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Abstract

In most modern video games, character behavior is scriptedhatter how many times the player exploits
a weakness, that weakness is never repaired. Yet if gamaatbes could learn through interacting with
the player, behavior could improve as the game is playedikgét interesting. This paper introduces the
real-time NeuroEvolution of Augmenting Topologies (rtNBEAnethod for evolving increasingly complex
artificial neural networks imeal time as a game is being played. The rtNEAT method allows agents to
change and improve during the game. In fact, tNEAT makesiplesan entirely new genre of video games
in which the playettrains a team of agents through a series of customized exercisederfionstrate this
concept, the NeuroEvolving Robotic Operatives (NERO) garas built based on rtNEAT. In NERO, the
player trains a team of virtual robots for combat againseofilayers’ teams. This paper describes results
from this novel application of machine learning, and dentraiss that tNEAT makes possible video games
like NERO where agents evolve and adapt in real time. In therdéu tNEAT may allow new kinds of

educational and training applications through interactind adapting games.

1 Introduction

The world video game market in 2002 was between $15 billi@h%20 billion, larger than even that of Hol-
lywood (Thurrott 2002). Video games have become a facet ofyrpaople’s lives and the market continues

to expand. Because there are millions of interactive pagad because video games carry perhaps the least
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risk to human life of any real-world application, they makeexcellent testbed for techniques in artificial
intelligence (Laird and van Lent 2000). Such techniguesatse important for the video game industry:
They can potentially both increase the longevity of videmga and decrease their production costs (Fogel

et al. 2004b).

One of the most compelling yet least exploited technologgeshachine learning. Thus, there is an
unexplored opportunity to make video games more intergstitd realistic, and to build entirely new genres.
Such enhancements may have applications in education aimihyr as well, changing the way people

interact with their computers.

In the video game industry, the temon-player-characte(NPC) refers to an autonomous computer-
controlled agent in the game. This paper focuses on traiNiRGs as intelligent agents, and the standard
Al term agentsis therefore used to refer to them. The behavior of such aganturrent games is often
repetitive and predictable. In most video games, simpligtsccannot learn or adapt to control the agents:
Opponents will always make the same moves and the game yliekbmes boring. Machine learning
could potentially keep video games interesting by allovaggnts to change and adapt (Fogel et al. 2004b).
However, a major problem with learning in video games is thiaéhavior is allowed to change, the game
content becomes unpredictable. Agents might learn idsyic behaviors or even not learn at all, making
the gaming experience unsatisfying. One way to avoid theblpm is to train agents to perform complex
behaviors offline, and then freeze the results into the fieldased version of the game. However, although
the game would be more interesting, the agents still coulddapt and change in response to the tactics of

particular players.

If agents are to adapt and change in real-time, a powerfulrali@ble machine learning method is
needed. This paper describes such a method, a real-timecarhant of the NeuroEvolution of Augmenting
Topologies method (NEAT; Stanley and Miikkulainen 20020802a). NEAT evolves increasingly complex
neural networks, i.e. itomplexifies Real-time NEAT (rtNEAT) is able to complexify neural netke as
the game is playedmaking it possible for agents to evolve increasingly ssiptated behaviors in real
time. Thus, agent behavior improves visibly during gamgplde aim is to show that machine learning is
indispensable for an interesting genre of video games,@elddw how rtNEAT makes such an application

possible.

In order to demonstrate the potential of tNEAT, the Dightddia Collaboratory (DMC) at the Univer-
sity of Texas at Austin initiated, based on a proposal by k#mi®©. Stanley, the NeuroEvolving Robotic

Operatives (NERO) project in October of 200&tp://nerogame.org ). The idea was to create a



game in which learning isdispensablein other words, without learning NERO could not exist as mega
In NERO, the player takes the role of a trainer, teachingsskil a set of intelligent agents controlled by
rtNEAT. Thus, NERO is a powerful demonstration of how maehigarning can open up new possibilities

in gaming and allow agents to adapt.

NERO opens up new opportunities for interactive machinenlag in entertainment, education, and
simulation. This paper describes rtNEAT and NERO, and veviesults from the first year of this ongoing
project. The next section presents a brief taxonomy of gahegaise learning, placing NERO in a broader
context. NEAT is then described, including how it was enleato create rtNEAT. The last sections describe

NERO and summarize the current status and performance gathe.

2 Related Work

Early successes in applying machine learning (ML) to boanethes have motivated more recent work in
live-action video games. For example, Samuel (1959) tcameomputer to play checkers using a method
similar totemporal difference learnin¢Sutton 1988) in the first application of machine learning_jNb
games. Since then, board games such as tic-tac-toe (Gargié2r Michie 1961), backgammon (Tesauro
and Sejnowski 1987), Go (Richards et al. 1997; Stanley ankkiMainen 2004b), and Othello (Yoshioka
et al. 1998) have remained popular applications of ML (sg&lkranz 2001 for a survey). A notable example
is Blondie24, which learned checkers by playing againstfitsithout any built-in prior knowledge (Fogel
2001); also see Fogel et al. (2004a).

Recently, interest has been growing in applying ML to videmgs (Fogel et al. 2004b; Laird and van
Lent 2000). For example, Fogel et al. (2004b) trained teaianks and robots to fight each other using
a competitive coevolution system designed for trainingegiglame agents. Others have trained agents to
fight in first- and third-person shooter games (Cole et al42@xisler 2002; Hong and Cho 2004). ML
techniques have also been applied to other video game geanesac-Man (Gallagher and Ryan 2003)
to strategy games (Bryant and Miikkulainen 2003; Revelld BitCartney 2002; Yannakakis et al. 2004).

This section focuses on how machine learning can be apgied¢o games.

From the human player's perspective there are two typesashileg in video games. lout-game
learning (OGL), game developers use ML techniques to pretrain agkatsio longer learn after the game

is shipped. In contrast, in-game learnindIGL), agents adapt as the player interacts with them in &meeg

1pac-Manis a registered trademark of Namco, Ltd., of Tokyo, Japan.
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the player can either purposefully direct the learning psscor the agents can adapt autonomously to the
player's behavior. IGL is related to the broader fieldriéractive evolutionin which a user influences the
direction of evolution of e.g. art, music, or any other kirfgpbenotype (Parmee and Bonham 1999). Most
applications of ML to games have used OGL, though the distinanay be blurred from the researcher’s
perspective when online learning methods are used for O@Wwehler, the difference between OGL and IGL
is important to players and marketers, and ML researchdtdraguently need to make a choice between

the two.

In aMachine Learning Gam@MLG), the playerexplicitly attempts to train agents as part of IGL. MLGs
are a new genre of video games that require powerful leammiethods that can adapt during gameplay.
Although some conventional game designs include a “trgihpihase during which the player accumulates
resources or technologies in order to advance in levelb, games are not MLGs because the agents are not

actually adapting or learning.

Prior examples in the MLG genre include th@magotchirtual pef and the video “God gameBlack
& White?. In both games, the player shapes the behavior of game agightgositive or negative feedback.
Itis also possible to train agents by human example durieg@me, as van Lent and Laird (2001) described
in their experiments witiQuake If. While these examples demonstrated that limited learrsippssible in
a game, NERO is an entirely new kind of MLG; it uses a reinforeat learning method (neuroevolution) to
optimize a fitness function that is dynamically specifigdthe playemwhile watching and interacting with

the learning agents. Thus agent behavior continues to wap@s long as the game is played.

A flexible and powerful ML method is needed to allow agentsday during gameplay. It is not enough
to simply script several key agent behaviors because adaptaould then be limited to the foresight of the
programmer who wrote the script, and agents would only besihg from a limited menu of options.
Moreover, because agents need to learn online as the ganeyé&ppredetermined training targets are
usually not available, ruling out supervised techniquehss backpropagation (Rumelhart et al. 1986) and

decision tree learning (Utgoff 1989).

Traditional reinforcement learning (RL) techniques susl@alLearning (Watkins and Dayan 1992) and
Sarsal) with a Case-Based function approximator (SARSA-CABA,; @araria et al. 1998) adapt in do-
mains with sparse feedback (Kaelbling et al. 1996; SuttahBarto 1998; Watkins and Dayan 1992). These

2Tamagotchis a registered trademark of Bandai Co., Ltd., of Tokyo, dapa
3Black & Whiteis a registered trademark of Lionhead Studios, Ltd., of @ard, UK.

“Quake llis a registered trademark of Id Software, Inc., of Mesquiexas.



techniques learn to predict the long-term reward for takiogons in different states by exploring the state
space and keeping track of the results. While in principle ftossible to apply them to real-time learning
in video games, it would require significant work to overcoseeeral common demands of video game

domains:

1. Large state/action spaceSince games usually have several different types of abpud characters
and many different possible actions, the state/actionespiaat RL must explore is extremely high
dimensional. Dealing with high-dimensional spaces is aknohallenge with RL in general (Sutton
and Barto 1998), but in a real-time game there is the additichallenge of having to check the
value of every possible action on every game tick for evegnagn the game. Because traditional
RL checks all such action values, the value estimator muestigg several times (i.e. once for every
possible action) for each agent in the game on every game Aickon selection may thus incur a

very large cost on the game engine, reducing the amount gbatation available for the game itself.

2. Diverse behaviors Agents learning simultaneously in a simulated world stiadt all converge to
the same behavior: A homogeneous population would make d@heedoring. Yet because many
agents in video games have similar physical charactesisticl are evaluated in a similar context,
traditional RL techniques, many of which have convergencarantees (Kaelbling et al. 1996), risk
converging to largely homogeneous solution behaviorshd\it explicitly maintaining diversity, such

an outcome is likely.

3. Consistent individual behaviors RL depends on occasionally taking a random action in orler t
explore new behaviors. While this strategy works well inioéfllearning, players do not want to
constantly see the same individual agent periodically ngknexplicable and idiosyncratic moves

relative to its usual policy.

4. Fast adaptation and sophisticated behaviorsBecause players do not want to wait hours for agents
to adapt, it may be necessary to use a simple representhtibnan be learned quickly. However, a
simple representation would limit the ability to learn sigicated behaviors. Thus there is a trade-off
between learning simple behaviors quickly and learnindisticated behaviors more slowly, neither

of which is desirable.

5. Memory of past states If agents remember past events, they can react more camyiyndo the

present situation. However, such memory requires keepitnff bf more than the current state, ruling



out traditional Markovian methods. While methods for glyi observable Markov processes exist,

significant challenges remain in scaling them up to realldviarsks (Gomez 2003).

Neuroevolution (NE), i.e. the artificial evolution of nelireetworks using an evolutionary algorithm,
is an alternative RL technique that meets each of these dismaaturally: (1) NE works well in high-
dimensional spaces (Gomez and Miikkulainen 2003); evoagahts do not need to check the value of more
than one action per game tick because agents are evolvetbiat @nly a single requested action per game
tick. (2) Diverse populations can be explicitly maintairtbdough speciation (Stanley and Miikkulainen
2002b). (3) The behavior of an individual during its lifegéndoes not change because it always chooses
actions from the same network. (4)répresentatiorof the solution can be evolved, allowing simple prac-
tical behaviors to be discovered quickly in the beginning eamplexified later (Stanley and Miikkulainen
2004a). (5) Recurrent neural networks can be evolved thaleiment and utilize effective memory struc-
tures; for example, NE has been used to evolve motor-coskits similar to those in continuous-state
games in many challenging non-Markovian domains (AhardBarki et al. 2001; Floriano and Mondada
1994; Fogel 2001; Gomez and Miikkulainen 1998, 1999, 2008iaG et al. 1996; Harvey 1993; Moriarty
and Miikkulainen 1996b; Nolfi et al. 1994; Potter et al. 19%6anley and Miikkulainen 2004a; Whitley
et al. 1993). In addition to these five demands, neural né&isvalso make good controllers for video game
agents because they can compute arbitrarily complex fumstican both learn and perform in the presence
of noisy inputs, and generalize their behavior to previpusiseen inputs (Cybenko 1989; Siegelmann and

Sontag 1994). Thus, NE is a good match for video games.

There is a large variety of NE algorithms (Yao 1999). Whilensoevolve only the connection weight
values of fixed-topology networks (Gomez and Miikkulain&®99; Moriarty and Miikkulainen 1996a; Sar-
avanan and Fogel 1995; Wieland 1991), others evolve botghiseand network topology simultaneously
(Angeline et al. 1993; Bongard and Pfeifer 2001; Braun anglived 1993; Dasgupta and McGregor 1992;
Gruau et al. 1996; Hornby and Pollack 2002; Krishnan andi€lgs 1994; Lee and Kim 1996; Mandischer
1993; Maniezzo 1994; Opitz and Shavlik 1997; Pujol and P@87; Yao and Liu 1996; Zhang and Muh-
lenbein 1993). Topology and Weight Evolving Artificial NeNetworks (TWEANNS) have the advantage
that the correct topology need not be known prior to evolutiemong TWEANNS, NEAT is unique in that
it begins evolution with a population of minimal networksdaadds nodes and connections to them over

generations, allowing complex problems to be solved griddbased on simple ones.

Our research group has been applying NE to gameplay for abdatade. Using this approach, sev-

eral NE algorithms have been applied to board games (Mypraart Miikkulainen 1993; Moriarty 1997;
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Richards et al. 1997; Stanley and Miikkulainen 2004b).Ctello, NE discovered thenobility strategy
only a few years after its invention by humans (Moriarty anigkkilainen 1993). Recent work has focused
on higher-level strategies and real-time adaptation, whi® needed for success in both continuous and
discrete multi-agent games (Agogino et al. 2000; BryantMiikkulainen 2003; Stanley and Miikkulainen
2004a). Using such techniques, relatively simple ANN calfgrs can be trained in games and game-like
environments to produce convincing purposeful and imgfefit behavior (Agogino et al. 2000; Gomez and
Miikkulainen 1998; Moriarty and Miikkulainen 1995a,b, 188 Richards et al. 1997; Stanley and Miikku-
lainen 2004a).

The current challenge is to achieve evolutionréal time as the game is played. If agents could be
evolved in a smooth cycle of replacement, the player couleraat with evolution during the game and
the many benefits of NE would be available to the video gamorgmunity. This paper introduces such
a real-time NE technique, rtNEAT, which is applied to the NERuwulti-agent continuous-state MLG. In
NERO, agents must master both motor control and highet-tavetegy to win the game. The player acts
as a trainer, teaching a team of virtual robots the skilly theed to survive. The next section reviews the

NEAT neuroevolution method, and Section 4 how it can be ecdrito produce rtNEAT.

3 NeuroEvolution of Augmenting Topologies (NEAT)

The rtNEAT method is based on NEAT, a technique for evolviagral networks for complex reinforcement
learning tasks using an evolutionary algorithm (EA). NEAIbines the usual search for the appropriate
network weights withcomplexificationof the network structure, allowing the behavior of evolvezliral

networks to become increasingly sophisticated over génasm

The NEAT method consists of solutions to three fundamertiallenges in evolving neural network
topology: (1) What kind of genetic representation wouldwltisparate topologies to cross over in a mean-
ingful way? The solution is to use historical markings teelump genes with the same origin. (2) How can
topological innovation that needs a few generations tontipé be protected so that it does not disappear
from the population prematurely? The solution is to segaeaich innovation into a different species. (3)
How can topologies be minimizatiroughout evolutiorso the most efficient solutions will be discovered?
The solution is to start from a minimal structure and add sate connections incrementally. This section
explains how each of these solutions is implemented in NE&Ihg the genetic encoding described in the

first subsection.



Genome (Genotype)

Node Node 1 [Node 2 |Node 3 |Node 4 |Node 5

Genes Input Input Input Output | Hidden
Connect. | Innov 1 Innov 2 Innov 3 Innov 4 Innov 5 Innov 6 Innov 11
Genes  |jn1 In2 In3 In2 In5 In1 In4

Out 4 Out4 Out4 Out5 Out 4 Out 5 Out5

Weight0.7 |Weight-0.5 |Weight0.5 |Weight0.2 |Weight0.4 |Weight0.6 |Weight0.6

Enabled DISABLED |Enabled Enabled Enabled Enabled Enabled

\ 4
Network (Phenotype)
1 2 3

Figure 1: A NEAT genotype to phenotype mapping example. A genotype is depicted that produces the shown

phenotype. There are three input nodes, one hidden nodeyudpet node, and seven connection definitions, one
of which is recurrent. The second gene is disabled, so theeation that it specifies (between nodes 2 and 4) is
not expressed in the phenotype. The genotype can haveaaydigngth, and thereby represent arbitrarily complex

networks. Innovation numbers, which allow NEAT to identiffrich genes match up between different genomes, are
shown on top of each gene. This encoding is efficient and altdvanging the network structure during evolution.

3.1 Genetic Encoding

Evolving structure requires a flexible genetic encoding.oider to allow structures to complexify, their
representations must be dynamic and expandable. Each gemoNEAT includes a list otonnection
geneseach of which refers to twnode genedeing connected (Figure 1). Each connection gene specifies
the in-node, the out-node, the weight of the connection tindreor not the connection gene is expressed (an

enable bit), and amnovation numberwhich allows finding corresponding genes during crossover

Mutation in NEAT can change both connection weights and agtwstructures. Connection weights
mutate as in any NE system, with each connection eithergeduor not. Structural mutations, which form
the basis of complexification, occur in two ways (Figure 22ck mutation expands the size of the genome
by adding genes. In thaedd connectiormutation, a single new connection gene is added conneating t
previously unconnected nodes. In thed nodemutation, an existing connection is split and the new node
placed where the old connection used to be. The old conmeistitisabled and two new connections added
to the genome. The connection between the first node in tHa end the new node is given a weight of
one, and the connection between the new node and the lastmtbdechain is given the same weight as the

connection being split. Splitting the connection in thispm@roduces a nonlinearity (the sigmoid function)



Add Connedion Mutation

1 2 13| 4 41516117
1->4(2->4|3->4|2->5|5- >4 1->5 1 >4 2->4 3->4 2->5|5->4|1->5|3->5

DIS DIS

AT A

Add Node Mutation

1 21314 5]6
1->4|2->4|3->4|2->5|5->4|1->5
DIS

1 21314 5|6]| 8|09
1->4|2->4|3->4(2->5|5->4(1->5|3->6| 6->4
DIS| DIS

-

Figure 2: The two types of structural mutation in NEAT. In each genome, the innovation number is shown on
top, the two nodes connected by the gene in the middle, anttib&bled” symbol at the bottom; the weights and
the node genes are not shown for simplicity. A new conneatioa new node is added to the network by adding
connection genes to the genome. Assuming the node is adtidted connection, the genes would be assigned
innovation numbers 7, 8, and 9, as the figure illustrates. N&ak keep an implicit history of the origin of every gene
in the population, allowing matching genes to be identifieehein different genome structures.

where there was none before. This nonlinearity changesuthetibn only slightly, and the new node is
immediately integrated into the network. Old behaviorsoeled in the preexisting network structure are not
destroyed and remain qualitatively the same, while the rievetsire provides an opportunity to elaborate

on these original behaviors.

Through mutation, the genomes in NEAT will gradually gegler  Genomes of varying sizes will
result, sometimes with different connections at the sansitipns. Any crossover operator must be able
to recombine networks with differing topologies, which dandifficult (Radcliffe 1993). The next section

explains how NEAT addresses this problem.

3.2 Tracking Genes through Historical Markings

The historical origin of each gene can be used to determiaetigxvhich genes match up betweamyindi-
viduals in the population. Two genes with the same histboogin represent the same structure (although
possibly with different weights), since they were both dedi from the same ancestral gene at some point
in the past. Thus, in order to properly align and recombinetewn disparate topologies in the population

the system only needs to keep track of the historical orifjgach gene.
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Tracking the historical origins requires very little contgtiion. Whenever a new gene appears (through
structural mutation), global innovation numbeis incremented and assigned to that gene. The innovation
numbers thus represent a chronology of every gene in thdatagu As an example, say the two mutations
in Figure 2 occurred one after another. The new connectiae geeated in the first mutation is assigned the
number7, and the two new connection genes added during the new nodiomnuare assigned the numbers
8 and9. In the future, whenever these genomes cross over, therioffswill inherit the same innovation

numbers on each gene. Thus, the historical origin of evemg geknown throughout evolution.

A possible problem is that the same structural innovatiohreteive different innovation numbers in
the same generation if it occurs by chance more than once.ettwby keeping a list of the innovations
that occurred in the current generation, it is possible suemthat when the same structure arises more than
once through independent mutations in the same generatmh, identical mutation is assigned the same

innovation number.

Through innovation numbers, the system now knows exactigiwgenes match up with which (Figure
3). Genes that do not match are eitd&sjoint or excessdepending on whether they occur within or outside

the range of the other parent’s innovation numbers.

When crossing over, the genes with the same innovation nnave lined up. The offspring is then
formed in one of two ways: In uniform crossover, matchingageare randomly chosen for the offspring
genome. In blended crossover (Wright 1991), the conneat@ghts of matching genes are averaged. These
two types of crossover were found to be most effective in NiEA&xtensive testing compared to one-point

crossover.

The disjoint and excess genes are inherited from the morargip, or if they are equally fit, from both
parents. Disabled genes have a chance of being reenabled duossover, allowing networks to make use

of older genes once again.

Historical markings allow NEAT to perform crossover with@malyzing topologies. Genomes of differ-
ent organizations and sizes stay compatible throughoutittwe, and the variable-length genome problem
is essentially avoided. This methodology allows NEAT to ptewify structure while different networks

still remain compatible.

However, it turns out that it is difficult for a population adirying topologies to support new innovations
that add structure to existing networks. Because smallectsies optimize faster than larger structures,
and adding nodes and connections usually initially deeettee fitness of the network, recently augmented

structures have little hope of surviving more than one gai@r even though the innovations they represent
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Parent1 Parent2

1 21 3| 4|58 1213|456 7] 9]10
1->4(2->4(3->4(2->5|5->4|1->5 1->4|2->4|3->4|2->5|5->4|5->6|6->4|3->5|1->6
DIS DIS DIS
4 x
1 2 3 ‘ 1 2
disjoint
112 3| 4)|5 8
Parentl |1->4|2->4{3->4/2->5|5>4 1->5
DIS
1 213145167 9 |10
Parent2 | 1->4|2->4|3->4|2->5|5->4(5->6|6->4 3->5|1->6
DIS DIS

disjoint disjoint excess excess

1 2131415678 9 110
Offspring | 1->4|2->4|3->4|2->5|5->4|5->6|6->4|1->5 | 3->5|1->6
DIS

Figure 3: Matching up genomes for different network topologies usingnnovation numbers. Although Parent

1 and Parent 2 look different, their innovation numbers \ghat the top of each gene) indicate that several of their
genes match up even without topological analysis. A newcsira that combines the overlapping parts of the two
parents as well as their different parts can be created gsok@r. In this case, the two parents are assumed to have
equal fitness, and therefore the offspring inherits all syehes from both parents. Otherwise these genes would be
inherited from the more fit parent only. The disabled geneg beecome enabled again in future generations: There
is a preset chance that an inherited gene is enabled if is@btid in either parent. By matching up genes in this
way, it is possible to determine the best alignment for @essbetween any two arbitrary network topologies in the
population.

might be crucial towards solving the task in the long run. $bletion is to protect innovation by speciating

the population, as explained in the next section.

3.3 Protecting Innovation through Speciation

NEAT speciates the population so that individuals compeitmarily within their own niches instead of
with the population at large. This way, topological innevas are protected and have time to optimize their
structure before they have to compete with other nichesamtipulation. Protecting innovation through
speciation follows the philosophy that new ideas must bergtime to reach their potential before they are

eliminated. A secondary benefit of speciation is that is @név bloating of genomes: Species with smaller
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genomes survive as long as their fithess is competitive, rieigsthat small networks are not replaced by

larger ones unnecessarily.

Historical markings make it possible for the system to divide population into species based on how
similar they are topologically (figure 4). The distantbetween two network encodings can be measured
as a linear combination of the number of exceB}¥ &nd disjoint ) genes, as well as the average weight

differences of matching geneB/):

ClE 62D —
§= 2" 4 22 W, 1
N + N + c3 Q)

The coefficientsc;, co, andeg adjust the importance of the three factors, and the fabtpthe number
of genes in the larger genome, normalizes for genome &izeah be set to one unless both genomes are
excessively large). Genomes are tested one at a time; if@emggEs distance to a randomly chosen member

of the species is less thap a compatibility threshold, the genome is placed into thecges.

If a genome is not compatible with any existing species, a species is created. The problem of
choosing the best value fd; can be avoided by making dynami¢ that is, given a target number of
species, the system can slightly radsdf there are too many species, and lowgif there are too few. Each
genome is placed into the first species fromphevious generatiomwhere this condition is satisfied, so that
no genome is in more than one species. Keeping the same get@és from one generation to the next

allows NEAT to remove stagnant species, i.e. species thatmat improved for several generations.

As the reproduction mechanism, NEAT usaglicit fithess sharingGoldberg and Richardson 1987),
where organisms in the same species must share the fitndwsrafithe. Thus, a species cannot afford to
become too big even if many of its organisms perform well. réf@e, any one species is unlikely to take
over the entire population, which is crucial for speciatedigion to support a variety of topologies. The
adjusted fitnesg; for organismi is calculated according to its distanEé&om every other organismin the

population:
_ fi
> j=15h(4(z, 7))

The sharing functiorh is set to0 when distancé (s, j) is above the threshold; otherwisesh(d(i, 7)) is

fi (2)

setto 1 (Spears 1995). Thus,_, sh(é(7,)) reduces to the number of organisms in the same species as
organismi. This reduction is natural since species are already ckstey compatibility using the threshold
d;. Every species is assigned a potentially different numbeffgpring in proportion to the sum of adjusted

fitnessesf; of its member organisms.

The net effect of fitness sharing in NEAT can be summarizedlasifs. LetF}, be the average fitness of
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The Genome Loop:
Take the next genome g from population P
The Species Loop:
If all species in S have been checked,

create new species snew and place g in it

Else
Get the next species s from S
If g is compatible with s, add g to s

If g has not been placed,
continue the Species Loop
Else exit the Species Loop
If not all genomes in G have been placed,
continue the Genome Loop

Else exit the Genome Loop

Figure 4:Procedure for speciating the population in NEAT. The speciation procedure consists of two nested loops
that allocate the entire population into species. Figuredivs how it can be done continuously in real time.

speciesk and|P| be the size of the population. L&%,; = 3, Fy be the total of all species fitness averages.

The number of offspring:;, allotted to species is:

ng = =—|P|. 3
Species reproduce by first eliminating the lowest perfognimembers from the population. The entire
population is then replaced by the offspring of the remgnindividuals in each species.

The main effect of speciating the population is that stnadtinnovation is protected. The final goal
of the system, then, is to perform the search for a solutioeffagently as possible. This goal is achieved

through complexification from a simple starting structag detailed in the next section.

3.4 Minimizing Dimensionality through Complexification

Other systems that evolve network topologies and weighginbevolution with a population of random
topologies (Angeline et al. 1993; Gruau et al. 1996; Yao 129tng and Muhlenbein 1993). In contrast,

NEAT begins with a uniform population of simple networks lwito hidden nodes, differing only in their
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initial random weights. Speciation protects new innovaticallowing diverse topologies to gradually accu-

mulate over evolution. Thus, NEAT can start minimally, amdvgthe necessary structure over generations.

New structures are introduced incrementally as structumatiations occur, and only those structures
survive that are found to be useful through fithess evalnatioln this way, NEAT searches through a
minimal number of weight dimensions, significantly redgcthe number of generations necessary to find
a solution, and ensuring that networks become no more comtipde necessary. This gradual increase in
complexity over generations is similar to complexificationbiology (Amores et al. 1998; Carroll 1995;
Force et al. 1999; Martin 1999). In effect, then, NEAT seascfor the optimal topology by incrementally

complexifying existing structure.

3.5 NEAT Performance

In previous work, each of the three main components of NEAT. fiistorical markings, speciation, and
starting from minimal structure) were experimentally abdhin order to determine how they contribute to
performance (Stanley and Miikkulainen 2002b). The abtesitudy demonstrated that all three components

are interdependent and necessary to make NEAT work.

The NEAT approach is also highly effective: NEAT outperferwther neuroevolution (NE) methods,
e.g. on the benchmark double pole balancing task (Stangyiikkulainen 2002a,b). In addition, because
NEAT starts with simple networks and expands the searchespaly when beneficial, it is able to find
significantly more complex controllers than fixed-topologyolution (Stanley and Miikkulainen 2004a).
These properties make NEAT an attractive method for evglwiaural networks in complex tasks such as

video games. The next section explains how NEAT can be eelaoovork in real time.

4 Real-time NEAT (rtNEAT)

Like most EAs, NEAT was originally designed to roffline Individuals are evaluated one or two at a time,
and after the whole population has been tested, a new papuiatcreated to form the next generation. In
other words, in a normal EA it is not possible for a human teratt with the evolving agents while they
are evolving. This section describes how NEAT can be modifietiake it possible for players to interact

with evolving agentsn real time
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Figure 5:The main replacement cycle in rtNEAT. NE agents (represented as small circles with an arrow itidiza
their direction) are depicted playing a game in the large tiosery few ticks, two high-fitness agents are selected to
produce an offspring that replaces another of lower fitn€s cycle of replacement operates continually throughout
the game, creating a constant turnover of new behaviorssttegely invisible to the player.

4.1 Motivation

At each generation, NEAT evaluates one complete generatimlividuals before creating the next gener-
ation. Real-time neuroevolution is based on the obsenvdhat in a video game, the entire population of
agents playsat the same timeTherefore, fitness statistics are collected constantihegame is played,

and the agents could in principle be evolved continuoushyelk

The central question is how the agents can be replaced oonsty so that offspring can be evaluated.
Replacing the entire population together on each generatimuld look incongruous to the player since
everyone’s behavior would change at once. In addition, Wetewould remain static during the large gaps

of time between generations.

The alternative is to replace a single individual every femmg ticks as is done in some evolutionary
strategy algorithms (Beyer and Paul Schwefel 2002). Onkeofvorst individuals is removed and replaced
with a child of parents chosen from among the best. If thidecyé removal and replacement happens

continually throughout the game (figure 5), evolution igédy invisible to the player.

Real-time evolution using continuous replacement wasifitpptemented using conventional neuroevo-

lution before NEAT was developed and applied to a Warcraftikie video game (Agogino et al. 2000). A

SWarcraft Il is a registered trademark of Blizzard Entertainment, ahkyCalifornia.
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The rtNEAT Loop:

Calculate the adjusted fitness of all current
individuals in the population

Remove the agent with the worst adjusted
fitness from the population provided one has
been alive sufficiently long so that it has
been properly evaluated.

Re-estimate the average fitness F for all
speci es

Choose a parent species to create the new
of fspring

Adj ust é; dynanically and reassign all agents
to species

Pl ace the new agent in the world

Figure 6:Operations performed everyn ticks by rtNEAT. These operations allow evolution to proceed continu-
ously, with the same dynamics as in original NEAT.

similar real-time conventional neuroevolution system Vedsr demonstrated by Yannakakis et al. (2004)
in a predator/prey domain. However, conventional neurogenm is not sufficiently powerful to meet the
demands of modern video games. In contrast, a real-timéowenf NEAT offers the advantages of NEAT:
Agent neural networks can become increasingly sophisticahd complex during gameplay. The challenge
is to preserve the usual dynamics of NEAT, namely proteatibimnovation through speciation and com-
plexification. While original NEAT assigns offspring to sjiesen massdor each new generation, rtNEAT
cannot do the same because it only produces one new offsirangme. Therefore, the reproduction cycle

must be modified to allow tNEAT to speciate in real-time. sSTtycle constitutes the core of rtNEAT.

4.2 The rtNEAT Algorithm

In the tNEAT algorithm, a sequence of operations aimedtatducing a new agent into the population are
repeated at a regular time interval, i.e. eveticks of the game clock (figure 6). The new agent will replace a
poorly performing individual in the population. The algbrin preserves the speciation dynamics of original
NEAT by probabilistically choosing parents to form the pfisg and carefully selecting individuals to

replace. Each of the steps in figure 6 is discussed in moré detaw.
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4.2.1 Calculating adjusted fitness

Let f; be the original fitness of individual Fitness sharing adjusts it ﬁg where|S| is the number of

individuals in the species (Section 3.3).

4.2.2 Removing the worst agent

The goal of this step is to remove a poorly performing ageminfthe game, hopefully to be replaced by
something better. The agent must be chosen carefully temespeciation dynamics. If the agent with
the worstunadjustedfitness were chosen, fitness sharing could no longer praotaovation because new
topologies would be removed as soon as they appear. Thusgém with the worsadjustedfitness should

be removed, since adjusted fithess takes into account spsicie, so that new, smaller species are not

removed as soon as they appear.

It is also important that agents are evaluated sufficiengifole they are considered for removal. In
original NEAT, networks are generally all evaluated for #sme amount of time. However, in rtNEAT,
new agents are constantly being born, meaning differemtadeve been around for different lengths of
time. Therefore, tNEAT only removes agents who have pldgecore than the minimum amount of time
m. This parameter is set experimentally, by observing howhmtime is required for an agent to execute a

substantial behavior in the game.

4.2.3 Re-estimatingF

Assuming there was an agent old enough to be removed, iteespemny has one less member and therefore
its average fitnesB' has likely changed. It is important to keépup-to-date becausE is used in choosing

the parent species in the next step. TherefBrageds to be calculated in each step.

4.2.4 Creating offspring

Because only one offspring is created at a time, equatiore8 dot apply to rtNEAT. However, its effect can
be approximated by choosing the parent species probaaligtbased on the same relationship of adjusted

fithesses:

Pr(Sg) = =—. 4)



In other words, the probability of choosing a given parerdgcsgs is proportional to its average fitness
compared to the total of all species’ average fitnesses. ,Tdwes the long run, the expected number of
offspring for each species is proportionalrp, preserving the speciation dynamics of original NEAT. A

single new offspring is created by recombining two indiatfufrom the parent species.

4.2.5 Reassigning Agents to Species

As was discussed in Section 3.3, the dynamic compatibtitggholds; keeps the number of species rela-
tively stable throughout evolution. Such stability is partarly important in a real-time video game since
the population may need to be consistently small to acconateo@PU resources dedicated to graphical

processing.

In original NEAT, §; can be adjusted before the next generation is created. EATNchanging); alone
is not sufficient because most of the population would stithain in their current species. Instead, the
entire population must be reassigned to the existing spé&esed on the nedy. As in original NEAT, if a
network does not get assigned to any of the existing spexigsy species is created with that network as its
representative. Depending on the specific game, speciestd@ead to be reorganized at every replacement.
The number of ticks between adjustments can be chosen byathe designer based on how rapidly the
species evolve. In NERO, evolution progresses rather tyliekd the reorganization is done every five

replacements.

4.2.6 Replacing the old agent with the new one

Since an individual was removed in step 4.2.2, the new affgpreeds to replace it. How agents are replaced
depends on the game. In some games (such as NERO), the netwalkcan be removed from a body

and replaced without doing anything to the body. In othdrs tody may have been destroyed and need to
be replaced as well. The rtNEAT algorithm can work with anythafse schemes as long as an old neural

network gets replaced with a new one.

4.3 Running the algorithm

The 6-step rtNEAT algorithm is necessary to approximatgimai NEAT in real-time. However, there is
one remaining issue. The entire loop should be performeelgalar intervals, every ticks: How shouldn

be chosen?
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If agents are replaced too frequently, they do not live longugh to reach the minimum time to be
evaluated. On the other hand, if agents are replaced toegqueéintly, evolution slows down to a pace that

the player no longer enjoys.

Interestingly, the appropriate frequency can be deterdhiheough a principled approach. LEbe the
fraction of the population that is too young and therefonentd be replaced. As before,is the number
of ticks between replacements; is the minimum time alive, andP| is the population size. Aaw of
eligibility can be formulated that specifies what fraction of the pomuiatan be expected to be ineligible

once evolution reaches a steady state (i.e. after the fiedifiee steps when no one is eligible):

m
= P (5)
According to Equation 5, the larger the population and theentione between replacements, the lower the
fraction of ineligible agents. This principle makes senseesin a larger population it takes more time
to replace the entire population. Also, the more time pabstween replacements, the more time the
population has to age, and hence fewer are ineligible. Owotther hand, the larger the minimum age, the

more are below it, and fewer agents are eligible.

It is also helpful to think of as thenumberof individuals that must be ineligible at any time; over the
course ofm ticks, an agent is replaced eveiyticks, and all the new agents that appear oweticks will
remain ineligible for that duration since they cannot hagerbaround for over ticks. For example, ifP|

is 50, m is 500, andn is 20, 50% of the population would be ineligible at any one time.

Based on the law of eligibility, tNEAT can decide on its owovhmany ticksn should lapse between
replacements for a preferred level of ineligibility, sgecipopulation size, and minimum time between

replacements:

m
n= BT (6)
It is best to let the user choodebecause in general it is most critical to performance; if tmach of the
population is ineligible at one time, the mating pool is naffisiently large. Equation 6 then allows rtNEAT
to determine the appropriate number of ticks between repiaats. In NERO, 50% of the population

remains eligible using this technique.

By performing the right operations evenyticks, choosing the right individual to replace and repigci

it with an offspring of a carefully chosen species, rtNEATalsle to replicate the dynamics of NEAT in
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Figure 7: A turret training sequence. The figure depicts a sequence of increasingly difficult antiplaated
training exercises in which the agents attempt to attadgletsiwvithout getting hit. In the first exercise there is only a
single turret but more turrets are added by the player agtra timproves. Eventually walls are added and the turrets
are given wheels so they can move. Finally, after the teanmizssered the hardest exercises, it is deployed in a real
battle against another team.

real-time. Thus, it is now possible to deploy NEAT in a realed game and interact with complexifying

agents as they evolve. The next section describes such a game

5 NeuroEvolving Robotic Operatives (NERO)

NERO is representative of a new MLG genre that is only posditough machine learning. The idea is
to put the player in the role of @mainer or adrill instructor who teaches a team of agents by designing a
curriculum. Of course, for the player to be able to teach &géhe agents must be ableléarn; rtNEAT is

the learning algorithm that makes NERO possible.

In NERO, the learning agents are simulated robots, and thkigdo train a team of these agents for
military combat. The agents begin the game with no skills @mlglt the ability to learn. In order to prepare
for combat, the player must design a sequence of trainingcises and goals. Ideally, the exercises are
increasingly difficult so that the team can begin by learrdagic skills and then gradually build on them
(figure 7). When the player is satisfied that the team is welbared, the team is deployed in a battle against
another team trained by another player, making for a captiyand exciting culmination of training. The
challenge is to anticipate the kinds of skills that might keessary for battle and build training exercises to
hone those skills. The next two sections explain how thetagane trained in NERO and how they fight an

opposing team in battle.
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Figure 8:Setting up training scenarios. These NERO screenshots show examples of items that the' glyglace

on the field, and sliders used to control the agents’ beha{adiThree types of enemies are shown from left to right:
a rover that runs in a preset pattern, a static enemy thadstara single location, and a rotating turret with a gun. To
the right of the turret is a flag that NERO agents can learn pvageh or avoid. Behind these objects is a wall. The
player can place any number and any configuration of thesesita the training field. (b) Interactive sliders specify
the player’s preference for the behavior the team shoultbtpptimize. For example the “E” icon means “approach
enemy,” and the descending bar above it specifies that tlyempleants to punish agents that approach the enemy.
The crosshair icon represents “hit target,” which is bemgarded. The sliders are used to specify coefficients for the
corresponding components of the fitness function that NE&indzes. Through placing items on the field and setting
sliders, the player creates training scenarios whereileatakes place.

5.1 Training Mode

The player sets up training exercises by placing objectdherfield and specifying goals through several
sliders (figure 8). The objects include static enemies, grkemets, rovers (i.e. turrets that move), flags,
and walls. To the player, the sliders serve as an interfacddscribing ideal behavior. To rtNEAT, they

represent coefficients for fithess components. For exar@esliders specify how much to reward or punish
approaching enemies, hitting targets, getting hit, follmyfriends, dispersing, etc. Each individual fithess
component is normalized to a Z-score (i.e. the number oflstahdeviations from the mean) so that each
fithness component is measured on the same scale. Fitnesspsieal as the sum of all these components
multiplied by their slider levels, which can be positive @gative. Thus, the player has a natural interface

for setting up a training exercise and specifying desirdthiier.

Agents have several types of sensors. Although NERO pragesifrequently experiment with new
sensor configurations, the standard sensors include ersfagst an “on target” sensor, object rangefinders,
and line-of-fire sensors. Figure 9 shows a neural network thié standard set of sensors and outputs, and

figure 10 describes how the sensors function.

Training mode is designed to allow the player to set up aitrgiacenario on the field where the agents
can continually be evaluated while the worst agent’s nenefvork is replaced every few ticks. Thus,
training must provide a standard way for agents to appeahefi¢ld in such a way that every agent has

an equal chance to prove its worth. To meet this goal, thetaggawn from a designated area of the field

21



Left/Right Forward/Back  Fire

Enemy Radars On  QObject Rangefiners ~ Enemy
Target LOF

Sensors

Figure 9: NERO input sensors and action outputs. Each NERO agent can see enemies, determine whether an
enemy is currently in its line of fire, detect objects and sadind see the direction the enemy is firing. Its outputs
specify the direction of movement and whether or not to fireisTonfiguration has been used to evolve varied and
complex behaviors; other variations work as well and theddad set of sensors can easily be changed in NERO.

Ng D

(a) Enemy Radars (b) Rangefinders
N *%74
(c) On-Target Sensor (d) Line-of-fire sensors

Figure 10: NERO sensor design. All NERO sensors are egocentric, i.e. they tell where thedsjare from

the agent’s perspective. (a) Several enemy radar sensadg diie 360 degrees around the agent into slices. Each
slice activates a sensor in proportion to how close an ensmithin that slice. If there is more than one enemy
in it, their activations are summed. (b) Rangefinders ptajags at several angles from the agent. The distance
the ray travels before it hits an object is returned as thaevaf the sensor. Rangefinders are useful for detecting
long contiguous objects whereas radars are appropriatelgively small, discrete objects. (c) The on-target sens
returns full activation only if a ray projected along therftdheading of the agents hits an enemy. This sensor tells
the agent whether it should attempt to shoot. (d) The linerefsensors detect where a bullet stream from the closest
enemy is heading. Thus, these sensors can be used to avoid fiey work by computing where the line of fire
intersects rays projecting from the agent, giving a sengbebullet's path. Together, these four kinds of sensors
provide sufficient information for agents to learn succaldséhaviors for battle. Other sensors can be added based on
the same structures, such as radars for detecting a flagendfyiagents on the same team.
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called thefactory. Each agent is allowed a limited time on the field during whishfitness is assessed.

When their time on the field expires, agents are transporhe#t to the factory, where they begin another
evaluation. Neural networks are only replaced in agentshiénee been put back in the factory. The factory
ensures that a new neural network cannot get lucky (or ug)umkappearing in an agent that happens to be

standing in an advantageous (or difficult) position: Alllexsions begin consistently in the factory.

The fitness of agents that survive more than one deploymehedield is updated through a diminishing
average that gradually forgets deployments from the digtast. A true average is first computed over the
first few trials (e.g. 2) and a continuous leaky average (aintb TD(0) reinforcement learning update

(Sutton and Barto 1998)) is maintained thereafter:

St*ft

r

fto1=fi + (7)

wheref; is the current fitness, is the score from the current evaluation, arabntrols the rate of forgetting.
The lowerr is set, the sooner recent evaluations are forgotten. liptbiess, older agents have more reliable
fithness measures since they are averaged over more depl@ythen younger agents, but their fithess does

not become out of date.

Training begins by deploying 50 agents on the field. Eachtagarontrolled by a neural network with
random connection weights and no hidden nodes, which isghal starting configuration for NEAT (see
Appendix A for a complete description of the tNEAT paramgtgsed in NERO). As the neural networks
are replaced in real-time, behavior improves dramaticaltyg agents eventually learn to perform the task
the player sets up. When the player decides that performzasecached a satisfactory level, he or she can
save the team in a file. Saved teams can be reloaded for furétii@ng in different scenarios, or they can
be loaded into battle mode. In battle, they face off agamestnis trained by an opponent player, as will be

described next.

5.2 Battle Mode

In battle mode, the player discovers how well the trainingked out. Each player assembles a battle team
of 20 agents from as many different trained teams as degt@xample, perhaps some agents were trained
for close combat while others were trained to stay far awalyaamoid fire. A player may choose to compose

a heterogeneous team from both training sessions, andydépidattle.

Battle mode is designed to run over a server so that two plag@n watch the battle from separate
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Figure 11: Battlefield configurations. A range of possible configurations from an open pen (a) to serlike
environment (c) can be created for NERO. Players can caridineir own battlefield configurations and train for
them. The basic configuration, which is used in Section @hésempty pen surrounded by four bounding walls, as
shown in (a).

terminals on the Internet. The battle begins with the twatearrayed on opposite sides of the field. When
one player presses a “go” button, the neural networks olstaitrol of their agents and perform according
to their training. Unlike in training, where being shot does lead to an agent body being damaged, the
agents are actually destroyed after being shot severas tfiougrently five) in battle. The battle ends when
one team is completely eliminated. In some cases, the omyvguy agents may insist on avoiding each
other, in which case action ceases before one side is caghpbigstroyed. In that case, the winner is the

team with the most agents left standing.

The basic battlefield configuration is an empty pen surrodrmefour bounding walls, although it is
possible to compete on a more complex field with walls or ottetacles (figure 11). In the experiments
described in this paper, the battlefield was the basic peahtteagents were trained specifically for this

environment. The next section gives examples of actual NERGIng and battle sessions.

6 Playing NERO

Behavior can be evolved very quickly in NERO, fast enoughhst the player can be watching and inter-
acting with the system in real time. The game engine Tordcensed from GarageGames
(http://www.garagegames.com/ ), drives NERO’s simulated physics and graphics. An impdrta
property of the Torque engine is that its physics is slightihdeterministic, so that the same game is never
played twice. In addition, Torque makes it possible for theyer to take control of enemy robots using a

joystick, an option that can be useful in training.
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(a) 5s: Confusion (b) 100s: Success

Figure 12:Learning to approach the enemy. These screenshots show the training field before and aftexghnts
evolved seeking behavior. The factory is at the bottom ohgamel and the enemy being sought is at the top. (a)
Five seconds after the training begins, the agents scatfrdzardly around the factory, unable to effectively seek
the enemy. (b) After ninety seconds, the agents consigteratlel to the enemy. Some agents prefer swinging left,
while others swing right. These pictures demonstrate tehabior improves dramatically in real-time over only 100
seconds.

The first playable version of NERO was completed in May of 2084that time, several NERO pro-
grammers trained their own teams and held a tournament. &w@ers of what is possible in NERO, this

section outlines the behaviors evolved for the tournanmibet,resulting battles, and the real-time perfor-

mance of NERO and rtNEAT.

6.1 Training Basic Battle Skills

NERO is capable of evolving behaviors very quickly in realé. The most basic battle tactic is to aggres-
sively seek the enemy and fire. To train for this tactic, alsirggatic enemy was placed on the training
field, and agents were rewarded for approaching the enem. titining required agents to learn to run
towards a target, which is difficult since agents start othéfactory facing in random directions. Starting
from random neural networks, it takes on average 99.7 sedon®0% of the agents on the field to learn to
approach the enemy successfully ¢uns,sd = 44.5s) It is important to note that the criterion for success
is partly subjective, based on visually assessing the teparformance. Nevertheless, success in seeking is

generally unambiguous as shown in figure 12.

NERO differs from most applications of EAs in that the quabf evolution is judged from the player’s
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Figure 13:Avoiding the enemy effectively. This training screenshot shows several agents running baekwards

and shooting at the enemy, which is being controlled froms&fierson perspective by a human trainer with a joystick.
Agents discovered this behavior during avoidance traitiagause it allows them to shoot as they flee. This result
demonstrates how evolution can discover novel and effetidhaviors in response to the tasks that the player sets up
for them.

perspective based on the performance ofehire population, instead of that of the population champion.
However, even though the entire population must solve tsle thdoes not converge to the same solution.
In seek training, some agents evolved a tendency to rurtlslitgththe left of the target, while others run to

the right. The population diverges because the 50 agemistitas they move simultaneously on the field at
the same time. If all the agents chose exactly the same pathwtould often crash into each other and slow
each other down, so naturally some agents take slightlgréifit paths to the goal. In other words, NERO is

actually a massively parallel coevolving ecology in whihk ntire population is evaluated together.

After the agents learned to seek the enemy, they were fuirthieed to fire at the enemy. It is possible
to train agents to aim by rewarding them for hitting a tardpet, this behavior requires fine tuning that is
slow to evolve. It is also aesthetically unpleasing to watttile agents fire haphazardly in all directions
and slowly figure out how to aim. Therefore, the fire output efiral networks was connected to an aiming
script that points the gun properly at the enemy closestd@gfent’s current heading within a fixed distance

of 30 meters. Thus, agents quickly learn to seek and actyettack the enemy.

Agents were also trained to avoid the enemy. In fact, tNEAE flexible enough tdevolvea population

that had converged on seeking behavior into a completelpgifg avoidance, behavior.

For avoidance training, players controlled an enemy rohtt avjoystick and ran it towards the agents
on the field. The agents learned to back away in order to awwithtpenalized for being too near the enemy.
Interestingly, the agents preferred to run away from thergngackwards, because that way they could still

see and shoot at the enemy (figure 13).
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Figure 14:Avoiding turret fire.  The black arrow points in the current direction of the tufiiet (the arrow is not
part of the NERO display and is only added for illustratioh@lents learn to run safely around turret’s fire and attack
from behind. When the turret moves, the agents change ttteakarajectory accordingly. This behavior shows how
evolution can discover behaviors that combine multipldgjoa

By placing a turret on the field and asking agents to approaefithiout getting hit, agents were able
to learn to avoid enemy fire (figure 14). Agents evolved to uthe side that is opposite of the spray of

bullets, and approach the turret from behind, a tactic thptémising for battle.

6.2 Training More Complex Behaviors

Other interesting behaviors were evolved to test the limiteNEAT, rather than specifically prepare the

troops for battle. For example, agents were trained to roarat walls in order to approach the enemy.
As performance improved, players incrementally added maits until the agents could navigate an entire
maze (figure 15). This behavior is remarkable because itisessful without any path-planning. The agents
developed the general strategy of following any wall thands between them and the enemy until they
found an opening. Interestingly, different species ewblwetake different paths through the maze, showing
that topology and function are correlated in rtNEAT, andfaring the success of real-time speciation. The

evolved strategies were also general enough to navigaidisamtly varied mazes (figure 16).

In a powerful demonstration of real-time adaptation, agémat were trained to approach a designated
location (marked by a flag) through a hallway were then agddiy an enemy controlled by the player
(figure 17). After two minutes, the agents learned to takeltenrative path through an adjacent hallway in

order to avoid the enemy’s fire. While such training is useNERO to prepare agents for battle, the same
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Figure 15:Navigating a maze. Incremental training on increasingly complex wall confagfions produced agents

that could navigate this complex maze to find the enemy. Thatagpawn from the factory at the top of the maze and
proceed down to the enemy at the bottom. In this picture, tielrers above the agents specify their species. Notice
that species “4” evolved to take the path through the righe sif the maze while other species evolved to take the left
path. This result suggests that protecting innovationNEAT supports a range of diverse behaviors, each with its

own network topology.

Figure 16: Successfully navigating different maze configurations. The agents spawn from the left side of the
maze and proceed to an enemy at the right. The agents traimeVigate mazes can run through both the maze in
figure 15 and the maze in this figure, showing that a generhlpatigation ability was evolved.
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(a) Agents approach flag (b) Player attacks on left (c) Agents learn new approach

Figure 17:Adapting to Changing Situations. The agents spawn from the top of the screen and must apprioach t
flag (circled) at the bottom left. White arrows point in theedition of their general motion. (a) The agents first learn
to take the left hallway since it is the shortest path to thg. fl) A human-controlled enemy (identified by a square)
attacks inside the left hallway and decimates the agent3.hg agents learn that they can avoid the enemy by taking
the right hallway, which is protected from the enemy’s firegwall. The rtNEAT method allows the agents to adapt
in this way to the player’s tactics in real time, demonsh@iis potential to enhance a variety of video game genres
outside of NERO.

kind of adaptation could be used in any interactive game tkenitanore realistic and interesting.

6.3 Battling Other Teams

In battle, some teams that were trained differently wereertbeless evenly matched, while some training
types consistently prevailed against others. For exangreaggressive seeking team had only a slight
advantage over an avoidant team, winning six out of tendsaittl the tournament, losing three, and tying one
(Table 1). The avoidant team runs in a pack to a corner of thifienclosing wall (figure 18). Sometimes,

if they make it to the corner and assemble fast enough, theesgjge team runs into an ambush and is
obliterated. However, slightly more often the aggressaaat gets a few shots in before the avoidant team
can gather in the corner. In that case, the aggressive teq® tihe avoidant team with greater surviving

numbers. The conclusion is that seeking and running awdgiaewell-balanced tactics, neither providing

a significant advantage over the other. The interestindeaige of NERO is to conceive strategies that are

clearly dominant over others.

One of the best teams was trained by observing a phenomeabtmhappened consistently in battle.
Chases among agents from opposing teams frequently cahvesadd eventually reach the field’s bounding
walls. Particularly for agents trained to avoid turret fing ditacking from behind (figure 14), enemies
standing against the wall present a serious problem siigadt possible to go around them. Thus, training
a team against a turret with its back against the wall, it wassible to familiarize agents with attacking

enemies that are against a wall. This team learned to hoeetine turret and fire when it turned away, but
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Table 1: Seekers vs. Avoiders

Battle Number | Seekers| Avoiders
1 6 0
2 4 7
3 8 0
4 7 7
5 8 3
6 6 10
7 5 4
8 5 2
9 3 7
10 8 0

The number of agents still alive at the ends of 10 battles laoavs between a team trained to aggressively seek and
attack the enemy and another team taught to run away backwaartshoot at the same time. The seeking team won
six out of the 10 games, tied one and lost three. This outcan@odstrates that even when strategies contrast they
can still be evenly matched, making the game interestingulRelike this one can be unexpected, teaching players

about relative strengths and weaknesses of differentgacti

Figure 18:Seekers chasing avoiders in battleIn this battle screenshot, agents trained to seek and atta@nemy
pursue avoidant agents that have backed up against thelwalhs trained for different tactics are clearly discereabl
in battle, demonstrating the ability of the training to exetiverse tactics.
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(a) Seeker (b) Wall-fighter

Figure 19: Simplest Successful Seeker and Wall-fighter Networks. Nodes are shown as squares beside their

node numbers, and line thickness represents the strengtimoéctions. (a) The aggressive seeking strategy is simple
enough so that it does not require any hidden nodes. (b)iRgghear a wall requires an agent to move away when

an enemy points in its direction. This more sophisticateatagy always utilized at least two hidden nodes. These

examples demonstrate that NERO can evolve the appropeaterk complexity for each desired strategy.

back off quickly when it turned towards them. This tactic i®when several agents from the same team
are nearby since an enemy can only be facing one directiotiraea In fact, the wall-based team won the
first NERO tournament by using this strategy: In particutagon all games against the aggressive seeking

team (Table 2).

Figure 19 shows the simplest networks evolved for succkesskkers and wall-fighters. While the
simplest seeking network does not include hidden nodessithplest wall-trained network utilizes two,
demonstrating that more complex networks indeed evolveddyte more sophisticated strategies. Thus, it

is possible to learn sophisticated tactics that dominage swmpler ones like seek and avoid.

7 Discussion

Participants in the first NERO tournament agreed that theegaas engrossing and entertaining. Battles
were exciting events for all the participants, evoking fifehclapping and cheering. Players spent many
hours honing behaviors and assembling teams with just gine combination of tactics. This experience is

promising, suggesting that NERO succeeded as a game dtet was fun to play it.

An important point of this project is that NERO would not besgible without rtNEAT. With rtNEAT, it
was possible to evolve interesting tactics quickly in rigake while players interacted with NERO, showing
that neuroevolution can be deployed in a real game and wstlkefeugh to provide entertaining results. This
result suggests that tNEAT could also be applied to comialegames. Any game in which agent behavior
is repetitive or scripted can potentially be improved bpwlhg rtNEAT to at least partially modify them in

real-time. Especially in persistent video games such asiva$/ultiplayer Online Games (MMOGS) that
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Table 2: Wall-fighters vs. Seekers

Battle Number | Wall-fighters | Seekers

7
9
4
7
10
8
12
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The final scores from 10 battles between a team trained tofiigdat walls and another trained to aggressively seek
and attack the enemy are shown. The wall-fighters win evettieldzecause they know how to avoid fire near a wall,
while the aggressive team runs directly into fire when fightiear a wall. The total superiority of the wall-fighters
shows that the right tactical training indeed matters iti®zand that rtNEAT was able to evolve sophisticated fightin

tactics.

last for months or years, rtNEAT could be used to continuathgpt and optimize agent behavior, thereby

permanently altering the gaming experience for millionglafyers around the world.

Since the first tournament took place, new features have added to NERO, increasing its appeal
and complexity. For example, agents can now duck behindsvaaildl milestones can be set to ensure that
previously learned behaviors are not forgotten even adtier raining for different tasks. The game con-
tinues to be developed and new features and sensors arambnseing added. The goal is to have a full

network-playable version with an intuitive user interfacéhe near future.

An important issue for the future is how to assess resultsganae in which behavior is largely subjec-
tive. One possible approach is to train benchmark teams a&adune the success of future training against
those benchmarks. This idea and others will be employedegsrthect matures and standard strategies are

identified.

NERO is also being used as a common platform for quickly imglieting complicated real-time neu-
roevolution experiments. While video games are intendeihlgnéor entertainment, they are an excellent

catalyst for improving machine learning technology. Bessaaf the gaming industry’s financial success and
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low physical risk, it makes sense to explore gaming as a stggione to other more critical applications.

In the long term, the real-time neuroevolution technologuld be used to adapt the game as human
players get better. In this manner, it may finally be posdiblgse games for training people as has long been
envisioned. Such applications would begin with a popufatibagents with rudimentary skills that provide
a gentle initiation to the domain. As the player improvesplation develops increasingly challenging
behaviors in response. Thus, the game becomes more sopteidtat the same rate as the player improves,

a highly desirable property in any training situation.

For example, young children could improve hand-eye coatiin by interacting with agents that sur-
vive by avoiding being collected or arranged. At first, themtg would need almost no skills to provide
a challenge, but as the child improves at the basic task, gaats would need to invent new behaviors.
More adult applications include training police or emexgeworkers in catastrophic situations, or teach-
ing citizens how to evacuate buildings during increasirgigtile conditions. By making such applications

possible, tNEAT creates new opportunities for interactmtertainment and educational media.

8 Conclusion

A real-time version of NEAT (rtNEAT) was developed to alloweus to interact with evolving agents. In

rtNEAT, an entire population is simultaneously and asyoobusly evaluated as it evolves. Using this
method, it was possible to build a new kind of video game, NER®ere the characters adapt in real
time in response to the player’s actions. In NERO, the plagkes the role of a trainer and constructs
training scenarios for a team of simulated robots. The rtiNE&hnigue can make future video games more
interesting and extend their longevity, and eventually enagossible to use gaming as a method for training

people in sophisticated tasks.

A NERO System Parameters

The coefficients for measuring compatibility wete= 1.0, co = 1.0, andes = 0.4. The initial compatibil-

ity distance wag; = 4.0. The population was kept small, i.e. 50, so that the CPU cacthmmodate all
the agents being evaluated simultaneously. A target of$pacies was assigned. If the number of species
grew larger than fourj; was increased b§.3. Conversely, if the number of species fell below fayrwas

decreased b§.3. The interspecies mating rate was 0.001. The probabiligdoiing a new node was 0.05
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and the probability of a new connection mutation was 0.0%s€Etparameter values were found experimen-
tally, but they do follow intuitively meaningful rules: Liks need to be added significantly more often than
nodes, and weight differences are given low weight sincgptmilation is small. Performance is robust to

moderate variations in these values.

The percentage of the population allowed to be ineligiblereg time,7, was 50%, the number of ticks
between replacements was 20, and the minimum evaluatianwtias 500. The number of ticks between
replacements can also be derived from equation 6. The réegutting (Section 5.1);, was 2. The values
for these parameters were determined through extensiuegeand again the system was found to be robust

against minor variations.
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