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Abstract—In tasks such as pursuit and evasion, multiple agents
need to coordinate their behavior to achieve a common goal. An
interesting question is, how can such behavior be best evolved? A
powerful approach is to control the agents with neural networks,
coevolve them in separate subpopulations, and test them together
in the common task. In this paper, such a method, called
Multi-Agent ESP (Enforced SubPopulations), is proposed and
demonstrated in a prey-capture task. First, the approach is shown
to be more efficient than evolving a single central controller for all
agents. Second, cooperation is found to be most efficient through
stigmergy, i.e. through role-based responses to the environment,
rather than communication between the agents. Together these
results suggest that role-based cooperation is an effective strategy
in certain multi-agent tasks.

Index Terms—Cooperation, Coevolution, Multi-Agent Systems,
Heterogeneous Teams, Neuroevolution, Prey-Capture Task, Stig-
mergy, Communication.

I. INTRODUCTION

In cooperative multi-agent problem solving, several agents
work together to achieve a common goal [29, 64, 65]. Due to
their parallel and distributed nature, multi-agent systems can
be more efficient, more robust, and more flexible than single-
agent problem solvers. A central issue with such systems is
how cooperation can be best established. First, should the
agents be implemented as a diverse set of autonomous actors,
or should they be coordinated by a central controller? Second,
if the agents are autonomous, is communication is necessary
for them to cooperate effectively in the task?

In this paper, these issues are addressed from the machine
learning perspective: A team of neural networks is evolved
using genetic algorithms to solve the cooperative problem of
prey capture. More specifically, the Enforced SubPopulations
method of neuroevolution (ESP [15, 16]), which has proven
effective in single-agent reinforcement learning tasks, is first
extended to multi-agent evolution, in a method named Multi-
Agent ESP. This method is then evaluated in a task where a
team of several predators must cooperate to capture a fast-
moving prey. The main contribution is to show how different
ways of encoding, evolving, and coordinating a team of agents
affects performance in the task.

Two hypotheses are tested. The first one is that a coevolu-
tionary approach (using Multi-Agent ESP), where autonomous
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neural networks are evolved cooperatively to each control a
single predator of the team, outperforms a central-controller
approach, where a single neural-network is evolved (using
ESP) to control the entire team. It turns out that niching
in coevolution, which is especially strong in ESP [15, 16],
extends naturally to multi-agent evolution, making Multi-
Agent ESP a powerful approach. Instead of searching the
entire space of solutions, coevolution makes it possible to
identify a set of simpler subtasks, and optimizing each team
member separately and in parallel for one such subtask.

The second hypothesis is that (when allowed by the task)
the most efficient way to establish coordination in such teams
is through stigmergy [19, 26]. That is, the agents do not
communicate with each other directly, but instead observe each
others’ effects on the environment, such as the changes in the
prey’s location caused by the teammates’ movement. In fact,
it turns out that even when a primitive form of communication
is available (where each team member broadcasts its location
to its teammates), communicating teams consistently perform
worse than teams that do not! Each agent has evolved to
perform its role reliably, and the task is solved through
the stigmergic coordination of these roles. Communication is
unnecessary and only complicates the task.

The paper will begin with a brief review of prior work
in cooperative coevolution, ESP, agent communication, and
the prey-capture task. The Multi-Agent ESP method and its
implementation in the prey-capture task is then described,
followed by an experimental evaluation of the hypotheses and
an experimental analysis of the results. A discussion of future
prospects of this approach concludes the paper.

II. BACKGROUND AND RELATED WORK

In this section, the approach to testing the two main hy-
potheses is motivated by prior work. The cooperative coevo-
lution technique in general, and the ESP method in particular,
matches the goal of producing effective cooperative behavior.
Coordination based on stigmergy is a potentially powerful
alternative to coordination based on communication, and the
prey-capture tasks is a suitable platform for studying it.

A. Cooperative Coevolution

Coevolution in Evolutionary Computation means maintain-
ing and evolving multiple individuals, either in a single
population or in multiple populations, so that their fitness
evaluations interact. The interactions may be competitive or
cooperative or both. In competitive coevolution, the individuals
have adversarial roles in that one agent’s loss is another one’s
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gain [34, 45]. In cooperative coevolution the agents share
the rewards and penalties of successes and failures [41, 63].
Cooperative coevolution is most effective when the solution
can be naturally modularized into components that interact, or
cooperate, to solve the problem. Each component can then be
evolved in its own population, and each population contributes
its best individual to the solution.

For example, Haynes and Sen [22, 23, 24] explored various
ways of encoding, controlling, and evolving predators that
behave cooperatively in the prey-capture task. In the first
of these studies [22], Genetic Programming was used to
evolve a population of strategies, where each individual was
a program that represented the strategies of all predators in
the team. The predators were thus said to be homogeneous,
since they all shared the same behavioral strategy. In follow-up
studies [23, 24], they developed heterogeneous predators: Each
chromosome in the population was composed of k different
programs, each one representing the behavioral strategy of one
of the k predators in the team. Haynes and Sen reported that
the heterogeneous predators were able to perform better than
the homogeneous ones.

In contrast to the advantage found for heterogeneous teams
in the above studies, Luke [30] observed that heterogeneous
teams could not outperform homogeneous teams evolved using
Genetic Programming in the soccer softbot domain. However,
he conjectured that, given sufficient time, the heterogeneous
approach would have evolved better strategies. Such an exten-
sion was not practical in his domain, where each evaluation
cycle took between 20 seconds and one minute. Quinn et al.
[42] and Baldassarre et al. [3] studied such teams further by
evolving neural networks to control teams of homogeneous
robots. They found that role allocations would emerge in
collective behaviors such as formation movement and flocking.
Bryant and Miikkulainen [7] further showed that homogeneous
teams can reorganize their role allocations dynamically as
task requirements change. However, when all agents must be
capable of all behaviors, it is difficult to generate sufficiently
diverse behaviors. Heterogeneous teams therefore promise to
be more general, scaling up to a wider variety of behaviors.

Balch [2] demonstrated an important principle in learning
diverse behaviors in heterogeneous teams, by studying the
diversity of robot teams developed through reinforcement
learning. He found that when the reinforcement was local, i.e.
applied separately to each agent, the agents within the team
learned identical behaviors. Global reinforcement shared by all
agents, on the other hand, produced teams with heterogeneous
behavior. This result provides a useful guideline for evolving
cooperating agents: Rewarding the whole team for good be-
havior privileges cooperation even when some agents do not
contribute as much as others, whereas rewarding individuals
induces more competitive behaviors because each individual
tries to maximize its own reward at the expense of the good
of the entire team.

This principle has been utilized effectively in cooperative
coevolution of neural networks. Instead of a population of full
networks that could potentially solve the task, a population of
partial solutions, i.e. partial networks or neurons or connec-
tions, are evolved [17, 18, 36, 38, 41, 44]. Such methods are

powerful because they break the problem of finding a solution
network into smaller subproblems, making search faster, more
focused, and diverse. One useful such approach is Enforced
SubPopulations, as will be described next.

B. Enforced SubPopulations (ESP)

The Enforced SubPopulations neuroevolution method
(ESP1; [15, 16]) is an extension of Symbiotic, Adaptive
NeuroEvolution (SANE; [35, 36, 37]). SANE is a method of
neuroevolution that evolves a population of neurons instead
of complete neural networks. In other words, in SANE each
chromosome represents the connections of a single neuron
instead of the structure and weights of an entire network
(analogous to the “Michigan” method of evolving rule-based
systems, where each chromosome represents a single rule [25],
versus the entire rule set as in the “Pitt” method [51]). Neurons
are selected from the population to form the hidden layer of a
neural network, which is then evaluated on the problem. Each
neuron’s fitness is the average fitness of all networks in which
it participated. ESP extends SANE by allocating a separate
population for each hidden-layer neuron of the network; a
number of neuron populations are thus evolved simultaneously
(Figure 1). ESP is thus a cooperative coevolution method: Each
neuron population tends to converge to a role that results in
the highest fitness when the neural network is evaluated. In
this way, ESP decomposes the problem of finding a successful
network into several smaller subproblems, resulting in more
efficient evolution [15, 16].

The ESP idea can be further extended to evolution of in-
dividual connections [18]. In several robot control benchmark
tasks, ESP and its connection-level extension, CoSyNE, were
compared to other neuroevolution methods such as SANE,
GENITOR [60], Cellular Encoding [20, 61], Evolutionary
Programming [47], Evolutionary Strategies [21], and NEAT,
[52] as well as to other reinforcement learning methods such
as Adaptive Heuristic Critic [1, 4], Policy-Gradient Reinforce-
ment Learning [55], Q-learning [40, 58], Sarsa(λ) [46], and
VAPS [32]. Because of its robust neural network representation
and efficient search decomposition, ESP-based methods turned
out to be consistently the most powerful, solving problems
faster, and solving harder problems [14, 16, 17, 18].

These results lead to an intriguing hypothesis about con-
structing multi-agent systems: If a neural network can be
evolved effectively as a set of cooperating neurons and con-
nections, perhaps a team of agents can be evolved the same
way. In particular, perhaps the ESP method can be extended
to multi-agent evolution, where not only the neurons but also
the networks formed from them are required to cooperate in a
team in order to receive a high fitness. Such a method, called
Multi-Agent ESP, is developed and tested in this paper.

An important question immediately arises: How strongly
should the agents in multi-agent evolution be coupled? Neu-
rons in a network are tightly connected; does cooperation
in a multi-agent task require that the agents communicate
extensively?

1ESP neuroevolution software is available at http://nn.cs.utexas.edu/soft-
list.php
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Fig. 1. The ESP Method. Each subpopulation of neurons contributes
one neuron (with its input and output connections) to form the hidden
layer of the neural network, which is then evaluated in the task. The
fitness is passed back to the participating neurons. This scheme is
used to evolve the central-controller neural network (Figure 4) that
controls all three predators simultaneously. The extension to multiple
controllers (the Multi-Agent ESP method) is depicted in Figure 3.

C. Agent Communication

Communication is a diverse field of research, and can be
defined in various ways depending on the focus of inquiry.
For the practical purpose of this paper, communication can be
defined as the process where an agent transmits information
to one or more other agents on purpose. This definition
captures an important class of information transfer processes,
differentiating them from e.g. sensing, which does not require
that the agent makes the information available on purpose, and
from various forms of emitting information that do not require
a receiving agent.

The role of communication in cooperative behavior has been
studied in several artificial life experiments [5, 8, 10, 11, 27,
48, 54, 59]. These studies showed that communication can be
highly beneficial, even crucial, in solving certain tasks. For
instance, complementing the results in this paper, Floreano et
al. [11] demonstrated conditions under which communication
emerges and is useful in teams of homogeneous agents.
However, the cost of communication—such as the energy
expenditure in signaling, or the danger of attracting predators,
or the complexity of the apparatus required—was not taken
into account in most of these studies. In fact, even in domains
where communication does contribute toward solving a task,
communicative traits may still not evolve if they involve a
significant cost. Other kinds of cooperative strategies may
evolve instead, depending on the nature of the task, how dense
the population is, and whether resources are available [57].

One particularly interesting form of cooperation without
communication is stigmergy, a concept proposed by Grassé
[19] to describe the coordinated behaviors of social insects.
Grassé observed that worker termites were stimulated to
perform certain activities by a particular construction of their
nest, transforming it into a new construction, which would in
turn stimulate other activities. The word stigmergy was coined

to describe this process: “The stimulation of the workers by
the very performances they have achieved is a significant one
inducing accurate and adaptable response, and has been named
stigmergy” [19] (translated by Holland and Melhuish [26]).

Holland and Melhuish [26] examined stigmergy and self-
organization in a group of robots that clustered and sorted
frisbees, and found that the task was solvable using stigmergy-
based coordination without any communication between
robots. Franklin [13] proposed that stigmergic coordination
may be an advantage over communication, because commu-
nication and the associated explicit planning between agents
requires additional architecture, intelligence, and resources.
An interesting hypothesis therefore arises for constructing
multi-agent systems: In tasks where stigmergic coordination
is possible, the task may be accomplished more effectively
without communication.

This hypothesis is evaluated in the experiments presented
in this paper in three ways: (1) By showing how stigmergy
can emerge in cooperative coevolution when communication
between teammates is not available; (2) by comparing the
evolution performance of communicating teams and non-
communicating teams; and (3) by comparing the emergent
behaviors of communicating teams and non-communicating
teams. To facilitate discussion, non-communicating coopera-
tion based on stigmergic coordination is termed role-based
cooperation. In certain tasks, this cooperative strategy is
easier to evolve and more powerful than a strategy based on
communication.

In order to make evaluation transparent, a most elementary
form of communication is employed in these experiments.
Whereas each non-communicating agent is completely un-
aware of its teammates, each communicating agent contin-
uously broadcasts its location to its teammates. Although
elementary, such exchange of information constitutes useful
communication: In many real-world applications involving
software agents or physically situated robots, it is not possible
to sense the teammates’ locations directly, because they may
be far away or obscured or the appropriate sensors may not be
available. A communicative apparatus (such as a radio system)
is required to obtain this information. On the other hand, while
other, more complex forms of communication are possible,
the broadcasting of locations is sufficient to demonstrate
differences between teams that communicate and those that
do not. It therefore forms a suitable communicative process
for studying cooperation with and without communication.

D. Prey-Capture Task

The experimental platform for studying cooperation and
communication in this paper is the prey-capture task. It is
one example of the general class of pursuit-evasion tasks [33].
Such tasks consist of an environment with one or more prey
and one or more predators. The predators move around the
environment trying to catch the prey, and the prey try to evade
the predators. Pursuit-evasion tasks are interesting because
they are ubiquitous in the natural world, offer a clear objective
that allows measuring success accurately, and allows analyzing
and visualizing the strategies that evolve.
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Pursuit-evasion tasks generally cannot be solved with stan-
dard supervised learning techniques like backpropagation. The
correct or optimal decisions at each point in time are usually
not known, and the performance can be measured only after
several decisions have been made. More complex algorithms
are required that can learn sequences of decisions based on
sparse reinforcement. Pursuit-evasion tasks are challenging for
even the best learning systems because they require coor-
dination with respect to the environment, other agents with
compatible goals, and adversarial agents [15].

The prey-capture task focuses on the predators’ behavior.
It has been widely used to test multi-agent coordination and
communication. As was described in previous subsections, for
example Benda et al. [6] and Haynes and Sen [23, 24] used
this task to assess the performance of different coordination
systems, and Jim and Giles [27] studied the evolution of
language and its effect on performance. In the variant of
the task used in these studies, the predators are required to
surround the prey in specific positions to catch it, and the main
difficulty is in coordinating the predators to occupy the proper
capture positions simultaneously. On the other hand, the prey
moves either randomly or at a slower speed than the predators,
thus allowing the predators to catch up with it easily.

In contrast, in the experiments described in this paper it is
enough for one predator to move onto the prey to capture it.
However, the prey moves as fast as the predators, and always
away from the nearest predator, and therefore there is no way
to catch the prey simply by chasing it. The main challenge
is in coordinating the chase: The agents have to approach
the prey from different directions so that it has nowhere to
go in the end. This behavior requires developing a long-term
cooperative strategy, instead of coordinating the timing of a
few actions accurately, and therefore makes it possible to
identify a class of tasks where efficient cooperation emerges
without communication.

III. METHODS

In this section, the implementation of the prey-capture task
and the ESP and Multi-Agent ESP methods are described,
followed by the details of the experiments.

A. Prey-Capture Implementation

The prey-capture task in this paper consists of one prey and
three predators in a discrete toroidal environment (Figure 2).
The prey is controlled by a rule-based algorithm; the predators
are controlled by neural networks. The goal is to evolve the
neural networks to form a team for catching the prey. The
different approaches and techniques are compared based on
how long it takes for the team to evolve to catch the prey
consistently, and what kind of strategies they use.

The environment is a 100× 100 toroid without obstacles or
barriers (the 100× 100 area is also referred to as the “world”
below). All agents can move in four directions: N, S, E, or W.
The prey moves as fast as the predators, and always directly
away from the nearest predator. It starts at a random location
of the world, and the predators start in a horizontal row at
the bottom left corner (Figure 2a). All the agents make their

moves simultaneously, and an agent can move into a position
occupied by another agent. The team catches the prey when a
predator moves onto the position occupied by the prey. If the
predators have not caught the prey in 150 moves, the trial is
terminated and counted as a failure.

Constrained in this way, it is impossible to consistently catch
the prey without cooperation. First, since the predators always
start at the bottom left corner, behaving greedily would mean
that they chase the prey as a pack in the same direction.
The prey will then avoid capture by running away in the
same direction: Because it is as fast as the predators, and
the environment is toroidal, the predators will never catch it
(Figure 18 demonstrates this scenario). On the other hand,
should the predators behave randomly, there is little chance
for them to approach, circle, and run into the prey. The 150
steps limit is chosen so that the predators can travel from one
corner of the world to the other, i.e. they have enough time to
move to surround the prey, but it is not possible for them to
just mill around and eventually capture the prey by accident.

B. Neuroevolution Implementation

Three approaches to evolving and controlling agents will be
tested: the central controller approach, the autonomous com-
municating approach, and the autonomous non-communicating
approach. In the central controller approach, all three preda-
tors are controlled by a single feedforward neural network,
implemented with the usual ESP method (Figure 1).

For the communicating and non-communicating au-
tonomous controllers, Multi-Agent ESP will be used. This
method extends the subpopulation idea to the level of networks
(Figure 3). Each predator is controlled by its own feedforward
network, evolved simultaneously in separate populations. Each
network is formed using the usual ESP method. These three
networks are then evaluated together in the task as a team,
and the resulting fitness for the team is distributed among the
neurons that constitute the three networks.

Before running the comparisons, an appropriate number of
hidden units was determined for each of the three approaches.
Since small networks typically generalize better and are faster
to train [28, 43], the smallest number of hidden units that
allowed solving the task reliably was found. More specifically,
for each of the three approaches, ten evolution runs were
performed on the prey-capture task, initially with two hidden
units. When any of the ten runs failed to solve the task
completely, the number of hidden units was increased by one
and another ten runs were tried. A run was deemed a failure
if it stagnated ten consecutive times, that is, if its fitness did
not improve despite ten burst mutations in 250 generations.
Through this procedure, an appropriate number of hidden
units was determined to be nine for the central controller,
eight for each of the autonomous communicating controllers,
and three for each of the autonomous non-communicating
controllers (Figures 4–6). The comparisons were run with
these architectures.

In all three approaches, the agents are evolved in a series
of incrementally more challenging tasks. Such an incremental
approach is motivated by natural evolution and shaping of
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Fig. 2. The Prey-Capture Task. The environment is a 100×100 toroidal grid, with one prey (denoted by “X”) and three predators (denoted
by “1”, “2” and “3”). Figure (a) illustrates a starting scenario: The predators start in a row at the bottom left corner, and the prey starts in
a random location. Figure (b) illustrates a scene later during a trial. The arrows indicate a general direction of movement: Since each agent
may only move in the four cardinal directions, a movement arrow pointing 45 degrees northwest means the agent is moving north and west
on alternate time steps. Figure (c) shows the positions of the predators one time step before a successful capture. The prey always moves
directly away from the nearest predator; even though it is as fast as the predators, if the predators approach it consistently from different
directions, eventually the prey has nowhere to run.
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Fig. 3. The Multi-Agent ESP Method. Each predator is controlled
by its own neural network, formed from its own subpopulations of
neurons. The three neural networks are evaluated in the task at the
same time as a team, and the fitness for the team is passed back to
all participating neurons.

animal behavior, where complex behaviors gradually emerge
through a series of incremental challenges [9, 49]. It also
facilitates computational evolution in complex tasks, where
direct evolution in the goal task might otherwise take a long
time, or result in inadequate, mechanical strategies such as
running around in circles [15, 56]. One way to establish
incremental evolution would be to coevolve the prey with
the predators [53]. However, in order to make evolutionary
progress transparent and the results comparable, a fixed set

offsets
Prey

Prey
offsets

Prey 
offsetsinputs

Predator 3

inputs
Predator 2

inputs
Predator 1

Outputs

Inputs

Hidden layer

Stay

West

East

South

North

Stay

West

East

South

North

Stay

West

East

South

North

Predator 3
outputs

Predator 2
outputs

outputs
Predator 1

Fig. 4. Central controller network for a team of three predators.
This network receives the relative x and y offsets (i.e. relative
distance) of the prey from the perspective (i.e. location) of all three
predators, and outputs the movement decisions for all three predators.
This way it acts as the central controller for the whole team. There
are nine hidden units, and the chromosomes for each hidden layer
unit consist of 21 real-valued numbers (six inputs and 15 outputs).

of tasks is used in this paper. Evolution proceeds through six
stages: In the easiest task the prey is stationary, and in each
subsequent task it moves at a faster speed and with a greater
probability of heading away from the nearest predator, until
in the final task it moves as fast as the predators, and always
away from the nearest predator. Table I gives the speeds and
evasive probabilities of the prey for each of these tasks; small
variations to this schedule lead to similar results. When a
team manages to solve the current task consistently, the next
harder task is introduced. The team can thus utilize what it has
already discovered in the easier task to help guide its evolution
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Fig. 6. Controller for each autonomous non-communicating
predator. This network receives the prey’s x and y offsets as its
inputs. Therefore, it controls a single predator without knowing where
the other two predators are (i.e. there is no communication between
them). There are three hidden units, and the chromosomes for each
hidden layer unit consist of seven real-valued numbers (two inputs
and five outputs).

in the new, harder task. In the prey-capture task, incremental
evolution is particularly useful because it allows the predators
to discover early on how to catch the prey at close proximity.
Placing the predators into the final task right from the start
fails because they do not get close to the prey often enough to
discover how to catch it. The incremental approach is therefore
used to give evolution more experience with the necessary
skills that would otherwise be hard to develop.

The fitness function consists of two components, depending
on whether the prey was captured or not:

f =
{

d0−de

10 if the prey was not caught
200−de

10 if the prey was caught,

where d0 is the average initial distance of the predators from
the prey, and de is the average final distance. This fitness

function was chosen to satisfy four criteria:
1) If the prey is caught, the starting scenario (i.e. the initial

distance from the prey) should not bias the fitness. In-
stead, teams should be rewarded if their ending positions
are good—that is, if all predators are near the prey.

2) If the prey is not caught, teams that covered more
distance should receive a higher reward.

3) Since a successful strategy has to involve sandwiching
the prey between two or more predators, at least one
predator must travel the long distance of the world so
that two predators can be on the opposite sides of the
prey. Thus the time taken for each capture (within the
150 step limit) tends to be about the same, and should
not be a factor in the fitness function.

4) The fitness function should have the same form through-
out the different stages of incremental evolution, making
it simple and convenient to track progress.

The neuron chromosomes are concatenations of the real-
valued weights on the input and output connections of the
neuron (Figure 1). As is usual in ESP, burst mutation through
delta-coding [62] on these weights is used as needed to avoid
premature convergence: If progress in evolution stagnates (i.e.
the best solution 25 generations earlier outperforms the current
best solution), the populations are re-initialized according
to a Cauchy distribution around the current best solution.
Burst mutation typically takes place in prolonged evolution
in difficult tasks [15, 16].

C. Experimental Setup

In each experiment in this paper, the different approaches
were each run ten times with different random initial popula-
tions. Each run consisted of several generations, until success
or maximum number of generations was achieved. The results
were averaged across the runs and compared statistically
(through Student’s paired two-tailed t-test with df = 9).

The following parameter settings were used for ESP and
its multi-agent extension. Each subpopulation of neurons con-
sisted of 100 neurons; each neuron (or chromosome) was a
concatenation of real-valued numbers representing full input
and output connections of one hidden unit. During each
evolutionary generation, 1000 trials were run wherein the
neurons were randomly chosen (with replacement) from their
subpopulations to form the neural networks. In each trial,
the team was evaluated nine times (to match the number
of evaluations in the test benchmark suite to be described
shortly). Unlike in the benchmark suite, the prey started in a
random location in each of the nine evaluations. The predators
always started in the bottom-left corner (Figure 2a), giving
the different trials a common structure that makes it easier to
analyze and compare results (Section VI-C shows that similar
results are obtained when predators start at random locations).
The fitnesses over the nine evaluations were averaged, and
assigned to all the neurons that constituted the network. Thus,
each neuron was evaluated as part of ten different networks on
average, and each generation consisted of 9000 total network
evaluations. After the trials, the top 25% of neurons in each
subpopulation were recombined using one-point crossover.
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Task Prey Speed (Probability of Moving) Prey Probability of Moving Away from Nearest Predator
1 0 0
2 0.45 0.45
3 0.63 0.63
4 0.77 0.77
5 0.89 0.89
6 1 1

TABLE I
THE SEQUENCE OF INCREMENTALLY MORE DIFFICULT TASKS.

The offspring replaced the bottom 50% of the neurons, and
they were then mutated with a probability of 0.4 on one
randomly-chosen weight on each chromosome, by adding a
Cauchy-distributed random value to it. These parameter values
were found effective in preliminary simulations, but the results
are not highly sensitive to them.

The environment is stochastic only in the prey’s starting
location, and this location is the only factor that determines
the course of action taken by the predators. In order to test
these team strategies comprehensively, a suite of benchmark
problems was implemented. The lower left 99 × 99 part of
the world was divided into nine 33 × 33 subsquares. In each
trial, each team was tested nine times, with the prey starting
at the center of each of these subsquares in turn. Such an
arrangement provides a sampling of the different situations,
and allows estimating how effective each team is in general.
A team that manages to catch the prey in all nine benchmark
cases is considered to have completely solved the task, and
indeed such a team usually has a 100% success rate in random,
general scenarios.

Communication between predators was modeled by giving
the locations of the other predators as input to each predator’s
neural network. The idea is that this transmission of infor-
mation takes place on purpose, i.e. each predator broadcasts
its location in order for the other predators to pick it up. In
contrast, even though the predators also receive the location
of the prey as their input, the prey does not make it available
on purpose. Instead, the idea is that the predators use sensors
to obtain this information. (To make this scenario concrete,
imagine a situation where the pursuit occurs in a dark envi-
ronment where the predators can move silently but the prey
moves with a sound. The prey can be located based on that
sound, and the predators can then use vocalizations to transmit
their location at will.) According to the definition adopted
in section II-C, the predators’ locations are communicated,
whereas the prey’s location is not. Therefore, the controllers
that receive predators’ locations are called communicating
controllers, and those that do not (even though they obtain
the same information through stigmergy) are called non-
communicating controllers in this paper.

IV. EVOLUTION OF COOPERATIVE BEHAVIOR

In this section, two baseline experiments are presented,
testing the two main hypotheses of this paper: First, that coop-
erative coevolution of autonomous controllers is more effective
than evolving a central controller in this task (Section IV-A),
and second, that the agents controlled by autonomous neural
networks can evolve to cooperate effectively without commu-
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Fig. 7. Evolution performance for each approach. The average
number of generations, with standard deviation, required to solve
the task is shown for each approach. The centrally controlled team
took 50% longer than the autonomously controlled communicating
team, which in turn took over twice as long as the autonomously
controlled non-communicating team, to evolve a successful solution.
All differences are statistically significant (p < 0.05).

nication using stigmergy (Section IV-B). These behaviors and
conditions under which they arise are then analyzed in more
detail in Sections V and VI.

A. Standard Evolution of a Central Controller vs. Cooperative
Coevolution of Autonomous Controllers

This section tests the first hypothesis, i.e. that it is easier to
coevolve three autonomous communicating neural networks,
each controlling a single predator (Figure 5), than it is to
evolve a single neural network that controls the entire team
(Figure 4). The number of evolutionary generations needed
to solve the task, that is, to evolve a team able to catch the
prey in all nine benchmark cases, are compared for the two
approaches.

Figure 7 shows a clear result: On average, the three au-
tonomous controllers were evolved almost twice as fast as the
centralized controller. The conclusion is that the cooperative
coevolution approach is more powerful than the centralized
approach in this task. (The results in Section VI-A further
confirm that this result does not simply follow because the
networks have different sizes.)

Figure 8 shows how long it took each approach to solve each
incrementally more difficult task during evolution. While the
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Fig. 8. Progress of evolution through incrementally more difficult
tasks. Number of generations required for each approach to solve
each task in the sequence is shown. As shown in Table 1, in Task 1
the prey is stationary, whereas in Task 6 it moves at the same speed
as the predators, and always away from the nearest predator. The
centrally controlled teams did not take statistically significantly longer
than the autonomously controlled communicating teams to solve the
easier tasks. With more difficult tasks (i.e. task 6), the differences
became statistically significant. On the other hand, the autonomously
controlled non-communicating teams solved all the tasks significantly
faster than either of the two other approaches.

centrally controlled teams require just slightly more time to
solve the easier tasks than the autonomous controllers, as the
tasks become more difficult, the differences in performance
grow significantly. This result suggests that the autonomous
controller approach is most useful with harder tasks.

B. Cooperative Coevolution With vs. Without Communication

The conclusion from the first comparison is that separating
the control of each agent into disjoint autonomous networks
allows for faster evolution. The controllers no longer receive
direct information about what the other agents see; however,
the domain is still completely represented in each predator’s
inputs, which include the relative locations of the teammates
and the prey. In this section the available information is
reduced further by preventing the predators from knowing each
other’s locations. This way the agents will have to act indepen-
dently, relying on stigmergy for coordination. The objective is
to test the second hypothesis, i.e. that cooperation based on
stigmergy may evolve more efficiently than cooperation based
on communication.

The network architecture for such non-communicating con-
trollers is shown in Figure 6. The predator no longer receives
the relative x and y offsets of the other predators, only
the offsets of the prey. These networks were evolved with
the same coevolutionary Multi-Agent ESP method as the
communicating networks of Figure 5.

The non-communicating teams solved the entire task more
than twice as fast as the communicating teams (Figure 7).
Furthermore, the non-communicating teams solved each in-
crementally more difficult task significantly faster than the

communicating teams (Figure 8).
These results show that communication between teammates

is not always necessary: Cooperative behavior can emerge
even when teammates do not receive each other’s locations
as input. In fact, since communication is not necessary, it is
more efficient to do away with it entirely. In the next section,
examples of evolved behaviors will be analyzed to gain insight
into why this is the case, concluding that the agents rely on
stigmergy. In Section VI, a series of further simulations will
be presented to demonstrate that this result is robust against
variations in the architecture and the task.

V. ANALYSIS OF EVOLVED BEHAVIORS

In this section, the behaviors evolved using the three ap-
proaches are analyzed in two ways: First, the degree to which
each predator’s actions depend on those of the other predators
is measured quantitatively. Second, examples of evolved be-
haviors are analyzed qualitatively. This analysis leads to the
characterization of team behaviors in two extremes: Those
based on role-based cooperation, where interaction between
different roles takes place through stigmergy, and those based
on communication.

A. Measuring Dependency

A predator’s actions are independent of its teammates if the
predator always performs the same action for the same prey
position, regardless of where its teammates are. Conversely,
the predator’s strategy is dependent on its teammates if its
actions are determined by both the prey’s and the teammates’
positions.

The team of autonomous, non-communicating predators
must act independently: Since the neural network for each
predator cannot see the locations of its teammates, their
positions cannot affect its actions. A more interesting question
is whether dependent actions evolve in the communicating
team. The agents could evolve to simply ignore their commu-
nication inputs, or they could evolve to use communication
to develop a coordinated strategy. Also, it is interesting to
observe whether the actions of a centrally controlled team are
more dependent than those of an autonomous communicating
team, since its control architecture is more tightly coupled
between teammates.

Action dependence can be measured in the following way:
For each predator in the team, a sample is taken of possible
relative prey positions. For each of these sampled positions,
possible configurations of teammates’ locations are then sam-
pled. Each such case is presented to the predator’s control
network, and the predator’s resulting action observed. The
percentage of actions that differ for the same prey position (but
different teammate positions) is a measure of how dependent
this predator’s actions are on its teammates. The team’s
dependence is obtained as the average of those of its three
predators.

The dependencies of the centrally controlled, communicat-
ing, and non-communicating teams are compared in Figure 9.
As expected, the non-communicating predators act indepen-
dently. In contrast, over 90% of the actions of the centrally
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Fig. 9. Action dependence in teams evolved using each approach.
The centrally controlled and autonomous communicating teams both
evolved behaviors in which each agent’s actions were highly de-
pendent on its teammates positions (the difference is statistically
insignificant, with p = 0.16). The non-communicating team’s evolved
behaviors were independent (the difference between the dependence
of the non-communicating team and those of the other two ap-
proaches is statistically significant, p < 0.01).

controlled and communicating team members depend on the
other predators. On average, the centrally controlled teams
were slightly more dependent than the communicating teams;
however, this difference is not statistically significant.

These results demonstrate that indeed the communicating
teams evolve a distinctly different behavior from the non-
communicating teams. Even though the weights on the com-
munication inputs could evolve to zero, they do not. Appar-
ently, given a starting point where all weights are random, it
is easier for evolution to discover an adequate communicating
strategy than to un-evolve communication altogether. An in-
teresting issue is whether a different starting point would bias
evolution to discovering non-communicating solutions instead.
This question is addressed in Section VI-D.

B. Characterizing Sample Behaviors

Dependence measurements demonstrate that the behaviors
differ, but to understand how, actual examples need to be
analyzed. In this section, example behaviors for each approach
are described and compared in detail. The main results are that
without communication, evolution produces specific roles for
each team member, and these roles interact only indirectly
through stigmergy, that is, by causing changes to the envi-
ronment that affect the other teammates’ roles; furthermore,
these teams utilize a single effective strategy in all cases. On
the other hand, evolution with communication produces agents
with more varied (although less effective) behaviors, able to
employ two or more different strategies at different times.

A typical successful strategy for the non-communicating
team is illustrated in Figure 10. This strategy is composed
of two stages, the setup stage and the chase stage. In the
setup stage, illustrated in the first two frames, the predators

maneuver the prey into an appropriate configuration for a
chase: In frame one, predators 2 and 3 move eastward, causing
the prey to flee in the same direction, while predator 1 moves
westward. When the prey detects that predators have closed in
to its south, it starts fleeing northward (frame two). In frame
three, the predators detect that the prey is directly to their
north, and the chase stage of the strategy begins. This stage
involves two different roles, chasers and blockers. Predator 1,
the blocker, moves only in the horizontal direction, staying on
the same vertical axis as the prey, while predators 2 and 3, the
chasers, pursue the prey northward (frames three and four).
Eventually, the prey is trapped between the blocker and the
chasers, who move in for the capture. Notice that this strategy
requires no communication between predators. As long as
the predators get the prey into a chase configuration, and the
blockers and chasers execute their roles, the prey will always
be caught. Moreover, it is reliable for all starting locations of
the prey, even when the predators do not all switch from setup
to chase modes at the same time.

From the above description, it is clear that some form of
coordination is taking place, even without communication.
When the prey is not directly above (or below) a predator,
the predator is in setup mode, moving either east (predators
2 and 3), or west (predator 1). This action causes a change
in the environment, i.e. a specific reaction on the part of the
prey: to flee east or west. Because of this reaction, each of
the predators will eventually find the prey directly above or
below it, triggering a second activity: They either chase the
prey north (predators 2 and 3), or remain on the prey’s vertical
axis (predator 1). This activity in turn causes a change in the
prey’s behavior, to flee north, until it is eventually trapped
between chasers and blockers. This sequence of events is
a clear example of stigmergy: Each agent’s action causes a
change in the environment, that is, a reaction on the part of
the prey; this reaction in turn causes a change in the agent’s
and its teammates’ behaviors.

Sample behavior of a communicating team is illustrated in
Figure 11. Two different strategies are shown because this
team actually displays both of them, and also their combina-
tions and variations, depending on the relative locations of the
prey and the other predators at each timestep. The first strategy,
in Figure 11a, illustrates behavior similar to the chaser-blocker
strategy. The first frame is a snapshot of the starting position.
Predators 1 and 2 are the chasers, and they start pursuing the
prey upward. Predator 3 is the blocker, and it moves left onto
the prey’s vertical axis. At this point, however, it starts chasing
the prey downward, in Frame 2, until the prey is trapped
between all three predators in Frame 3. Already this strategy
is more varied than those of the non-communicating teams, as
a combination of blocking and opposite chasers.

Another strategy employed by the same team in a different
situation is shown in Figure 11b. In the first frame, predators
1 and 3 start moving toward the prey diagonally upward
and downward, while predator 2 moves upward until it is
horizontal with the prey. By the second frame, predators 1
and 3 are chasing the prey horizontally, until it is trapped
between them and predator 2 in frame 3. This strategy is
again similar to the chaser-blocker strategy, except this time
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Fig. 10. A sample strategy of a non-communicating team. In frames 1 and 2, the predators are in setup mode, maneuvering into an
appropriate chase configuration. In frame 3, they switch to chase mode: Predators 2 and 3 chase the prey toward predator 1, which acts as a
blocker. This strategy is effective and does not require communication. Animated demos of this strategy, and others discussed in this paper,
are available at http://nn.cs.utexas.edu/?multiagent-esp.

the prey is chased horizontally instead of vertically, and the
chase includes diagonal movement as well.

Although each strategy is similar to those of non-
communicating teams, in this case they are employed by
one and the same team. This team occasionally also utilizes
combinations of these strategies, for example by starting with
one and finishing with the other. Thus, each predator does not
have a specific, fixed role, but modifies its behavior depending
on the situation. Through communication each predator is
aware of its teammates’ relative locations, and its behavior
depends not only on the prey’s relative position, but also
directly on what the other predators are doing. In this way,
the communicating strategies are more varied. On the other
hand, they are less efficient to evolve (Section IV-A), and
less robust (Section VI-B). In a sense, the non-communicating
teams resemble players in a well-trained soccer team, where
each player knows what to expect from the others in each play,
whereas the behavior of the communicating teams is similar
to a pickup soccer team where each player has to constantly
monitor the others to determine what to do. Such players can
perhaps play with many other kinds of players, but not as
efficiently.

The centrally controlled teams exhibit behavior nearly iden-
tical to those of the communicating autonomous teams. In
particular, the more tightly coupled architecture does not
translate to behavior that is visibly more coordinated in this
task.

Of course we have to be careful not to attribute undue
intelligence to neural networks that simply manage to adapt
to each other’s behavior. However, the differences in behavior
are striking: The non-communicating teams employ a single,
efficient, fail-proof strategy in which each team member has a
specific role, while the communicating and centrally controlled
teams employ variations and combinations of two or more
strategies. These two forms of cooperative behavior can be
distinguished as role-based cooperation and communication-
based cooperation. Role-based cooperation consists of two
ingredients: Cooperation is achieved through the combination
of the various roles performed by its team members, and
these roles are coordinated indirectly through stigmergy. On
the other hand, communication-based cooperation may or may

not involve roles performed by its team members, but the team
members are able to coordinate through communication with
each other.

In the following section, these cooperative strategies will
be characterized further by testing how robustly they evolve
and how robustly the evolved agents perform under various
extreme conditions.

VI. ROBUSTNESS OF STRATEGY EVOLUTION AND
PERFORMANCE

Section IV showed that when minimal neural-network ar-
chitectures are used for each approach, the coevolutionary
approach evolves faster than the centralized approach, and
the team without communication evolves faster than the team
with communication. This section presents a number of control
simulations to verify that these results are robust. First, it is
important to verify that they hold when equivalent neural-
network architectures are used across all approaches. Also,
since the evolved non-communicating strategies include fixed
roles, it is necessary to demonstrate that they are robust
against changes in the prey’s behavior. It is also important to
show that evolution can discover non-communicating strate-
gies robustly even when the predators are initially placed
randomly. Another interesting issue is whether communicating
teams can be biased by design to evolve role-based, rather
than communication-based cooperative behavior. Finally, it is
important to demonstrate that coevolution of heterogeneous
agents is indeed necessary to solve the task. Each of these
issues is studied in a separate experiment in this section.

A. Do the results hold across equivalent network architec-
tures?

When the network architectures were optimized separately
for each approach, the coevolutionary approach solved the task
faster than the centralized approach (Section IV-A), and teams
without communication faster than teams with communication
(Section IV-B). However, it is unclear how much of this result
is due to the different search-space sizes (i.e. different number
of weights that need to be optimized), and how much is due
to the centralized vs. distributed control strategy itself, or to
the availability of communication.
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Fig. 11. Two sample strategies of the same communicating team. This team employs the two strategies shown above, as well as their
variations and combinations. In the first, (a), the chase starts with two chasers and a blocker, but ends with opposite chasers. In the second,
(b), there is a blocker and two chasers throughout, but the movement is horizontal. In this manner, the same team utilizes different strategies,
depending on the starting position of the prey.

In the centralized approach, the neural network had nine
hidden units and 21 connections per unit for a total of 189
weights (Figure 4), whereas the network used in the coevo-
lutionary approach (with communication) had eight hidden
units and 11 connections per unit for a total of 88 weights
(Figure 5). Such a smaller search space may allow evolution
to progress significantly faster. The same issue arises in com-
paring communicating vs. non-communicating networks: The
latter approach has three hidden units and seven connections
per unit for a total of 21 weights (Figure 6).

Of course, such small search spaces are possible precisely
because the approaches are different, but it is still interesting
to verify that the results are not completely due to search
complexity. To this end, the experiments in Sections IV-A
and IV-B were repeated with identical network architectures
across all approaches. Specifically, all approaches use the
architecture of the centralized approach, with nine hidden
units, six inputs, and 15 outputs. When some inputs are not
part of the approach (such as teammate locations in the non-
communicating approach), random noise values are used for
them. Outputs that are not used are simply ignored (Fig-
ures 12). In this manner, each approach receives and generates
the same information as before, but now within a uniform
architecture. The evolution performance of the coevolutionary
approaches with such architectures is compared against that of
the original centralized approach, providing a comparison of
the three different approaches given a uniform search space.

Figure 13 presents the results for these experiments. Using
larger neural networks did not significantly change the number
of required generations to solve the task for either of the co-

evolutionary approaches (i.e. with or without communication).
As a result, the relative differences in evolution time between
the three approaches are preserved. Therefore, the better per-
formance of the coevolutionary over the centralized approach,
and that of the coevolutionary non-communicating over the
coevolutionary communicating approach, are indeed due to the
approaches themselves, and not simply a consequence of being
able to search in a smaller space.

B. Are the strategies robust against novel prey behavior?

Although the non-communicating networks work together
like a well-trained soccer team, soccer (like most interesting
real-world tasks) is unpredictable. For example, a player from
the other team may intercept a pass, in which case the team
members will have to adapt their strategy quickly to cope with
the new situation. To determine how the non-communicating
team can deal with such unpredictability, three further exper-
iments were conducted where the non-communicating teams
were pitted against a prey that behaved differently from those
encountered during evolution. For comparison, the same tests
were also run for the communicating teams. Since the non-
communicating teams’ predators act according to fixed roles,
they might not be able to adapt as well as the communicating
teams’ apparently more flexible agents.

The first experiment presented the agents with a more
challenging version of the original behavior: The prey moved
three times faster than usual (by moving three steps each time)
and in a random direction 20% of the time. The second test
was similar but harder: The prey moved three times faster than
usual and in a random direction 50% of the time. In the third
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Fig. 14. Robustness of communicating and non-communicating
teams against novel prey behavior. In the first test, the prey moved
three steps each time and in a random direction 20% of the time;
in the second, three steps and randomly 50% of the time; and in
the third, always right. Surprisingly, the non-communicating teams
performed significantly better than the communicating teams (p <
0.01 for all three tests), even though the communicating strategies
are generally more varied. The non-communicating teams tolerate the
occasional novel behavior well as long as their basic strategy is valid.
However, even they cannot cope if the prey employs a consistently
different strategy.

experiment, the prey exhibited a distinctly different strategy
from the original behavior: It moved at the same speed but
always to the right.

The results, summarized in Figure 14, are surprising: The
non-communicating teams are more robust against unpre-
dictable prey than the communicating teams. Apparently, the
first two prey behaviors are still familiar enough so that the
fixed roles are effective: The teams still catch the prey about
50% of the time. The agents only have to track the occasional
erratic movement, otherwise their strategy is effective as is,
even when the prey is substantially faster. The communicating
teams, however, have a narrower range of adaptable situations,
particularly because their agents tend to switch strategies and
roles based on the current state of the world, and thus get
easily confused by the unexpected prey actions. In the third
case, where the prey always moves right, neither team is able
to track it well. This behavior is consistently novel, and the
agents are evolved not to expect it.

In sum, teams that have delegated specific and fixed roles to
their members are more tolerant of noisy or unusual situations,
as long as their basic strategy is still valid.

C. Are the strategies robust with random deployment?

In all experiments so far, the predators always started at the
bottom left corner of the world, and only the prey’s initial
position was varied. Such a limitation makes it possible to
analyze the resulting behaviors systematically. It is important
to demonstrate that similar behavior evolves also in the more
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Fig. 15. Evolution performance of the three approaches when the
predators start at random locations. In this harder task, evolution
took longer than with fixed initial placement of predators in all cases.
Moreover, as before, the non-communicating teams were significantly
easier to evolve than communicating teams (p < 0.01), which were
slightly easier than central controllers (p < 0.1). The team behaviors
were also similar to those evolved earlier.

general case where the predators’ positions are initially ran-
dom. Coordination is more difficult then because the agents
first need move into proper positions for the chase. The issue
is, will the non-communicating networks be able to establish
effective roles even then?

The experiment was set up as described in Section III-C,
except that predators were placed randomly in the world
during both evolution and benchmark tests. Furthermore, the
number of evaluations per trial during evolution was increased
from nine to 45, in order to obtain a sufficient sample of
the different starting positions (45 was found to be sufficient
experimentally). The number of evaluations during bench-
mark tests was increased from nine to 900 for the same
reason (whereas relatively sparse sampling is sufficient to
guide evolution, the benchmarks need to measure performance
accurately). A network was deemed successful if it caught the
prey in 750 of the 900 tests.

The minimum effective network sizes were determined as
in Section III-C. In this more challenging task, they were
found to be 13 hidden units for the centrally controlled and
communicating autonomous networks, and five hidden units
for the non-communicating networks.

Figure 15 shows how long it took each approach to solve
the task on average. Although this task was much harder,
the conclusions are the same as before: The communicating
autonomous teams were easier to evolve than central con-
trollers, and the non-communicating networks easier than the
communicating networks. The strategies evolved were also
similar to those with fixed initial placement of predators.

D. Can evolution be biased toward role-based cooperation?

As discussed in Section V, the communicating networks
could in principle evolve non-communicating behavior by set-
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ting weights to zero on the connections from those input units
that specify the other predators’ positions. It does not happen,
and the reason may be that it is difficult for evolution to turn
off all such connections simultaneously. It is easier to discover
a competent communicating solution instead, utilizing those
inputs and weights as well.

An interesting question is whether evolution would discover
role-based cooperation if it was biased to do so from the
beginning. Such an experiment was run by setting all the
communicating weights to zero in the initial population; the
other weights were initialized randomly as usual. Evolution
only had to keep the communicating weights at zero while
developing the rest of the network to solve the task. As a
comparison, networks with all weights initially at zero were
also evolved, and the results compared to normal evolution of
communicating networks.

The action dependencies that evolved are shown in Fig-
ure 16. The results show that such an initial bias does have an
effect: Evolution discovers behaviors where the actions depend
significantly less often on the positions of other predators.
With communication weights initially at zero, 14% of the ac-
tions depend on them, and with all weights initially zero, 48%.
In contrast, the earlier evolved networks with all randomly-
initialized weights exhibit 91% dependency. Qualitatively the
behaviors of the initially biased networks consist mostly of
role-based cooperation, with occasional switches or deviations
in the roles of the predators.

The performance in terms of number of generations needed
to solve the task is shown in Figure 17. Teams with commu-
nication weights initialized to zero evolve significantly faster:
The number of generations required, compared to the normal
communicating teams, dropped by a factor of three, making
it as fast as the non-communicating teams. When all weights
are initialized to zero, the improvement in evolution time was
found to be insignificant.

These results show that evolution can indeed discover role-
based cooperation, and the number of generations required can
be comparable to that needed by an architecture that forces
role-based behavior (i.e. the non-communicating networks).
However, the initial state needs to be biased the right way,
and the role-based cooperation discovered may not be perfect.
In other words, it is still important for the designer of a multi-
agent system to recognize whether role-based cooperation
could work in the task, and utilize the appropriate architecture
to evolve it.

E. Is Coevolution Necessary?

Although the performance of cooperative coevolution looks
convincing, it does not necessarily mean that coevolution is
essential for the task. Perhaps it is possible to evolve good
predators individually, and just put them together to solve the
task? This subsection demonstrates experimentally that such
an approach is not sufficient: They do not evolve cooperative
behavior like they do with coevolution.

A single predator without communication inputs (as shown
in Figure 6) was evolved alone incrementally in the prey-
capture task, using the standard ESP method as described
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Fig. 16. Degrees of dependence of communicating teams biased
to evolve role-based cooperation. The communicating teams with
communication weights initialized to zero evolved behaviors that
were 14% dependent on the positions of teammates; with all weights
initialized to zero, the evolved behaviors were 48% dependent. In
both cases, the evolved behaviors were significantly less dependent
on teammates compared to those of the normal (randomly-initialized)
communicating teams, which was 91% dependent on teammates (all
differences are statistically significant, p < 0.01).
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Fig. 17. Evolution performance of communicating teams biased
to evolve role-based cooperation. The communicating teams with
communication weights initialized to zero solved the task signifi-
cantly faster than the normal communicating teams (p < 0.01), taking
about the same number of generations as the non-communicating
teams (p = 0.32). On the other hand, with all weights initialized to
zero, evolution was as slow as with normal communicating teams
(p = 0.11), and slightly slower than with communicating weights
initialized to zero and non-communicating teams (p < 0.10).



15

in Section II-B and Figure 1. The predator was allowed to
evolve until it could no longer improve its fitness. This process
was repeated three times, each time with a new predator,
to produce three independent but competent predators. These
three predators were then put into the same environment and
evaluated in the prey-capture task.

The results support the hypothesis that coevolution is nec-
essary. When a predator evolves alone, it is never able to
catch the prey, since the prey moves at the same speed as the
predator. It evolves to chase the prey but is never able to reduce
the distance between them, and is only able to prevent the
prey from increasing it. When the three individually evolved
predators are put together against the prey, they all chase the
prey in the nearest direction, and are unable to catch it at all—
the prey keeps running and maintains the distance (Figure 18).
In other words, coevolution is essential in this task to evolve
successful cooperative behavior.

F. Are Heterogeneous Agents Necessary?

Even though a team of individually evolved predators cannot
catch the prey, it is possible that a homogeneous team, i.e.
one where all predators are controlled by identical networks,
could. In the current experimental setup, such a team can
be successful only when the agents communicate. Otherwise,
because they start out close together, they will all employ the
same behavior, and fail like the team in the previous section.

In a separate experiment, communicating networks were
evolved through the standard ESP method. Each network
was evaluated by making three copies of it, each controlling
one of the three predators in a team. The fitness of such a
homogeneous team was then taken as the network’s fitness.
Networks of different sizes were evolved, from six hidden
units up to 16, with ten runs at each size.

The success rate was extremely low: The homogeneous
teams were able to solve the task only three times out of
the 100 total runs. Apparently, it was difficult for evolution to
discover a way to establish the roles initially in the beginning
of the chase. In the heterogeneous communicating teams
all agents are different and their behaviors diverge in the
beginning, and the agents can immediately adopt a strategy
that fits the situation. In the homogeneous team, all predators
initially perform the same actions, and it is difficult to break
the symmetry. A more effective form of communication might
be to signal roles rather than simply sensing teammates’
locations. Each predator in turn would decide on a distinct
role (such as chase northward, or block horizontally), and
communicate that to its teammates. Alternatively, evolving
heterogeneous networks allows symmetry breaking to occur
naturally, resulting in effective heterogeneous behaviors with-
out a negotiation phase.

VII. DISCUSSION

In Section IV-A, a central controller was found to take over
50% longer to evolve than autonomous cooperating controllers
to solve the prey-capture task. Cooperative coevolution is able
to decompose the task into simpler roles, thereby making it
easier to discover solutions.

Such decomposition is a special case of speciation in evolu-
tionary systems. Speciation has been widely used to maintain
diversity in evolution. Using techniques such as islands and fit-
ness sharing [31, 39, 50], separated populations are encouraged
to diverge, resulting in more efficient search of the solution
space. If these separated populations are further evaluated
jointly and rewarded with a global fitness, they tend to con-
verge to heterogeneous policies that work well together. This
is the driving mechanism behind cooperative coevolution and
also behind ESP and its multi-agent extension. ESP preserves
diversity across populations of neurons and networks, because
these populations are disjoint by design. Although diversity is
gradually lost within each subpopulation as evolution focuses
on a solution, the subpopulations become distinctly different
from each other, and diverse and complementary roles result.
Thus, the observed cooperation between predators emerges
from cooperation between populations during evolution.

Section IV-B presented the result that predators without
knowledge of teammates’ relative locations evolve to co-
operate and solve the task more than twice as fast than
predators with such knowledge. This result is interesting
because such knowledge from communication allows each
predator to make decisions based directly on where the other
predators are, as well as where the prey is. On the other hand,
non-communicating predators do not have such knowledge,
and have to coordinate using stigmergy. At first glance,
this result seems attributable to three factors. First, allowing
communication usually requires more structure (the minimal
communicating autonomous controllers have eight neurons
with 11 weights each, while the minimal non-communicating
autonomous controllers have three neurons with seven weights
each), which translates to a larger search space. However,
this difference turns out to be unimportant. As discussed in
Section VI-A, when the same architecture is used across all ap-
proaches, the non-communicating approach still outperforms
the communicating approach substantially.

The second potential factor is that communication presents
more information for evolution to understand and organize,
which might take more evolutionary generations. While it
is theoretically possible for evolution to simply discard the
unnecessary information, Section VI-D demonstrated that
evolution instead attempts to make use of it. On the other
hand, Section VI-A showed that evolution takes little time to
discard random noise fed into the extra inputs of the non-
communicating approach: The number of generations taken
to solve the task is the same as without noisy inputs. The
conclusion is that with evolutionary methods such as ESP it is
easy to discard noisy, random activations given as inputs, but
difficult to discard inputs such as teammates’ relative positions
that “make sense,” even if they are marginally useful at best.

The third potential factor, and actually the most important,
is the different behaviors evolved in each approach and their
relationship to the decompositional property of ESP. As was
discussed in Section V, the non-communicating team always
employed a single strategy where each agent had a specific
role. During evolution, each non-communicating subpopula-
tion converges toward optimizing specific functions such that
the team solves the task successfully even though the team
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Fig. 18. A strategy of three individually evolved predators placed on the same environment. The predators chase the prey together in
the nearest direction but are unable to catch it. Coevolution is thus essential in this task to evolve successful cooperative behavior.

members are independent of one another. Evolution without
communication thus places strong pressure on each predator
to perform its assigned role well. These roles are assigned
through simultaneous adaptive niching: As one agent begins to
converge to a particular behavior, the other agents that behave
complementarily are rewarded, and themselves begin to niche
into such roles. This adaptation in turn yields a higher fitness,
and all predators begin to converge into cooperative roles.
In this way, a stigmergic form of coordination between team
members quickly emerges.

In contrast, the communicating team is continuously getting
into different situations during evolution, depending on how
ESP combines neurons and agents into teams. In order to
achieve high fitness, an agent must perform well in a number
of different situations. There is pressure to develop a rich
set of behaviors that cover many situations and can change
dynamically in reaction to the predators’ actions as well as the
prey’s. As a result, the communicating agents utilize variations
and combinations of two or more strategies, instead of clear-
cut roles. It takes time to build an effective set of such
behaviors, which is partly why communicating evolution takes
longer.

Franklin [13] pointed out that communication abilities in-
volve non-trivial costs, and suggested that in some cases
coordination without communication may be an advantage
over communication-based coordination. Our findings suggest
that this is indeed true: First, communication presents extra
information that ESP needs to organize and utilize, even if
such information is not crucial in solving the task. Second,
communication raises the structural requirements of the com-
municating controller in terms of number of hidden units
and weights. Even if such complexity does not increase the
number of generations needed to solve the task, it increases the
computational resources needed to store, evaluate and operate
upon the larger structures. On the other hand, stigmergy is
faster and simpler for ESP to discover and represent, due to
the powerful decompositional properties of the algorithm, and
is utilized more beneficially in the task to find an efficient,
fixed-role solution.

In general, the results in this paper suggest that it is better
to use the most parsimonious architecture possible to solve a
task, rather than an architecture with full capabilities in the
hope that evolution will ignore the unnecessary capabilities

(such as extra inputs and outputs). First, it is usually faster
to evolve simpler network architectures. Efficiency becomes
important especially with difficult real-world problems, which
tend to be noisy and unpredictable. For example, Section VI-C
showed that when predators start in random initial positions,
the number of generations required to solve the task increased
significantly, and each generation took longer because more
sampling was required. Furthermore, Section VI-D demon-
strated that evolution may not discard extraneous capabilities,
but rather to use them in less efficient and less robust solu-
tions. In tasks that are completely role-based, a particularly
efficient way to simplify a system’s architecture is to discard
communication between agents. The system will then solve
the task faster, and evolve more efficient and robust solutions.

Of course, not all multi-agent tasks may be as efficiently
solved through role-based cooperation. For example in the
prey-capture task where a capture configuration is necessary
(as used by Benda [6] and Haynes and Sen [23, 24]) it
would be very difficult for the agents to guess the exact
locations of the other agents and timing of their actions
to achieve successful capture. In contrast, if the agents can
let other agents know where they are at any given time,
they can coordinate their actions. Just as team behaviors
were classified as either role-based or communication-based in
Section V-B, it may be possible to classify multi-agent tasks
likewise: Role-based cooperative tasks can be solved more
efficiently by teams employing role-based cooperation without
communication, while communication-based cooperative tasks
require some degree of communication between teammates to
be solved efficiently. The prey-capture task in this paper is
entirely role-based, in that communication is not necessary at
all.

Such a classification is useful because it makes it possible
to identify the most effective approach for each task. As
discussed above, employing a communicating team in a role-
based task may not give the most efficient or most robust
solution, while a non-communicating team may not even be
able to solve a task that is communication-based. While it
may not be possible to identify the type of task conclusively
in every case, there are a few observations that are likely to
be helpful. First, in a task that requires synchronized actions,
communication between teammates is likely to be essential,
and the task is therefore communication based. An example
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is a prey-capture task where all predators have to move to
occupy a capture configuration simultaneously. (In contrast,
in the current task, as long as the predators approach the
prey from different directions, they will catch the prey; only
the appropriate spatial organization is necessary to succeed.)
Second, in a task where an agent may not be able to complete
its role-based subtask, communication is likely to be required
so that agents can seek assistance from teammates, or to notify
them of the problem. For example, if the prey-capture task
included irregularly-placed obstacles, stigmergic coordination
might be insufficient to solve the task.

On the other hand, there are likely to be several real-world
tasks where role-based cooperation is effective. These include
tasks that lend themselves to territorial solutions [12]. For
example, in controlling a bank of elevators in a building, each
agent’s role could be to serve a specific range of floors; in
coordinating agents to search the web for information, each
agent could cover a separate web region. They also apply
to tasks where the roles are based on expertise, and where
the agents react to the changing environment. For example,
in deploying robots to cover a physical space (e.g. clean
a surface, mow the lawn, rake the leaves, etc.) each one
can react to what others have already done; in coordinating
agents to construct an information object such as a Wikipedia
article, each agent can provide a different expert perspective,
building on what is already there in the article. In such tasks,
communication may turn out to be a source of noise that
diverts teams from the most effective solution. Systematically
identifying such tasks and applying role-based cooperative
coevolution to them constitutes a most interesting direction
for future work.

VIII. CONCLUSION

The experiments reported in this paper showed that coevolv-
ing several autonomous, cooperating neural networks to con-
trol a team of agents is more efficient and robust than evolving
a single centralized controller. They also showed that Multi-
Agent ESP is an efficient and natural method for implementing
such multi-agent cooperative coevolution. Furthermore, a class
of tasks was identified, called role-based cooperative tasks,
where communication is not necessary for success, and may
actually make evolution less effective. Instead, a team of non-
communicating agents can be evolved to utilize stigmergic
coordination to solve the task more efficiently and robustly.
This class is likely to include interesting real-world tasks. Rec-
ognizing such tasks and applying the cooperative coevolution
approach to them, as well as studying the limits of stigmergic
coordination in dealing with novel and changing environments,
are the main directions of future work in this area.
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