotted in the graph, is
Rapture-0, which is simply Rapture given no initial theory. This system begins with an

15

empty network, and adds links one at a time in order to correctly classify the training data.
This system is unable to build hidden links, and this, coupled with lack of initial theory,
clearly hinders learning.

This particular domain is thought to require M-of-N rules, which �re as long as some
number (M) of its N antecedents are true. This is because of the fact that there are several
potential sites at which hydrogen bonds can form between DNA and a protein. When enough
of these bonds form, promoter activity can occur. This could explain why the connectionist
systems Kbann and backprop perform considerably better than Either and ID3. This
is because connectionist systems receive activation levels from a linear sum of all of their
inputs, which include all possible features of the domain, thus producing a combining of
evidence e�ect.

Rapture found this data very easy to classify. Figure 4 plots the time to train for the
various systems. Only ID3 runs faster, as Rapture averaged about 20 seconds to train with
90 examples.

For this data set, CFBP alone was all that was required in order to train the network.
The node addition module was never called. This is evidenced in Figure 5 which plots the
complexity of the learned rules. This is a count of the number of symbols in the �nal theory
after training with the largest training set (90 examples). Rapture's complexity remains
constant throughout training, since CFBP did all of the necessary revision. This seems to
be an indication that the original theory is relatively accurate, at least in regard to rule
structure. This plot shows that only Rapture-0 ends up with a simpler theory, though
clearly at the expense of predictive accuracy. The Either plot is somewhat unfair, as these
numbers are based upon an early version of the system, whereby redundant rules were never
deleted from the rule base. More recent results would show fewer symbols in the revised
theory.

4.2 SOYBEAN Diagnosis Results

The soybean data comes from Michalski and Chilausky (1980), and is a data set of 562
examples of diseased soybean plants. Examples are described by a string of 35 features
including the condition of the stem, the roots, the seeds, as well as information such as the
time of year, temperature, and features of the soil. An expert classi�ed each example into
one of 15 soybean diseases. This data set has been used as a benchmark for a number of
learning systems.

The theory used by Rapture was a certainty-factor version of the expert theory given
in Michalski and Chilausky (1980). Again, the original theory was given as a set of Horn
clauses, though it was described in a manner that suggested the use of certainty factors.
The expert provided signi�cant Horn clause rules for each disease, as well as con�rmatory
rules. The signi�cant rules were meant to imply strong evidence for a particular disease,
whereas the con�rmatory only added con�rming evidence. The values of 90% and 10% as

16

BACKPROP

EITHER

RAPTURE-ZERO

RAPTURE

ID3

Seconds

Train Exs

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

220.00

240.00

260.00

280.00

300.00

0.00 20.00 40.00 60.00 80.00

Figure 4: PROMOTER Training Time

the amount of evidence contributed respectively by the signi�cant and con�rmatory rules
were suggested in Michalski and Chilausky (1980).

Certainty-factor rules for Rapture were produced in a manner similar to their produc-
tion in the DNA domain. Initial certainty factors were assigned to reect the signi�cant and
con�rmatory status of the various pieces of evidence. Antecedents from signi�cant rules were
given certainty factors high enough to produce a 0:9 degree of belief if each of the conjuncts
from the original rule were true. For the con�rmatory pieces of evidence, this value was 0:1.

Figure 6 is a learning curve on this data comparing Rapture, Rapture-0, backpropa-
gation, ID3, and Either. As is clear from the graph, Rapture is given a considerable head
start with its expert-provided initial theory. The head start given to Rapture does not
last throughout testing in this domain. Rapture maintains a statistically signi�cant lead
over the other systems (except Rapture-0) through 80 examples, but by 150 examples, all

17

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

RAPTURE KBANNRAPTURE−0 EITHER

S

ym
bo

ls

Figure 5: PROMOTER Concept Complexity

systems are performing at equivalent levels. There is perhaps a simple explanation for this
phenomena. The initial theory tends to be quite helpful for a number of the easier-to-classify
diseases. But there are a few categories of diseases that are di�cult to distinguish, and the
initial theory is not very helpful here. Because of this, the easier categories are also easy to
learn through straight-forward induction. ID3 and backprop both catch up with Rapture
after 150 training examples. Rapture-0 catches up a little more quickly (and actually does
slightly better). There are no signi�cant di�erences between any of the systems after 150
training examples. Trials have actually been run out to 300 examples, though all systems
are performing at equivalent levels of accuracy.

Either to date has only been run up to 100 examples. Either has also been run using a
partial-matching technique, where examples are classi�ed into the category that was closest
to �ring, in which case its' performance nearly matches that of Rapture (Mooney and
Ourston, 1991).

18

RAPTURE

RAPTURE-0

BACKPROP

ID3

EITHER

% Correct

Train Exs0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

0.00 50.00 100.00 150.00

Figure 6: SOYBEAN Testing Accuracy

Training for this data set clearly took much more e�ort than the others, as seen in
Figure 7. This is a plot of the time to train the various systems. It is clear, however, that
Rapture does indeed perform more e�ciently than either backpropagation or Either.

4.3 MYCIN Results

Experiments were also run on a version of the Mycin knowledge-base (Buchanan and
E.H. Shortli�e, 1984), which was designed to provide consultative advice on diagnosis and
therapy for infectious diseases. This domain consists of 115 examples of solved cases (pa-
tients) of infectious diseases drawn from the Stanford Medical Center. Ten diseases are
included with this data set. Each example is described with a vector of 264 features ranging
from the patient's sex to the duration of any headaches. Many features for each patient are

19

EITHER

BACKPROP

RAPTURE

RAPTURE-0

ID3

Seconds x 103

Train Exs-0.50

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

6.50

7.00

7.50

8.00

8.50

9.00

9.50

10.00

10.50

11.00

0.00 50.00 100.00 150.00 200.00 250.00 300.00

Figure 7: SOYBEAN Training Time

missing, and there are a great number of continuously-valued features.
The rules for the initial theory are provided as part of the Mycin database, and are

already in a format acceptable to Rapture (certainty factors). Included are 137 certainty-
factor rules for diagnosing the diseases, including a number of intermediate concepts. One
of the diseases (primary brain-tumor) is given no initial rules. The learning curves for this
data set are shown in Figure 8.

Despite Rapture's signi�cant head start with this data set, backpropagation is doing
somewhat better after 40 examples. It should be noted, however, that most of the di�erences
between backpropagation and Rapture are not signi�cant due to the variability of the
testing. In particular, backpropagation is only signi�cantly better at 40 and 80 test examples.
Elsewhere, Rapture is performing at an equivalent or better level.

It is not yet clear why backpropagation does so well on this particular data set; there are

20

BACKPROP

RAPTURE

RAPTURE-0

ID3

% Correct

Train Exs

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

0.00 20.00 40.00 60.00 80.00 100.00

Figure 8: MYCIN Testing Accuracy

a couple of possible explanations. First, backprop is given a hidden layer of units to work
with during training, and this is perhaps signi�cant. Rapture on the other hand is working
with a relatively at theory (containing few hidden units), and has no means for creating
hidden units. Second, backpropagation has available to it every feature from the domain
from which to draw evidence. This may be crucial in this domain. Both of these hypotheses
will be tested for future work. It should also be noted that in order for backpropagation
to produce these results, a good deal of manual learning-rate adjustment was necessary
before there was convergence. Also, backprop's training time was an order of magnitude
longer than Rapture's. Finally, backprop is not capable of producing symbolic rules after
network training. This is a signi�cant advantage for Rapture, since the expert will be
able to examine the re�ned knowledge base. Backpropagation simply returns a black-box
classi�er.

21

The two other systems, Rapture-0 and ID3, appear to be performing at similar levels,
signi�cantly less than backprop and Rapture. Rapture is outperforming these systems
at the 0:0005 level of signi�cance. This gives further support to the idea that this domain
is one in which having every feature available for use is desirable. It is also noteworthy
that backpropagation is signi�cantly outperforming ID3. In most domains studies, these
two systems generally perform at equivalent levels (Shavlik et al., 1991), and future work
will examine why backpropagation is performing so well.

5 Related Work

This section reviews related work in both the connectionist and symbolic areas. Compared
to most previous work, Rapture deals with a wider range of theory re�nement problems
and has been more thoroughly tested on actual expert knowledge bases.

The Seek2 system (Ginsberg et al., 1988) revises rule bases containingM-of-N rules, also
known as choice-component rules. Seek2 uses speci�c heuristics to revise the threshold, M,
of individual rules in order to improve performance on the training data. Unlike Rapture,
Seek2 can not modify real-valued weights and contains no means for adding new rules.

Valtorta and Ling (Valtorta, 1988; Valtorta, 1990; Ling and Valtorta, 1991) have exam-
ined the computational complexity of various re�nement tasks for probabilistic knowledge
bases. They have considered networks using various combination functions, such as MIN,
MAX, and probabilistic sum. For most combination functions and network architectures,
they show that re�ning the weights to �t a set of training data is an NP-Hard problem.
However, they present a simple linear-time algorithm for determining a correct setting of
weights (or proving none exist) in the special case of a one-layer network with MAX as the
combining function. However, even in this case, they provide no mechanisms for altering
the network architecture. Rapture uses heuristic methods such as backpropagation and
information gain to re�ne multi-layer networks that use MIN, MAX, and probabilistic sum.
Although the method does not guarantee convergence, it performs quite well in practice on
fairly large, realistic problems.

Ma and Wilkins (Ma and Wilkins, 1991) have developed methods for improving the
accuracy of a certainty-factor knowledge base by deleting rules. They report only modest
improvements in the accuracy of the same Mycin rule base (one used in our experiments).
Their experiments increase performance from 26:8% to 36:0%. Rapture has the advantage
of being able to adjust certainty factors and add rules in addition to deleting rules.

Gallant (Gallant, 1988) was apparently the �rst to design and implement a system that
combines expert domain knowledge with connectionist learning. Given a set of training
examples and expert supplied dependency information, his system builds a connectionist
network that correctly classi�es the training data. However, the training method is a vari-
ation of perceptron learning and is not suitable for multi-layer networks or for alternative

22

combination functions like probabilistic sum.
Kbann (Towell et al., 1990; Towell and Shavlik, 1992) uses standard backpropagation

to re�ne a symbolic rule base. A propositional Horn-clause rule base is mapped into a
standard neural network, the network is re�ned using normal backpropagation, and the
result is mapped back into rules with real-valued antecedent weights. Unlike Rapture, the
mapping between the symbolic rules and the network is only an approximation. Also, it is
unclear how certainty-factor rules might be mapped into a Kbann network. Kbann allows
the learning of new rules by including an underlying fully-connected network of low-weighted
links. These links can be \recruited" by backpropagation and eventually mapped back into
new rules. Weight decay (Hinton, 1986) is used to keep weights small and therefore help
minimize the number of new rules that are eventually introduced. By contrast, Rapture
uses symbolic methods to add a minimal number of new connections (rules) as needed. The
results on promoter recognition in Section 4.1 indicate that theRapture approach produces
a simpler and slightly more accurate revised knowledge base than Kbann.

There has been a number of methods for growing a network architecture su�cient to
classify a set of training examples, e.g. cascade correlation (Fahlman and Lebiere, 1989), the
upstart algorithm (Frean, 1990), and the tiling algorithm (Mezard and Nadal, 1989). By
contrast, Rapture uses methods from decision-tree induction (Quinlan, 1986b) to add units
to an existing network. However, the current method is limited to adding new input units
that directly feed into the output layer. Appropriately modi�ed versions of connectionist
methods for growing networks may prove useful in allowing Rapture to add new hidden
units.

Feldman's (Feldman, 1993) PTR system takes an initial rule base expressed as a collection
of Horn clause rules, along with an expert's con�dence values in the accuracy of each of these
rules. Unlike in Rapture, these values do not represent the strength, or amount of evidence
suggested by each of these rules, but rather one's con�dence that the rule is correct. By using
these values, along with a set of training examples, PTR is able to incrementally reformulate
the rule base in such a way that is consistent with the training data, as well as maximizing
one's con�dence in the rules.

Fu (Fu, 1989) and Lacher (Lacher, 1992) have also used backpropagation techniques to
revise certainty factors on rules. Fu has apparently derived formulas for CFBP, although
they are not given in the paper. UnlikeRapture, Fu's method does not implement complete
CFBP, but rather uses it only on every other layer of the network, and uses a di�erent hill-
climbing method on the alternate layers. Fu claims he chose this approach because the MIN
and MAX functions are not di�erentiable. InRapture, this does not cause a major problem
since although these functions are not everywhere di�erentiable, they are trivially so almost
everywhere. When working with real-valued weights, the problem of having two non-zero
activation levels that are exactly the same, and both being the minimum value into another
node has yet to occur in practice. Lacher apparently concurs with this assessment, and has
independently implemented a complete version of CFBP. However, the current publications

23

on these two projects do not address the problem of altering the network architecture (i.e.
adding new rules) and do not present results on revising actual expert knowledge bases.
Fu does, however, present data on a rule base which is initially 100% accurate, and then
corrupted by adding contradictory rules.

6 Future Work

There are several areas in which our current methods and experiments can be improved and
extended. This section discusses several of these.

The current method for changing network architecture inRapture is restricted to adding
new input units that directly feed the outputs. This method has proven su�cient for re-
�ning several real-world knowledge bases; however, it is clearly a signi�cant limitation. As
mentioned in the previous section, a number of methods have recently been developed for
dynamically adding new hidden units to a connectionist network. Work is currently under-
way to use the upstart algorithm (Frean, 1990) to allow networks to grow new hidden units
when it is deemed appropriate.

Another area requiring further research concerns the di�erences between certainty-factor
networks and traditional connectionist networks. The normal method of training a �xed
network with initially random weights is also easily applied to certainty-factor networks. In
this situation, what are the relative advantages and disadvantages of probabilistic sum as a
combination function compared to the normal thresholded linear sum? Experimental studies
on a variety of learning problems could help answer this question.

Further comparison of the Rapture and Kbann approaches to knowledge-base re�ne-
ment are also indicated. Speci�cally, what are the advantages and disadvantages of adding a
background of fully-connected low-weighted links versus dynamically adding new units and
links as required. The current results indicate that the Rapture approach is capable of
producing simpler, more accurate knowledge bases; however, these results are complicated
by the di�erences between probabilistic sum and linear threshold units. A comparison of
the current version of Rapture to an alternative version that uses an initial background
network of low-weighted links could help elucidate the advantages and disadvantages of these
two approaches.

In recent years, certainty-factors have been the subject of considerable criticism from
researchers in uncertain reasoning (Shafer and J. Pearl, 1990). Certainty factors only have
a clear probabilistic semantics if very restrictive assumptions about independence are made
(Heckerman, 1986). However, the basic revision framework inRapture should be applicable
to other uncertain reasoning formalisms such as Bayesian networks (Pearl, 1988), Dempster-
Shafer theory (Shafer, 1976), or fuzzy logic (Zadeh, 1965). As long as the activation functions
in the corresponding network implementations of these methods are di�erentiable, backprop-
agation techniques should be employable. For example, if Bayesian networks are restricted

24

to being singly-connected, there are linear-time algorithms for calculating the desired output
probabilities (Pearl, 1988). The resulting equations appear to be amenable to backpropaga-
tion. Recent methods for inducing Bayesian networks from data (Geiger et al., 1990; Cooper
and Herskovits, 1992) could also prove useful in making structural changes to an existing
network. Regarding fuzzy logic, there has been some recent work in using training data and
connectionist learning methods to revise fuzzy controllers (Berenji, 1990), and Rapture

could potentially be extended to deal with these sorts of problems as well.

7 Conclusions

Automatic re�nement of probabilistic rule bases is an under-studied problem with impor-
tant applications to the development of intelligent systems. This paper has described and
evaluated an approach to re�ning certainty-factor rule bases that integrates connectionist
and symbolic learning. The approach is implemented in a system called Rapture, which
uses a revised backpropagation algorithm to modify certainty factors and ID3's information
gain criteria to determine new rules to add to the network. In other words, connectionist
methods are used to adjust parameters and symbolic methods are used to make structural
changes to the knowledge base.

In domains with limited training data or domains requiring meaningful explanations for
conclusions, re�ning existing expert knowledge has clear advantages. Results on revising
three real-world knowledge bases indicates that Rapture generally performs better than
purely inductive systems (ID3 and backpropagation), a purely symbolic revision system
(Either), and and purely connectionist revision system (Kbann).

The certainty-factor networks used in Rapture blur the distinction between connec-
tionist and symbolic representations. They can be viewed either as connectionist networks
or symbolic rule bases. Rapture demonstrates the utility of applying connectionist learn-
ing methods to \symbolic" knowledge bases and employing symbolic methods to modify
\connectionist" networks. Hopefully these results will encourage others to explore similar
opportunities for cross-fertilization of ideas between connectionist and symbolic learning.

25

8 Appendix

Using the designed network, we wish to perform backpropagation on the certainty factors
(which are the weights on the links between the nodes). Following the presentation given in
Rumelhart et al. (1986), we can de�ne the network error due to input pattern p as

Ep =
1

2

X

j

(tpj � opj)
2 (7)

and total error is similarly measured as E =
P
Ep. For any p-sum unit j, the net input to

this unit for input pattern p is de�ned by

netpj = CF (wjiopi)8i (8)

De�ning the certainty factor (CF) as in Shortli�e and Buchanan (1975) as measure of belief
(MB)� measure of disbelief (MD), where 0 � MD � 1, 0 � MB � 1, and -1�CF�1, this
gives us

netpj =
X

beliefs

� wjiopi �
X

disbeliefs

� wjiopi (9)

Note that
P
� xi is shorthand for x1� x2� :::� xn (the probabilistic sum of the xi). Since in

our representation, disbeliefs are represented as negative numbers, we can rewrite the above
as

netpj =
X

+inputs

� wjiopi +
X

�inputs

� wjiopi (10)

Further, since in RAPTURE we de�ne a units output as simply the certainty factor of its
inputs, we get

opj = netpj (11)

In order to achieve gradient descent, we need to have

�pwji / �
@Ep

@wji

(12)

The term on the right can be expressed as

@Ep

@wji

=
@Ep

@netpj

@netpj
@wji

(13)

Looking at the second factor, and applying equation 8 gives us

26

@netpj
@wji

=
@

@wji

CF (wjkopk)8k =
@

@wji

X

+inputs

� wjkopk +
X

�inputs

� wjkopk (14)

It is clear that each input line ji into node j contributes either positively or negatively to
the overall certainty factor of node j, depending upon the product of wjiopi. This tells us

that one of the two probabilistic sums does not depend upon wji. Therefore @netpj

@wji
breaks

down into two cases.

1. wjiopi � 0: In this case, the partial for the probabilistic sum of the negative inputs is
zero (not e�ected by wji). Noting that

@

@xk

P
i� xi = 1 �

P
i6=k� xi gives us

@netpj
@wji

= opi(1�
X

+inputs6=i

� wjkopk) (15)

2. wjiopi < 0: As in above, this gives us

@netpj
@wji

= opi(1 +
X

�inputs6=i

� wjkopk) (16)

These two equations can be combined into the more compact

@netpj

@wji

= opi(1�
X

�inputs6=i

� wjkopk) (17)

where it is understood that this represents the two above cases.
If we now de�ne

�pj = �
@Ep

@netpj
(18)

and combine this with equations 13 and 17 we get

�
@Ep

@wji

= �pjopi(1�
X

�inputs6=i

� wjkopk) (19)

Therefore, in order to implement gradient descent in total error E, we need to make our
weight adjustments according to

�pwji = ��pjopi(1�
X

�inputs6=i

� wjkopk); (20)

where � is our learning rate. All that now remains is to calculate �pj for each unit uj in the
network. This can be done by applying the chain rule to our original de�nition (18), giving
us

27

�pj � �
@Ep

@netpj
= �

@Ep

@opj

@opj
@netpj

(21)

The rightmost factor is trivial. Since opj = netpj (11), this results in

@opj

@netpj
=

@x

@x
= 1: (22)

In order to calculate the left-hand factor, we need to consider two separate cases. Beginning
at the top of the network and working our way down, we �rst consider that uj is an output
unit. From our de�nition of Ep (7) we see that

@Ep

@opj
= �(tpj � opj); (23)

and by combining this with equations 21 and 22 we get

�pj = (tpj � opj) (24)

for any output unit uj. If uj is not an output unit, then we must remember that the output
produced may �rst pass through a min node before its value can be fed-forward. Therefore,
the e�ective output for any such node j is either 0, or the netpj value previously calculated.
In other words, a probabilistic-sum unit j's value only feeds forward to certain k's, which I
label as kmin. Clearly, if j's value does not pass successfully through the min node, then its
value is not a factor in the network's output. This can be shown formally by again applying
the chain rule.

@Ep

@opj
=
X

kmin

@Ep

@netpk

@netpk
@opj

=
X

kmin

@Ep

@netpk

@

@opj
CF (wkiopi)8i = �

X

kmin

�pkwkj(1�
X

i6=j

� wkiopi)

(25)
Therefore, in order to modify weights using certainty-factor backpropagation, we need to
utilize the following three equations:

�pwji = ��pjopi(1 �
X

k 6=i

� wjkopk) (26)

If uj an output unit

�pj = (tpj � opj) (27)

If uj is not an output unit

�pj =
X

kmin

�pkwkj(1 �
X

i6=j

� wkiopi) (28)

28

While backpropagating, the only di�culty occurs when passing through a min node, and
determining which of the connected p-sum nodes actually was sent through. This is easily
determined, by checking each p-sum node's value, and seeing which one has the same value.
The only problem arises when two or more nodes each have the same minimum value, in
which case the min-function is not di�erentiable. This problem turns out to be negligible,
as it occurs rarely (< 1%), and usually this involves two or more 0 values. In these cases,
Rapture simply picks one of these nodes at random and continues backpropagating.

9 Acknowledgements

This research was supported by the National Science Foundation under grant IRI-9102926,
the NASA Ames Research Center under grant NCC 2-629, and the Texas Advanced Research
Program under grant 003658114. We wish to thank R.S. Michalski for furnishing the soybean
data, M. Noordewier, G.G. Towell, and J.W. Shavlik for supplying the DNA data, and the
Kbann results, and Yong Ma for providing the MYCIN data.

References

Berenji, H. (1990). Re�nement of approximate reasoning-based controllers by reinforcement
learning. In Proceedings of the Eighth International Workshop on Machine Learning,
475{479. Evanston, IL.

Buchanan, G., and E.H. Shortli�e, e. (1984). Rule-Based Expert Systems:The MYCIN Exper-

iments of the Stanford Heuristic Programming Project. Reading, MA: Addison-Wesley
Publishing Co.

Cohen, W. (1992). Compiling prior knowledge into an explicit bias. In Proceedings of the

Ninth International Conference on Machine Learning, 102{110. Aberdeen, Scotland.

Cooper, G. (1987). Probabilistic inference using belief networks is np-hard. Technical Report
KSL-87-27, Medical Computer Science Group, Stanford Univ., Stanford, CA.

Cooper, G. G., and Herskovits, E. (1992). A bayesian method for the induction of proba-
bilistic networks from data. Machine Learning, 9:309{347.

Fahlman, S., and Lebiere, C. (1989). The cascade-correlation learning architecture. In
Advances in Neural Information Processing Systems 2, 524{532. Denver, CO.

Feldman, R. (1993). Probabilistic Revision of Logical Domain Theories. PhD thesis, Depart-
ment of Computer Science, Cornell University, Ithaca, NY.

29

Frean, M. (1990). The upstart algorithm: A method for constructing and training feedfor-
ward neural networks. Neural Computation, 2:198{209.

Fu, L.-M. (1989). Integration of neural heuristics into knowledge-based inference. Connection
Science, 1(3):325{339.

Gallant, S. (1988). Connectionist expert systems. Communications of the Association for

Computing Machinery, 31:152{169.

Geiger, D., Paz, A., and Pearl, J. (1990). Learning causal trees from dependence information.
In Proceedings of the Eighth National Conference on Arti�cial Intelligence, 770{776.
Boston,MA.

Ginsberg, A., Weiss, S. M., and Politakis, P. (1988). Automatic knowledge based re�nement
for classi�cation systems. Arti�cial Intelligence, 35:197{226.

Heckerman, D. (1986). Probabilistic interpretations for Mycin's certainty factors. In Kanal,
L. N., and Lemmer, J. F., editors, Uncertainty in Arti�cial Intelligence, 167{196. Ams-
terdam: North Holland.

Hinton, G. E. (1986). Learning distributed representations of concepts. In Proceedings of

the Eighth Annual Conference of the Cognitive Science Society, 1{12. Amherst, MA.

Lacher, R. (1992). Node error assignment in expert networks. In Kandel, A., and Langholz,
G., editors, Hybrid Architectures for Intelligent Systems, 29{48. Boca Raton, FL: CRC
Press, Inc.

Ling, X., and Valtorta, M. (1991). Revision of reduced theories. In Proceedings of the Eighth
International Workshop on Machine Learning, 519{523. Evanston, IL.

Ma, Y., and Wilkins, D. C. (1991). Improving the performance of inconsistent knowledge
bases via combined optimization method. In Proceedings of the Eighth International

Workshop on Machine Learning, 23{27. Evanston, IL.

Mezard, M., and Nadal, J. (1989). Learning in feedforward layered networks: The tiling
algorithm. Journal of Physics, A22(12):2191{2203.

Michalski, R. S., and Chilausky, S. (1980). Learning by being told and learning from exam-
ples: An experimental comparison of the two methods of knowledge acquisition in the
context of developing an expert system for soybean disease diagnosis. Journal of Policy
Analysis and Information Systems, 4(2):126{161.

Mooney, R. J., and Ourston, D. (1991). A multistrategy approach to theory re�nement. In
Proceedings of the International Workshop on Multistrategy Learning, 115{130. Harper's
Ferry, W.Va.

30

O'Neill, M., and Chiafari, F. (1989). Escherichia coli promoters. Journal of Biological

Chemistry, 264:5531{5534.

Ourston, D., and Mooney, R. (1990). Changing the rules: a comprehensive approach to
theory re�nement. In Proceedings of the Eighth National Conference on Arti�cial Intel-

ligence, 815{820. Detroit, MI.

Ourston, D., and Mooney, R. J. (in press). Theory re�nement combining analytical and
empirical methods. Arti�cial Intelligence.

Pazzani, M., and Kibler, D. (1992). The utility of background knowledge in inductive
learning. Machine Learning, 9:57{94.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible In-

ference. San Mateo,CA: Morgan Kaufmann, Inc.

Quinlan, J. R. (1986a). The e�ect of noise on concept learning. In Michalski, R. S., Car-
bonell, J. G., and Mitchell, T. M., editors, Machine Learning: An Arti�cial Intelligence

Approach, Volume II, 149{166. Morgan Kaufman.

Quinlan, J. R. (1986b). Induction of decision trees. Machine Learning, 1(1):81{106.

Rumelhart, D. E., Hinton, G. E., and Williams, J. R. (1986). Learning internal representa-
tions by error propagation. In Rumelhart, D. E., and McClelland, J. L., editors, Parallel
Distributed Processing, Vol. I, 318{362. Cambridge, MA: MIT Press.

Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton, NJ: Princeton University
Press.

Shafer, G., and J. Pearl, e. (1990). Readings in Uncertain Reasoning. San Mateo,CA: Morgan
Kaufmann, Inc.

Shavlik, J. W., Mooney, R. J., and Towell, G. G. (1991). Symbolic and neural learning
algorithms: An experimental comparison. Machine Learning, 6:111{143.

Shavlik, J. W., and Towell, G. G. (1989). Combining explanation-based and neural learning:
An algorithm and empirical results. Connection Science, 1(3):325{339.

Shortli�e, E., and Buchanan, B. (1975). A model of inexact reasoning in medicine. Mathe-

matical Biosciences, 23:351{379.

Swartout, W. (1981). Explaining and justifying in expert consulting programs. In Proceed-

ings of the Seventh International Joint Conference on Arti�cial Intelligence, 203{208.
Vancouver, BC.

31

Thompson, K., Langley, P., and Iba, W. (1991). Using background knowledge in concept
formation. In Proceedings of the Eighth International Workshop on Machine Learning,
554{558. Evanston, IL.

Towell, G., and Shavlik, J. (1992). Interpretation of arti�cial neural networks: Mapping
knowledge-based neural networks into rules. In Lippmann, R., Moody, J., and Touret-
zky, D., editors, Advances in Neural Information Processing Systems, vol. 4. Morgan
Kaufmann.

Towell, G. G. (1991). Symbolic Knowledge and Neural Networks: Insertion, Re�nement, and
Extraction. PhD thesis, University of Wisconsin, Madison, WI.

Towell, G. G., Shavlik, J. W., and Noordewier, M. O. (1990). Re�nement of approximate
domain theories by knowledge-based arti�cial neural networks. In Proceedings of the

Eighth National Conference on Arti�cial Intelligence, 861{866. Boston, MA.

Valtorta, M. (1988). Some results on the complexity of knowledge-base re�nement. In
Proceedings of the Sixth International Workshop on Machine Learning, 326{331. Ithaca,
NY.

Valtorta, M. (1990). More results on the complexity of knowledge-base re�nement:belief
networks. In Proceedings of the Seventh International Conference on Machine Learning,
419{424. Austin, TX.

Zadeh, L. (1965). Fuzzy sets. Information and Control, 8:338{353.

32

