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Abstract

An appropriate but challenging goal for evolutionary com-
putation (EC) is to evolve systems of biological com-
plexity. However, specifying complex structures requires
many genes, and searching for a solution in such a high-
dimensional space can be intractable. In this paper, we pro-
pose a method for finding high-dimensional solutions in-
crementally, by starting with an initial population of very
small genomes and graduallycomplexifyingthose genomes
by adding new genes over generations. That way, search
begins in an easily-optimized low-dimensional space and in-
crements into increasingly high-dimensional spaces. We de-
scribe an existing method for implementing complexification,
and further propose that combining complexification with an
indirect genetic encoding, in which genes are reused in the
specification of the phenotype, can lead to the discovery of
highly complex solutions.

Introduction
A major challenge in artificial intelligence is the automatic
generation of highly complex structures such as large-scale
neural networks, robot designs, and controllers. Biological
evolution has achieved high-level complexity on a massive
scale, and evolutionary computation (EC) aims at replicating
this success artificially. However, encoding such domains
genetically requires on the order of thousands or even mil-
lions of structural units for a single phenotype (Deloukaset
al. 1998; Zigmond 1999, p. 9). Searching for a solution in
such a high-dimensional space can take prohibitively long
regardless of the encoding. A method is needed to discover
high levels of complexity that avoids searching in the in-
tractably large space as much as possible.

In this paper, we argue that the most promising way to
reach biological levels of complexity is to start evolution
with small, simple genomes, andcomplexifythem over gen-
erations by adding new genes. In this way, evolution begins
in a low-dimensional space that can easily be optimized,
and gradually extends towards higher complexity. In fact,
natural evolution has itself utilized this strategy, occasion-
ally adding new genes that increased phenotypic complexity
(Martin 1999). In biology, this process is calledcomplexifi-
cation.
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We begin with an analysis of the shortcomings of tra-
ditional fixed-length encodings in EC, followed by a re-
view of biological support for complexification. We then
describe the NeuroEvolution of Augmenting Topologies
method for evolving increasingly complex neural networks
through complexification (NEAT; Stanley and Miikkulainen
2002a,b,c,d), and show how it can be generalized to any ge-
netic encoding. Finally, we argue that a most promising
research direction is combining complexification with in-
direct encodings. Such encodings utilize a developmental
phase where the same genes are reused multiple times, al-
lowing compact specification of complex structures (Bentley
& Kumar 1999; Bongard 2002; Hornby & Pollack 2001b;
Stanley & Miikkulainen 2003). In complexifying evolution
of indirect encodings, search can take place in the smallest
possible spaces with the most efficient possible representa-
tions.

Limitations of Fixed-Length Genomes
Many common structures vary in size and in the num-
ber of parameters that define them. In particular, pheno-
types that can contain a variable number of parts can be
represented by a varying number of genes. For example,
the number of parts in neural networks, cellular automata,
and electronic circuits vary (Stanley & Miikkulainen 2002d;
Mitchell, Crutchfield, & Das 1996; Miller, Job, & Vassilev
2000a). However, despite such variability, two neural net-
works with different numbers of connections and nodes can
approximate the same function (Cybenko 1989). Thus, it
is not clear what number of genes is appropriate for solv-
ing a particular problem. Researchers evolving fixed-length
genotypes must use heuristic rules, such as “small neural
networks generalizing better than large ones,” to estimatea
priori what the appropriate number of genes is for a given
problem.

A major obstacle to using fixed-length encodings is that
such heuristic rules do not exist for very complex problems.
For example, how many nodes and connections are neces-
sary for a neural network that controls a ping-pong playing
robot? Or, how many bits are needed in the neighborhood
function of a cellular automata that performs information
compression? These questions cannot be answered based
on empirical experience or analytic methods, since little is
known about the solutions. One possible approach is to sim-
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Figure 1:Gene Duplication. Two genomes of equal length are
crossed over. The letters represent the trait expressed by each gene.
The offspring has two additional redundant genes, resulting from
the duplication of genesC andD from the first parent.

ply make the genome extremely large, so that it encodes an
extremely large space and a solution is likely to lie some-
where within it. However, this strategy is likely to make
the search intractable. Even if a ping-pong playing robot
lies somewhere in the 10,000 dimensional space of a 10,000
gene genome, searching such a space may take prohibitively
long.

Even more problematic are open-ended problems where
phenotypes are meant to improve indefinitely and there is
no known final solution. For example, in competitive games,
it is difficult to estimate how complex the player should be
because such an estimate implicitly assumes that no better
player can exist. How could we ever know that? Moreover,
many artificial life domains are aimed at evolving increas-
ingly complex artificial creatures indefinitely long (Maley
1999). Fixing the size of the genome in such domains also
fixes the maximum complexity of evolved creatures, defeat-
ing the purpose of the experiment.

Natural evolution avoids these problems by evolving
variable-length genomes: Complexity can be increased by
adding new genes to the genome. The next section discusses
how this mechanism works in biology.

Complexification in Biology
Mutation in nature does more than optimize the genome.
New genes are occasionally added, allowing evolution to
perform acomplexifyingfunction over and above optimiza-
tion. Complexification allows evolution to begin with sim-
ple solutions and elaborate on them incrementally, as op-
posed to evolving elaborate solutions from the start. Further-
more, elaboration is protected in nature in that interspecies
mating is prohibited. Suchspeciationcreates important dy-
namics differing from standard genetic algorithms. In this
section, we discuss how these important characteristics of
natural evolution bear on the artificial evolution of complex
phenotypes.

The primary means of complexification in nature isgene
duplication. Gene duplication is a special kind of muta-
tion in which one or more parental genes are copied into
an offspring’s genome more than once. The offspring then
has redundant genes expressing the same proteins (figure
1). Gene duplication has been shown responsible e.g. for
key innovations in overall body morphology over the course
of natural evolution (Amoreset al. 1998; Carroll 1995;
Forceet al. 1999; Martin 1999).

A major gene duplication event occurred around the time
that vertebrates separated from invertebrates. The evidence
for this duplication centers aroundHOX genes, which deter-
mine the fate of cells along the anterior-posterior axis of em-
bryos. HOX genes are crucial in shaping the overall pattern
of developmental in embryos. In fact, differences in HOX
gene regulation explain a great deal of arthropod and tetra-
pod diversity (Carroll 1995). Amores et al. (1998) explain
that since invertebrates have a single HOX cluster while
vertebrates have four, cluster duplication must have signifi-
cantly contributed to elaborations in vertebrate body-plans.
The additional HOX genes took on new roles regulating
how the vertebrate anterior-posterior axis develops, consid-
erably increasing body-plan complexity. Although Martin
(1999) argued that the additional clusters can be explained
by many single gene duplications accumulating over gener-
ations, as opposed to massive whole-genome duplications,
researchers agree that gene duplication has contributed to
important body-plan elaborations.

A detailed account of how duplicate genes can take on
novel roles was given by Force et al. (1999): Base pair mu-
tations in the generations following duplicationpartition the
initially redundant regulatory roles of genes into separate
classes. Thus, the embryo develops in the same way, but
the genes that determine the overall body-plan are confined
to more specific roles, since there are more of them. The
partitioning is complete when redundant clusters of genes
are separated enough that they no longer produce identical
proteins. After partitioning, mutations within the duplicated
cluster of genes alter different steps in development than mu-
tations within the original cluster. In other words, the oppor-
tunities for mutation increase through duplication because
duplication creates more points at which mutations can oc-
cur. In this way, developmental processes elaborate.

Gene duplication allows nature to add new dimensions to
the genetic space. Natural evolution can thus begin search-
ing in a simple space even if more advanced phenotypes
cannot be found in that space. Because major biological
shifts in body-plan complexity have resulted from adding
new genes, EC should be able to utilize this kind of muta-
tion as well. However, adding new genes requires variable-
length genomes, which can be difficult to implement, as the
next section discusses.

Implementing Variable Length Genomes
When duplication is allowed, the number of genes is vari-
able, which means information can be lost during crossover.
Figure 2 shows that as new genes are added in differ-
ent lineages through different duplications, the same gene
may exist at different positions in different genomes. Con-
versely, different genes may exist at the same position.
Thus, crossover may lose essential genes through mis-
alignment. Moreover, it may be difficult for a variable-
length genome GA to find innovative solutions: Optimiz-
ing many genes takes longer than optimizing only a few,
meaning that more complex genotypes may be eliminated
from the population before they have a sufficient oppor-
tunity to be optimized. Although many existing systems
utilize variable length genomes (Bentley & Kumar 1999;
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(a) Original Genome

(b) Separate Duplications

(c) Duplicate Gene Roles Differentiate

(d) Crossover of Variable Length Genomes

(e) Loss of D, E, and F

(f) Loss of G, H, and I

Figure 2:The Problem of Aligning Variable Length Genomes.
In order to complexify solutions, it is necessary to have variable
length genomes. The diagram shows how critical genes can be lost
in the crossover of such genomes. A sequence of events is depicted
from top to bottom (a through f). (a) The original genome contains
four genes,A, B, C, andD. (b) In separate instances of reproduc-
tion, the original genome undergoes two different duplications. In
one case a cluster of two of its genes,A andB, is duplicated. In
the other case, three genes,A, B, andC, are duplicated. The re-
sulting genomes now have differing lengths. (c) Over generations,
the roles of the duplicated genes differentiate from their originally
redundant roles. This functional divergence is represented using
different letters,E andF , andG, H, andI. These new genes may
serve important new roles in their respective lineages. (d) The two
genomes of differing length are crossed over. (e) In one possible
offspring, maintaining the length of the smaller genome, genesD,
E, andF are lost. Particularly troublesome is the loss ofD, which
was in the original genome. (f) Another potential crossover, pre-
serving the length of the larger genome, losesG, H, andI, along
with duplicatingD. When information is lost during crossover, the
phenotype may no longer develop properly. Moreover, there is no
way to ensure that all the necessary genes are included in the off-
spring without a mechanism for checking which genes from one
genome correspond to those from another. See figure 3 for a solu-
tion to this problem.

Bongard & Paul 2000; Dellaert & Beer 1994; Gruau 1993;
Hornby & Pollack 2001b; Komosinski & Rotaru-Varga
2001; Luke & Spector 1996; Sims 1994), none include
mechanisms that would directly avoid these fundamental
problems.

How has nature solved these problems? First, nature has a
mechanism for aligning genes with their proper counterparts
during crossover, so that data is not lost nor obscured. This
alignment process has been most clearly observed inE. coli
(Radding 1982; Sigal & Alberts 1972). A special protein
calledRecAtakes a single strand of DNA and aligns it with
another strand by attaching thehomologous genes, i.e. genes
that express the same traits. This process is calledsynapsis.
In experiments in vitro, researchers have found that RecA
protein does not complete the process of synapsis on frag-
ments of DNA that are not homologous (Radding 1982).

Second, innovations in nature are protected through speci-
ation. Organisms with significantly different genomes never
mate because they are in different species. Thus, organisms
with larger genomes compete for mates among their own
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(a) Original genome with historical markings

(b) Separate duplications

(c) Duplicate gene roles differentiate

(d) Historical markings used to align genes 
     during crossover

(e) No loss of information in crossover
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Figure 3: Solving the Alignment Problem with Historical
Markings. Historical markings are numbers assigned to each
gene that represent the order in which new genes appeared over
evolution. (a) The original genome contains four genes,A, B, C,
andD, assigned historical markings 1 through 4. (b) When new
genes appear through duplication, they are assigned numbers in
the order in which they appear. Assuming the duplication on the
left happened before the one on the right, the new genes,A′ and
B′, andA′, B′, andC′, are assigned the numbers 5 through 9. (c)
As the products of the duplicate genes differentiate, their historical
markings continue to serve as a record of their origins. (d) During
crossover, those genes that have matching historical markings are
aligned, while those that are disjoint are purposefully not aligned.
(e) The result is that any kind of crossover can preserve the infor-
mation and relationships between all the genes in variable length
genomes by utilizing the historical markings. Historical markings
are an abstraction of synapsis, the process used in nature to match
up alleles of the same trait during crossover (Sigal & Alberts 1972;
Radding 1982).

species, instead of with the population at large. That way,
organisms that may initially have lower fitness than the gen-
eral population still have a chance to reproduce, giving novel
concepts a chance to realize their potential without being
prematurely eliminated.

It turns out that speciation and synapsis can both be uti-
lized in EC based on features of evolution that are available
only through computational means. Stanley and Miikkulai-
nen (2002a,b,c,d) showed that the ancestralhistoryof genes
in an evolving population can be used to tell which genes
should line up with which during crossover. If a counter
assigns increasing integers to new genes every time they ap-
pear through a mutation, and if those integers are preserved
every time genes are subsequently inherited, then the origin
of every gene is known throughout evolution. The numbers
assigned to each gene are calledhistorical markings. Since
two genes with the same origin must express the same trait,
it is possible to know exactly which genes line up using the
historical markings (figure 3).

Stanley and Miikkulainen (2002c,d) also showed that his-
torical markings can be used to speciate the population, sep-
arating incompatible organisms into different niches. The
extent to which two genomes have different genetic histo-
ries is a measure of their incompatibility. Therefore, match-
ing historical markings allow a simple way to test whether



two genomes belong in the same species. This measure
can be used to cluster genomes into compatibility groups,
or species.Explicit fitness sharing(Goldberg & Richardson
1987) further ensures that highly fit species cannot crowd
smaller species out of the population before they have a
chance to reach their potential. That way, gene duplica-
tions do not need to immediately improve fitness in order
to survive. On the other hand, since organisms without du-
plications are also protected in their own species, smaller
genomes are preserved as long as they are competitive,
avoiding bloating the genome.

The system utilizing these principals, called NeuroEvo-
lution of Augmenting Topologies (NEAT), evolves neural
networks of increasing complexity. By beginning search in
the space of simple neural networks with only direct con-
nections between inputs and outputs, evolution is able to
search for the simplest solution possible. This process re-
sults in very fast search; For example, NEAT finds solutions
to the non-Markovian double-pole balancing problem five
times faster than other methods to date (Stanley & Miikku-
lainen 2002c,d). In addition, because NEAT does not begin
searching directly in the space of the final solution, it is able
to find significantly more complex controllers than fixed-
topology evolution, as demonstrated in a robotic strategy-
learning domain (Stanley & Miikkulainen 2002a,b). In fact,
when evolution is forced to begin search directly in a the
same space as the final solution found by NEAT, it cannot
find a comparable solution. These empirical results confirm
that complexification is a powerful approach that is possible
to implement in practice.

So far, the NEAT approach has been applied only to a
direct encoding of neural networks. In principle, historical
markings can be applied to any genetic encoding, because
history is a property of genes regardless of what type of
phenotype they encode or how they encode it. Thus, the
problems with variable length genomes can be overcome in
many domains, and complexifying evolution is is a general
approach to generating complex structures.

Discussion and Future Work
So far we have discussed how complexification helps find
complex solutions, how nature utilizes complexification,
and how it can be implemented in EC. In this section, we
discuss the benefits of complexification in more detail and
propose to enhance it further by combining it with indirect
genetic encoding.

Benefits of Complexification
In fixed evolution, the complexity must be guessed just right.
Too little structure will make it impossible to solve the prob-
lem and too much will make the search space too large to
search efficiently. Moreover,even if complexity is guessed
right, searching in the the high-dimensional space of the fi-
nal solution may be intractable because search begins in a
random part of the space.

Adding new genes to the genome solves both of these
problems. Before the addition, the values of the existing
genes have already been optimized over preceding genera-

tions. Thus, after a new gene is added, the genome isal-
ready in a promising part of the new, higher-dimensional
space. Thus, the search in the higher-dimensional space is
not starting blindly as it would if evolution began the search
in that space.

As a result, complexification can find high-dimensional
solutions that would otherwise be difficult to discover. Un-
like standard evolution, complexifying evolution can also be
applied to problems where the complexity of the final solu-
tion is unknown or unbounded.

Any arbitrarily-sized structure can potentially evolve
through complexification. In addition to neural networks,
cellular automata (Mitchell, Crutchfield, & Das 1996), elec-
trical circuits (Miller, Job, & Vassilev 2000a; Miller, Job, &
Vassilev 2000b), genetic programs (Koza 1992), robot body
morphologies (Lipson & Pollack 2000), Bayesian networks
(Mengshoel 1999), finite automata (Brave 1996), and build-
ing and vehicle architectures (O’Reilly 2000) are all struc-
tures of varying complexity that can benefit from complexi-
fication.

So far complexifying evolution has only been used in sys-
tems where the phenotypic structure is directly encoded in
the genome. A potentially powerful and unexplored possi-
bility is to combine complexification with indirect genetic
encoding. Because indirect encodings reuse genes during
the development of the phenotype, their search space is
smaller, and potentially highly efficient, as will be discussed
next.

Combining Complexification and Indirect
Encoding
Many kinds of genes can be tracked through historical mark-
ings, including indirect encodings (Stanley & Miikkulai-
nen 2003). For example, in grammatical rewrite systems, a
gene is a rule that specifies how a symbol in the developing
phenotype should be expanded (Belew & Kammeyer 1993;
Boers & Kuiper 1992; Hornby & Pollack 2001b; Hornby
& Pollack 2001a; Kitano 1990; Lindenmayer 1968). An-
other approach is to encode development as a tree of in-
struction genes that are executed in parallel by different parts
of a developing phenotype (Gruau, Whitley, & Pyeatt 1996;
Komosinski & Rotaru-Varga 2001; Luke & Spector 1996).
Other indirect encodings attempt to simulate genetic regula-
tory networks (GRNs) in biology (Bongard & Pfeifer 2001;
Astor & Adami 2000; Dellaert & Beer 1994; Eggenberger
1997; Jakobi 1995). In a GRN, genes produce signals that
either activate or inhibit other genes in the genome. Some
genes produce signals that cause e.g. cells to grow or axons
to form. The interaction of all the genes forms a network that
produces a phenotype. All these encodings support variable
length genomes and historical markings, making complexi-
fication possible.

Direct encodings such as NEAT generally expand the
genome by adding random genes (Angeline, Saunders, &
Pollack 1993; Pujol & Poli 1998; Stanley & Miikkulainen
2002d). In contrast, nature uses duplication as the primary
means of expanding the genome. The reason is that when
genes are duplicated, the phenotype is not dramatically al-
tered (Forceet al. 1999). Such stability is important because



generally major mutations in the genome could permanently
and immediately disabled the lineage. As Force et al. (1999)
explained, subsequent mutations repartition the roles of both
the original genes and the duplicated genes without signif-
icantly altering the overall developmental plan. Once du-
plicate genes have undergone sufficient mutation to be acti-
vated at different points during development than their orig-
inal counterparts, subsequent mutations can begin to alter
development at these new points. Thus, because of the du-
plicate genes, evolution has the flexibility to alter the devel-
opmental process at additional points.

Such a gradual process is difficult to achieve with direct
encodings. When each gene maps to a single unit of pheno-
typic structure, duplicating genes is equivalent to duplicating
part of the phenotype, which can significantly alter its func-
tionality and structure. While in some cases such duplication
is not destructive (e.g. with single neurons), duplicating an
entire substructure of multiple components likely is.

In contrast, with indirect encoding, the duplicate genes
can have overlapping, redundant roles. Thus they are guar-
anteed to play a role in development as soon as they are in-
corporated. Then, over the following generations, they can
be partitioned gradually into different but related roles. In-
direct encoding therefore allows making use of duplication
as a nondestructive method of complexification.

The duplication process must carefully integrate the new
genes into the already-existing developmental plan of the or-
ganism, and the subsequent mutations must not be too se-
vere. If the genes become disconnected from the existing
developmental plan, subsequent mutations will likely have
little effect. Thus, in order to allow duplicate genes to grad-
ually take on new roles, the conditions under which they
activate should lie on a continuum. A slight mutation in one
duplicate should cause it to be activated in some but not all
cases where its counterpart was formerly always activated.

In addition to reducing the search space, in complexify-
ing evolution with indirect encoding important substructures
only need to be discovered once, even when they appear in
the phenotype multiple times. Reuse of new structure isin-
herentin the underlying developmental program that has al-
ready evolved. For example, appendages can evolve digits
all at once since the existing genetic specification ensures
that each appendage follows the same developmental pro-
cess. Thus, new genes that specify new structure at the end
of such a process will be encountered each time the process
occurs. On the other hand, complexification with direct en-
coding would require digits to be discovered separately on
several occasions, since each set of digits must be specified
by a separate set of genes. Thus, the combination of com-
plexification and indirect encoding is potentially powerful
because it allows global elaboration of all repeating struc-
tures simultaneously.

Indirect encodings that implement both synapsis and
gradual divergence of duplicate genes will allow researchers
also to understand the process of gene duplication bet-
ter.1 For example, how should clusters of genes be cho-

1Gene deletionis also possible, although it is potentially more
deleterious than duplication. Duplication creates redundancy,

sen for duplication? Everything from copying single genes
to duplicating whole genomes is possible. While biolo-
gists continue to debate this issue (Amoreset al. 1998;
Martin 1999), EC can also begin to address it through ex-
perimentation. Calabretta et al. (2000) have already shown
that distinct neural modules emerge when clusters of genes
are duplicated in the evolution of neural networks. Thus du-
plicating entire groups of genes can be beneficial.

A complexifying system that starts with small, simple
genomes will first evolve basic structures, such as bilateral
symmetry, and then elaborate on them in future generations
by adding new genes. The original simple developmental
plan provides a framework on which to add specific elabo-
rations and enhancements. The accumulation of such en-
hancements can ultimately create complex structures that
would have been difficult to discover all at once. One of
the most intriguing phenomena that might emerge from a
successful implementation is repetition with variation. That
is, instead of duplicating the same structure multiple times,
a generaltheme, such as a limb, can be reused multiple
times with differing manifestations. Such patterns do not
follow traditional modular design in engineering, in which
discrete identical parts are assembled into larger construc-
tions. Instead, the beginnings and ends of individual parts
are amorphous, and their internal structure is only vaguely
constrained. The capacity to reuse parts with variation is
potentially a very powerful way to create complexity, and a
most intriguing direction of future research.

Conclusion
We argue that searching for highly complex structures di-
rectly in the space of the final solution is intractable. Com-
plexification, i.e. adding new genes to the genome over the
course of evolution, is a practical and powerful alternative.
Natural evolution itself utilizes complexification. By start-
ing search in a small space of few genes and incrementally
adding more, evolution can build up complexity gradually.
In order to implement complexification in EC, care must be
taken to ensure that (1) crossover does not lose information,
and (2) innovation is not prematurely lost. We proposed
a method, NEAT, that accomplishes both these objectives
and thereby allows complexification. Although the NEAT
method can be generalized to any genetic encoding, a par-
ticularly promising research direction is to combine com-
plexification with indirect encoding. It is now possible to
implement and experiment with such a system, providing
insight both into how complex systems can be artificially
generated, and into nature’s own mechanisms for continuing
innovation.
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which does not cause any loss of functionality. In contrast, deletion
may cause important steps in development to be removed, short-
circuiting the process.
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