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Abstract

In certain tasks such as pursuit and evasion, multiple agents need to coordinate their behavior to achieve
a common goal. An interesting question is, how can such behavior best be evolved? When the agents
are controlled with neural networks, a powerful method is to coevolve them in separate subpopulations,
and test together in the common task. In this paper, such a method, called Multi-Agent ESP (Enforced
Subpopulations) is presented, and demonstrated in a prey-capture task. The approach is shown more efficient
and robust than evolving a single central controller for all agents. The role of communication in such
domains is also studied, and shown to be unnecessary and even detrimental if effective behavior in the task
can be expressed as role-based cooperation rather than synchronization.

1 Introduction

In multi-agent problem solving, several agents work together to achieve a common goal. Due to their
distributed nature, multi-agent systems can be more efficient, more robust, and more flexible than centralized
problem solvers. To be effective, the agents need to interact, and they need to behave cooperatively rather
than greedily to accomplish a common objective. The central issue is how such cooperation can be best
established. First, should the agents be implemented as a diverse set of autonomous actors, or should they
be coordinated by a central controller? Second, if the agents are autonomous, what kind of communication
is necessary for them to cooperate effectively in the task?

This paper explores these questions in the context of machine learning, where a team of neural networks
is evolved using genetic algorithms to solve a cooperative task. The Enforced Subpopulations method of
neuroevolution (ESP [7, 8]), which has proven highly efficient in single-agent reinforcement learning tasks,
is first extended to multi-agent evolution. The method is then evaluated in a pursuit-and-evasion task where
a team of several predators must cooperate to capture a fast-moving prey.

The main contribution is to show how the different ways of encoding, evolving, and coordinating a
team of agents affect performance. We demonstrate two interesting results: first, a central-controller neural-
network that is evolved to control the entire team performs substantially worse than a set of autonomous
neural networks each evolved cooperatively to control a single predator. This result counteracts the common-
sense notion that a centralized controller is useful for a team. Moreover, the agents do not even need to com-
municate to behave cohesively: it is sufficient that they coevolve to establish compatible roles in the team.
In fact, communicating teams (where each team member sees all the other team members) consistently per-
formed worse than non-communicating teams (where they each only see the prey)! These surprising results
are due to niching in coevolution, which is especially strong in ESP. Instead of searching the entire space
of solutions, coevolution allows identifying a set of simpler subtasks, and optimizing each team member
separately and in parallel for one such subtask. In the end, each agent knows what to expect from the other
agents, and explicit communication is not necessary.



We will begin with a brief review of related work in cooperative coevolution, multi-agent learning, and
the predator-prey domain. The multi-agent Enforced Subpopulations method is then described, followed by
its experimental evaluation. A discussion of future prospects of this approach concludes the paper.

2 Background and Related Work

Coevolution in Evolutionary Algorithms refers to maintaining and evolving individuals for different roles in
a common task, either in a single population or in multiple populations. In competitive coevolution, these
roles are adversarial in that one agent’s loss is another one’s gain. In cooperative coevolution, however,
the agents share the rewards and penalties of successes and failures. The kinds of problems that can best
utilize cooperative coevolution are those in which the solution can be naturally modularized into subcom-
ponents that interact or cooperate to solve the problem. Each subcomponent can then be evolved in its own
population, and each population contributes its best individual to the solution. For example, Gomez and
Miikkulainen [7] developed a method called Enforced Subpopulations (ESP) to evolve populations of neu-
rons to form a neural network. A neuron was selected from each population to form the hidden-layer units of
a neural network, which was evaluated on the problem; the fitness was then passed back to the participating
neurons. In the multi-agent evolution developed in this paper, we use ESP to evolve each neural network,
but also require that the neural networks cooperate. The ESP method and our extension to it are discussed
in more detail in Section 4.

Potter and De Jong [21] outlined an architecture and process of cooperative coevolution that is similar to
that of ESP, and we also use it partially in our approach. While Potter and De Jong focus on methodological
issues such as how to automatically decompose the problem into an appropriate number of subcomponents
and roles, our focus is on understanding cooperation itself, including the efficiency of the different models
of team control and the role of communication.

In a series of papers, Haynes and Sen explored various ways of encoding, controlling, and evolving
predators that behave cooperatively in the predator-prey domain [11, 10, 12]. In the first of these stud-
ies [11], Genetic Programming was used to evolve a population of strategies, where each individual was
a program that represented the strategies of all predators in the team. The predators were thus said to be
homogeneous, since they each shared the same behavioral strategy. In follow-up studies [10, 12], they devel-
oped heterogeneous predators: each chromosome in the population was composed of & different programs,
each one representing the behavioral strategy of one of the k predators in the team. They reported that the
heterogeneous predators were able to perform better than the homogeneous ones. We take a further step in
the direction towards increasing heterogeneity by evolving a controller for each predator in separate popu-
lations using cooperative coevolution. Also, because ESP has been shown to be powerful in various control
tasks [7, 8], we use ESP to evolve neural network controllers, rather than Genetic Programming to evolve
program controllers.

The role of communication in cooperative behavior has been studied in several Artificial Life experi-
ments [26, 4]. These studies have shown that communication can be highly beneficial, allowing the com-
municating individuals to outperform the non-communicating ones. However, most of these studies did not
take into account the cost of communication—-such as the energy expenditure in signaling, or the danger
of attracting predators, or the complexity of the apparatus required. There also exists other forms of co-
operative strategies that do not involve communication. For example, Wagner [24] suggested that even in
domains where communication does contribute towards solving a task, communicative traits may still not
evolve if they involve a significant cost. Other kinds of cooperative strategies may evolve instead, depending
on other factors such as the nature of the task, population density, and availability of resources. This idea
is especially relevant to our work, in which agents that do not have communicative abilities still manage to
evolve cooperative behavior.

Balch [2] examined the behavioral diversity learned by robot teams using reinforcement learning. He
found that when the reinforcement was local, i.e. applied separately to each agent, the agents within the
team learned identical behavior; global reinforcement shared by all agents, on the other hand, produced
teams with more heterogeneous behavior. This result provides a useful guideline for evolving cooperating
agents: rewarding the whole team for good behavior privileges cooperation even when some agents do
not contribute as much as others, while rewarding individuals induces more competitive behavior as each
individual tries to maximize its own reward at the expense of the good of the entire team. Our work diverges
from Balch’s in focus and implementation: we study the behavioral diversity and niching of evolved teams
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Figure 1. The Predator-Prey Domain. The environment is a 100 x 100 toroidal grid, with one prey (denoted by
“X™) and three predators (denoted by ”1”, 72" and ”3”). The arrows indicate current direction of movement.

with respect to global vs. local control and communication, and instead of reinforcement learning we use
evolutionary learning on neural networks, which tends to give more malleable and efficient performance [8].

In sum, the coevolutionary approach seems to be a good match for multi-agent tasks. The predator-prey
domain is a simple but effective domain to test this hypothesis, as will be discussed next.

3 ThePredator-Prey Domain

The prey capture task used in this paper is a special case of pursuit-evasion problems [15]. Such tasks
consist of an environment with one or more preys and one or more predators. The predators move around
the environment trying to catch the prey, and the prey tries to evade the predators. Pursuit-evasion tasks are
interesting because they are ubiquitous in the natural world, and offer a clear objective that requires complex
coordination with respect to the environment, other agents with the same goal, and adversarial agents [7].
They are therefore challenging for even the best learning systems, allow measuring success accurately, and
allow analyzing and visualizing the strategies that evolve.

We use this domain to test various approaches to evolution and control. There is one prey and three
predators in the environment (Figure 1). The prey is controlled by a simple algorithm; the predators are
controlled by neural networks. The goal is to evolve the neural networks to form an efficient team for
catching the prey. The different approaches and techniques are compared based on how long it takes for the
team to catch the prey, and what kind of strategies they use.

The environment is a 100 x 100 square toroid without obstacles or barriers (the 100 x 100 square is
referred to as the “map” below). All agents can move in 4 directions: N, S, E, or W. The prey moves as fast
as the predators, and always directly away from the nearest predator. The prey starts at a random location of
the map, and the predators all start at the bottom left corner. If the predators have not caught the prey in 150
moves, the trial is terminated and counted as a failure.

Constrained this way, it is impossible to consistently catch the prey without cooperation. First, since the
predators always start at the bottom left corner, behaving greedily would mean that they chase the prey as a
pack in the same direction. The prey would avoid capture by running in away in the same direction. Because
it is as fast as the predators, and the environment is toroidal, they would never catch it (see Figure 10 for an
illustration of this scenario). On the other hand, should the predators behave randomly, there is little chance
for them to coordinate an approach, let alone maneuver into a capture. The time limit is chosen so that the
predators can travel from one corner of the map to the other. This way they have enough time to move to
surround the prey, but it is not possible for them to just mill around and bump into the prey eventually.

The prey capture task has been widely used to test multi-agent behavior. For example Benda [5], as well
as Haynes and Sen [10, 12], used this domain to assess the performance of different coordination systems.
In their variant of the task, the predators were required to surround the prey to catch it. The main difficulty
in this task lies in coordinating the predators to occupy the positions of the capture configuration: the prey
tends to move either randomly or at a slower speed than the predators, thus allowing the predators to catch
up with it easily. In our domain, on the other hand, it is enough for one predator to move onto the prey’s
position for a successful capture. However, the prey moves as fast as the predators, and always away from
the nearest predator; there is thus no way to catch the prey simply by chasing it. The main difficulty that our
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Figure 2: ESP architecture. Each population contributes a neuron to form the neural network, which is then
evaluated in the domain. The fitness is passed back to the participating neurons. This is also the scheme used to evolve
the central-controller neural network that controls all three predators simultaneously. See Figure 4 for a detailed
architecture of this neural network.

predators face is coordinating the chase so that in the end the prey has nowhere to go, which requires a more
long-term strategy.

4 The Multi-Agent ESP Approach

The Enforced Subpopulations Method (The ESP?; [7, 8]) is an extension of Symbiotic, Adaptive Neuro-
Evolution (SANE; [17, 18, 16]). SANE is a method of neuro-evolution that evolves a population of neurons
instead of complete networks. Neurons are selected from the population to form the hidden layer of a
neural network, which is evaluated on the problem. The fitness is then passed back to all the partaking
neurons of the network equally. ESP extends on SANE by allocating a separate population for each hidden
layer neuron of the network; a number of neuron populations are thus evolved simultaneously (Figure 2).
It is thus a cooperative coevolution method of evolving neural networks: each neuron population tends to
converge to a role that results in the highest fitness when the neural network is evaluated. This way, ESP
decomposes the problem of finding a successful network into several smaller subproblems, resulting in more
efficient evolution.

In several robot control benchmark tasks, ESP was compared to other neuro-evolution methods such as
SANE, GENITOR [28], and Cellular Encoding [9, 29], as well as to other reinforcement learning methods
such as Adaptive Heuristic Critic [3, 1], Q-learning [25, 20], and VAPS [14]. ESP turns out to be consistently
the most powerful, solving problems faster, and solving harder problems [8]. It therefore forms a solid
foundation for an extension to multi-agent systems evolution.

In this paper, ESP is adapted to allow for the simultaneous evolution of multiple agents. We evaluate
two approaches of encoding and controlling agents: the central-controller approach and the autonomous,
cooperating controllers approach. Each of these entails a different method of ESP evolution.

In the central-controller approach, all three predators are controlled by a single neural network (Fig-
ure 4). Since there is only one network, this system is implemented using the usual ESP method (Figure 2).
In the distributed control approach, each predator is controlled by its own network (Figure 5)—there are
thus three autonomous networks that need to be evolved simultaneously. During each cycle, each network
is formed using the usual ESP method. These three networks are then evaluated together in the domain
as a team, and the resulting fitness for the team is distributed among the neurons that constitute the three
networks (Figure 3).

LESP neuroevolution software, aswell as sofware for SANE, is available at www.cs.utexas.edu/users/nn/ pages/software/software.html
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Figure 3: Multi-agent ESP architecture. Each predator is controlled by its own neural network, formed from its
own subpopulations of neurons. The three neural networks are formed and evaluated in the domain at the same time as
a team, and the fitness for the team is passed back to all participating neurons. See Figure 5 for a detailed architecture
of the individual networks.

In both the central-controller and the autonomous-controllers approach, the agents were evolved in a
series of incrementally more challenging tasks. Such incremental evolution, or shaping, has been found to
facilitate learning of complex domains, where direct evolution in the goal task would result in inadequate,
mechanical strategies [7, 22, 6]. Evolution proceeds through five stages: in the easiest task the prey is
stationary, and in each subsequent task the prey moves at a faster speed, until in the last task it moves as
fast as the predators. When a team manages to solve the current task consistently, the next harder task
is introduced. In our domain, incremental learning is particulary useful because it gives the predators an
opportunity to close in on the stationary or slow-moving prey of the easier tasks and gain experience in
catching the prey at close proximity. Placing the predators into the final task right from the start does not
give them sufficient exposure to maneuvering close to the prey, as it is difficult to approach the prey to begin
with. Incremental learning is therefore used to give evolution more experience in the necessary skills that
would otherwise be hard to develop.

The fitness function consists of two components, depending on whether they prey was captured or not:

;e dol—ode if prey not caught
= % if prey caught

where d is the average initial distance from the prey, d. is the average final distance from the prey. This
fitness function was chosen to satisfy four criteria:

1. If the prey is caught, we should not privilege or deprivilege teams based on the starting scenarios—
that is, the initial distance from the prey must not be a factor. However, we should privilege teams if
their ending positions are good—that is, if all predators are near the prey.

2. If the prey is not caught, then we should take into account the distance covered by the predators,
wherein the initial distance from the prey is a factor.

3. Since a successful strategy has to involve surrounding or sandwiching the prey between two or more
predators, at least one predator must travel the long distance of the map and approach the prey from
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the furthest direction. Thus the time taken for each capture tends to be about the same, and should not
be a factor in the fitness function.

4. The fitness function should have the same form throughout the different stages of incremental evolu-
tion, making it simple and convenient to track progress.

The neuron chromosomes are concatenations of the real-valued weights on the input and output con-
nections of the neuron. As is usual in ESP, burst mutation through delta-coding [27] on these weights is
used as needed to avoid premature convergence. If progress in evolution stagnates because the populations
have converged, the populations are re-initiated according to a Cauchy distribution around the current best
solution. Burst mutation typically takes place at task transitions as well as in prolonged evolution in difficult
tasks [7, 8]. However, it only happened a couple of times in our simulations, which were not that difficult
for ESP to solve.

5 Experiments

In this section, we conduct two experiments to test our main hypotheses: first, that cooperative coevolution
of autonomous controllers is more effective than evolving a central controller (Section 5.1), and second, that
the agents controlled by autonomous neural networks can learn to cooperate even without any communi-
cation between them, and indeed learn more powerful cooperative behavior in a shorter time compared to
communicating agents (Section 5.2). In addition to quantitative comparisons of performance, Section 5.3
describes and compares actual example behaviors learned in the three approaches. Finally, in two more ex-
periments, we will test the robustness of the solutions, and will verify that cooperation indeed is necessary
for the task.

In each experiment, there are 30 subpopulations of neurons. In the central-controller approach the
neural network has 30 hidden-layer neurons, one from each subpopulation; in the distributed approach
each predator’s neural network has 10 hidden-layer neurons. Each subpopulation consists of 100 neurons.
During each evolutionary cycle, 1,000 trials are run wherein the neurons are randomly chosen from their
subpopulations to form the neural network(s). In each trial, the team is evaluated six times; the prey starts in
a random location each time, while the predators always start in the bottom-left corner. The fitnesses over
the six evaluations are averaged, and assigned to all the neurons that constitute the network(s). After the
trials, the top 25% of neurons are recombined using 1-point crossover. The offspring replaces the bottom
bottom 50% of the neurons, and they are then mutated with a rate of 0.4 on one randomly-chosen weight on
each chromosome, by adding a Cauchy-distributed random value to it.

Note that the environment is stochastic only in the prey’s starting location, and this is the only factor
that determines the course of action taken by the predators. In order to test these strategies comprehensively,
we implemented a suite of benchmark problems. The map was divided into nine 33 x 33 subsquares; in
each trial, each team was tested nine times, with the prey starting at the center of each of these squares in
turn. Such an arrangement provides a sampling of the different situations, and allows estimating the general
effectiveness of each team. A team that manages to catch the prey in seven out of the nine benchmark cases
is considered to have learned the task reasonably well; a team that catches the prey in all nine benchmark
cases is considered to have completely solved the task, and indeed such a team usually has a 100% success
rate in random, general scenarios.

5.1 Standard Evolution of a Central Controller vs. Cooper ative Coevolution of Autonomous
Controllers

In this section we compare the results of evolving a single neural network that controls the entire team
against coevolving three separate neural networks, each controlling a single predator. We shall make the
comparison in terms of the number of evolutionary cycles needed for the neural network(s) to learn to solve
the task reasonably well; in Section 5.3, the actual the predator behaviors that emerge are described and
compared. The network architectures are shown in Figures 4 and 5, and they are evolved according to the
scheme outlined in Section 4 above (Figures 2 and 3). Five simulations of each technique were run for 400
evolutionary cycles each.
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Figure 4: Central controller network for all three predators.. This neural network receives the relative z and
y offsets of the prey and the other predators from the perspective (i.e. location) of all three predators, and outputs
the movement decisions for all three predators. This way it acts as the central controller for the whole team. The
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Figure 5: Controller for a single autonomous cooper ating predator. This neural network autonomously controls
one predator; three such networks are simultaneously evolved in the task. The network receives the relative z and y
offsets of the prey and the other two predators as its input. The chromosome size of each hidden layer unit is 11 (6

inputs + 5 outputs).



Control Generationsto Solve 7 Benchmark Cases out of 9 | Teamsthat Evolved to Solve
Mean Standard Deviation 9 Benchmark Cases out of 9
Central 231 116 0 out of 5 simulations
Distributed 87 22 5 out of 5 simulations

Table 1: Learning performance of standard evolution of a central controller ver sus cooper ative coevolution of
multiple cooperative controllers.

Communication | Generationsto Solve 7 Benchmark Cases out of 9 | Teamsthat Evolved to Solve
Mean Standard Deviation 9 Benchmark Cases out of 9
With 87 22 5 out of 5 simulations
Without 18 7 5 out of 5 simulations

Table 2: Learning performance of cooper ative coevolution of autonomous controllers with and without com-
munication.

Table 1 shows the mean and standard deviation of the number of evolutionary generations needed for
each approach to learn to solve the task reasonably well—that is, to be able to catch the prey in at least seven
benchmark cases out of nine. It also lists the number of teams that learned to solve the task completely—that
is, in all nine benchmark cases.

On average, the coevolution of the three neural network controllers was almost three times as fast as the
evolution of a centralized controller in finding a reasonable solution (the difference is statistically significant
with p > 0.95). Furthermore, the single neural network was unable to evolve to the level of expertise
required to solve all nine benchmark cases within the 400 evolutionary cycles, whereas the cooperating
neural networks were able to do it every time. These results provide convincing evidence that a cooperative
coevolution is more powerful than a standard centralized approach in this task.

5.2 Cooperative Coevolution With vs. Without Communication

In the previous section, we saw how separating the control of each agent into disjoint autonomous networks
allows for more powerful evolution. Even though the controllers no longer receive direct information about
what the other agents see, the domain is still completely represented in the predator’s own and the prey’s
offsets. In this section we reduce the available information by preventing the predators from seeing each
other. This way the agents will have to act entirely autonomously, without any direct communication be-
tween them. The objective is to find out whether communication is necessary for cooperative behavior to
evolve.

The modified network architecture is shown in Figure 6. The predator no longer sees the relative z
and y offsets of the other predators, only the offsets of the prey. Such networks were evolved with the same
coevolutionary multi-agent ESP method as the communicating networks of Figure 5. Again, five simulations
of each system were run for 400 evolutionary cycles.

The learning performance of the communicating and non-communicating controllers is given in Table 2.
Somewhat surprisingly, the non-communicating system learned reasonable behavior four times faster on
average (the difference is statistically significant with p > 0.99). Both systems also learned to solve the
task completely without exception. These results show that explicit communication is not necessary for
cooperative behavior to emerge in this task; in fact, since it is not necessary, it is more efficient to do away
with it entirely. Let us next analyze examples of evolved behaviors to gain insight into why this is the case.

5.3 Analysesand Comparisons of Evolved Behaviors
In this section, we try to characterize the behaviors that emerge from each approach, and to point out their

differences. We first describe the emergent behavior of a team of the autonomous cooperative controllers
without communication, then do the same for the communicating team, and then compare these two. Finally,
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Figure 6: A non-communicating autonomous controller. This neural network receives the prey z and y offsets as
its inputs. Therefore, it controls a single predator without knowing where the other two predators are (i.e. there is no
communication between them). The chromosome size of each hidden layer unit is 7 (2 inputs + 5 outputs).
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Figure 7: A sample strategy of a non-communicating team. The predators 2 and 3 are Chasers, pursuing the prey
towards predator 1, which acts as a Blocker.

we will discuss the behavior of the team with a centralized controller compared to the other two.

The main result is that evolution without communication produces teams that evolve specific and rigid
roles for each team member, and that utilize a single effective strategy in all cases. On the other hand,
evolution with communication tends to produce teams with more flexible (although less effective) agents
able to employ two or more different strategies.

Figure 7 illustrates one such successful strategy for a non-communicating team. This strategy involves
2 different roles, which we call the Chaser and the Blocker; predator 1 is a Blocker, while predators 2 and 3
are Chasers. The Blocker only moves in a horizontal direction, moving into and staying on the same vertical
axis as the prey; the Chasers pursue the prey vertically, upwards or downwards depending on where the prey
is. The first frame in Figure 7 shows the initial positions of the agents and the prey. Predator 1, the Blocker,
moves right to get onto the prey’s vertical axis; predators 2 and 3 do the same, while the prey flees from
them. In frame two, the Chasers are more or less in the same vertical column as the prey, and start chasing it
upwards; the Blocker (predator 1) simply keeps on the prey’s vertical axis. In frame three, the prey has been
trapped between the Blocker and the Chasers, who move in for the capture. Notice that this strategy requires
no communication between predators: as long as the Blocker keeps itself on the prey’s vertical axis, and the
Chasers chase the prey vertically, the prey will always be caught.

Another successful strategy that sometimes emerges involves only Chasers. If the Chasers go after the
prey in opposite directions, i.e. one upwards, another downwards, they can sandwich the prey between them
and capture it without help from the Blocker. Again, communication is not necessary, only the implicit
knowledge that there will be an opposite Chaser in the team. Since the networks are evolved in separate
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Figure 8: A strategy of acommunicating team. This strategy shows more versatility, starting with two Chasers and
a Blocker, but ending with opposite Chasers.
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Figure 9: Another strategy of the same communicating team asin Figure 8. This time there is a Blocker and two
Chasers throughout, but the movement is horizontal.

populations, it is possible to draw successful teams either by combining Chasers with opposite directions,
or by combining Chasers and Blockers. Sometimes both kinds of teams can be formed from the same
population; they constitute divisions of the high-level problem into useful general-purpose subtasks, which
can therefore be found very robustly.

Figures 8 and 9 illustrate the behavior of an evolved communicating team. Two different strategies
are shown because this team actually displays both of them, and also their combinations and variations,
depending on the prey’s starting location and the location of the other predators at each timestep. Figure 8
illustrates behavior similar to the Chaser-Blocker strategy. The first frame is a snapshot of the starting
position. Predators 1 and 2 are the Chasers, and they start pursuing the prey upwards. Predator 3 is the
Blocker, and it moves left onto the prey’s vertical axis. At this point, however, it starts chasing the prey
downwards, in Frame 2, until the prey is trapped between all three predators in Frame 3. Already this
strategy is more versatile as those of the non-communicating teams, as a combination of Blocking and
opposite Chasers.

Figure 9 illustrates another strategy employed by the same team. In the first frame, predators 1 and
3 start moving toward the prey diagonally upwards and downwards, respectively, while predator 2 moves
upwards until it is horizontal with the prey. By the second frame, predators 1 and 3 have started chasing
the prey horizontally until it is trapped between them and predator 2. This strategy is again similar to the
Chaser-Blocker strategy, except this time the prey is chased horizontally instead of vertically, and the chase
includes diagonal movement as well.

Although each strategy is similar to those of non-communicating teams, what is significant here is that
they are employed by one and the same team. This team can also use combinations of these strategies,
depending on the situation, for example by starting with one and finishing with the other. Thus, each
predator does not have a specific role it has to perform rigidly, but modifies the strategy depending on the
situation. Each predator behaves not only according to the prey’s relative location, but also observes the
other predators in deciding how to act. This way, their strategy is more versatile, but also less efficient.
Whereas the non-communicating teams resemble e.g. players in a well-trained soccer team, where each
player knows what to expect from the others in each play, the behavior of the communicating teams is
similar to a pickup team where each player has to constantly monitor the others to determine what to do.
Such players can perhaps play with many other kinds of players, but not as efficiently.

Of course we have to be somewhat cautious and not attribute undue intelligence and intention to neural
networks that simply manage to adapt to each others’ behavior; however, the difference in the behavior of
the two approaches is striking: the noncommunicating team employs a single, efficient, failproof strategy in
which each team member is evolved into a specific and rigid role, while the communicating team adaptively
employs variations and combinations of two (or more) strategies.
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Communication Average Number of Benchmark Cases Solved
Prey moves 3 stepseach | Prey moves 3 stepseach | Prey always moves
timeand in random timeand in random right only
direction 20% of time direction 50% of time
With 2.7 2 0
Without 4.3 4.3 1.3

Table 3: Adaptation of communicating and non-communicating teams to novel prey behavior. The noncom-
municing teams are robust as long as their basic strategy is valid; however, they cannot cope if the prey employs a
consistently different strategy. The results were averaged over the three teams of each approach.

In contrast, none of the evolutions of the centrally-controlled teams were able to produce a solution to
solve all nine benchmark cases. The cases on which they failed were often characterized by a mechanical
strategy: all predators and the prey would make a step in the same direction, and since their relative locations
remain unchanged, they would make the same move again and again untill time ran out. However, they
behaved similarly to the non-communicating team in that each team would try to utilize a single strategy in
all cases, only less cohesively and indeed often failing in the task.

5.4 How robust arethe solutions?

Although the non-communicating networks work together like a well-trained soccer team, soccer (like most
interesting real-world tasks) is somewhat unpredictable. For example, a player from the other team may
intercept a pass, in which case the team members will have to quickly adapt their strategy to cope with
the new situation. To determine how the non-communicating team can deal with such unpredictability, we
conducted a test in which three teams, evolved until they could solve all 9 benchmark cases, were pitted
against a prey that behaved differently from those encountered during evolution. For comparison, we also
did the same test for communicating teams. Since the non-communicating teams’ predators act according
to rigid roles, we expected that they would not be able to adapt as well as the communicating teams’ more
flexible agents.

The results, summarized in Table 3, are surprising: the non-communicating teams are more robust
against unpredictable preys than the communicating ones. Apparently, the first two prey behaviors, which
are noisy versions of the original behavior, are still familiar enough so that the rigid roles are effective:
the teams still catch the prey about 50% of the time. All the agents have to do is track the occasional
erratic movement, otherwise their strategy can remain the same. The communicating teams, however, have
a narrower margin of adaptable situations, particularly because their agents tend to switch strategies and
roles based on the current state of the map, and thus get easily confused by the unexpected prey actions.
In the third case, where the prey always moves right, both teams are unable to adapt. This behavior is
consistently novel, and the agents are evolved not to expect it.

In sum, teams that have delegated rigid and specific roles to its members may be more tolerant to noisy
or unusual situations, as long as the basic strategy is still valid.

5.5 IsCoevolution Necessary?

Although the performance of cooperative coevolution looks convincing, it does not necessarily mean that
coevolution is essential for the task. Perhaps it is possible to evolve good predators individually, and just put
them together into the domain? In this section we demonstrate experimentally that such an approach is not
sufficient, and the agents indeed must be evolved together to solve the task.

We took a single predator without communication inputs (as shown in Figure 6) and evolved it alone in
the prey-capture domain with incremental learning using the standard ESP method as described in Section 4
and Figure 2. The predator was allowed to evolve until it could no longer improve its fitness. This process
was repeated twice, each time with a new predator, to produce three independent but capable predators.
These three predators were then put into the same environment and evaluated in the prey capture task.
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Figure 10: A strategy of threeindividually evolved predators placed on the same environment.. The predators
chase the prey together in the nearest direction but are unable to catch it
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The results clearly support coevolution. When a predator evolves alone, it is never able to catch the prey,
since the prey moves at the same speed as the predator. It learns to chase the prey but is never able to reduce
the distance between them, and is only capable of preventing the prey from increasing this distance. When
the 3 individually evolved predators are put together against the prey, they all chase the prey in the nearest
direction, and are unable to catch it at all—the prey keeps running and maintains the distance (Figure 10).
In other words, coevolution is necessary in this task to evolve successful cooperative behavior.

6 Discussion

In Section 5.1 we found that evolving a central controller took almost three times as long as coevolving
autonomous cooperating controllers up to a reasonable level of performance. Furthermore, the centralized
approach was never able to achieve the level of expertise and generality needed to solve all benchmark cases,
whereas the cooperative approach did so every time. Cooperative coevolution appears able to decompose
the task into simpler roles, thereby making it easier to search for a solution.

Such decomposition is a special case of speciation in evolutionary systems. Speciation has been widely
used to maintain diversity in evolution. Using various techniques such as islands and fitness sharing [23,
19, 13], separated populations are encouraged to diverge, allowing more efficient search of the solution
space. If these separated populations are further evaluated jointly and rewarded with a global fitness, they
tend to converge to heterogenous policies that work well together. This is the driving mechanism behind
cooperative coevolution. Thus, the observed cooperation between predators is a necessary consequence of
cooperation between populations during evolution.

On the other hand, the central-controller evolution should also be able to generate cooperating agents—
after all, the agents are not autonomous, but integral parts of a single decision making system. This system
merely has to coordinate its components, much the same way as an infant learns to coordinate his/her legs
to walk. Therefore, in cooperative coevolution the agents learn to cooperate indirectly through correlated
fitness, whereas in the centralized approach the agents are directly evolved to cooperate. It is thus somewhat
surprising that the indirect learning is more efficient. Furthermore, the central controller should perform
better because all predators are always completely synchronized and coordinated by a single neural network;
there can never be any surprises.

However, such theoretical advantages of the central controller are accompanied by nontrivial costs.
The central controller must perform more computations than the three autonomous controllers together. The
central controller has 30 neurons with 33 weights each, whereas the disjoint-controllers have 30 neurons with
11 weights each (compare Figures 4 and 5); thus, the centralized evolution has a drastically larger search
space to explore. The central controller coordinates the three agents by linking them together with these
extra weights, whereas the disjoint controllers coordinate more abstractly through niching: each populations
specializes to a useful subtask that can be explored more efficiently, and combinations of subtasks will most
often lead to good solutions. Therefore, the practical difficulty for a central network evolution to optimize all
three agents at once overwhelms the theoretical advantages of a more coordinated and centralized control.

Section 5.2 revealed the unexpected result that predators who cannot see each other evolve to coop-
erate and solve the task about four times faster than predators that can. This is surprising because such
communication allows each predator to make a decision based on where the other predators are, as well
as where the prey is, and should theoretically allow for more complex strategies to evolve. However, as
discussed in Section 5.3, we found that the non-communicating team always employed a single strategy
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where each agent has a rigid and specific role, whereas the communicating team tended to utilize variations
and combinations of two or more strategies and the roles are not as well delineated. During evolution, each
non-communicating subpopulation converges towards optimizing specific functions such that, as long as
each agent performs its role right, the team solves the task successfully, even though the team members are
entirely invisible to one another. Evolution without communication thus places strong evolutionary pressure
on each predator to perform its assigned role meticulously. The assignment of roles appears to take place
through simultaneous adaptive niching: as one agent begins to converge to a particular behavior, the other
agents that behave complementarily are rewarded, and themselves begin to niche into such roles; this in turn
yields a higher fitness, and all predators begin to converge into cooperative roles.

However, not all multi-agent domains may be as efficiently solved by non-communicating agents. For
example in the predator-prey domain where a capture configuration is necessary (as used by Benda [5] and
Haynes and Sen [10, 12]) it would be very difficult for the agents to guess the exact locations of the other
agents to achieve successful capture. On the other hand, if the agents can let other agents know where
they are, they can effectively coordinate their positions. Such a comparison leads to a potentially useful
distinction between communication-based cooperative behavior on one hand, and role-based cooperative
behavior on the other. In the former, agents cooperate by synchronizing their actions, for example by letting
the others know which capture position has already been taken; in the latter, agents cooperate by taking on
well-known roles. Our domain is strictly role-based, in that communication is not necessary at all. In such
domains, communication is actually a source of noise that diverts teams from the best solution. It is also
interesting to note that the capture-configuration domain encourages homogeneously-behaving agents that
tend to share the same strategies of discovering unoccupied capture positions and occupying them, whereas
our domain encourages heterogeneous-behaving agents to develop and perform specific and different roles.
Other domains that involve role-based cooperative behavior may include controlling elevators to most effi-
ciently serve a building, or controlling agents that search the web for information. Such tasks constitute a
most interesting direction for future work.

7 Conclusion

The experiments reported in this paper show that evolving several autonomous, cooperating neural networks
to control a team of agents is more efficient and robust than evolving a single centralized controller. We pro-
posed an efficient and natural method for such multi-agent cooperative coevolution, called Multi-Agent ESP.
Furthermore, a class of problems was identified, called role-based cooperative problems, where communica-
tion is not necessary for success, but may actually make evolution less effective. Identifying such problems
is still somewhat difficult, although it appears many real world tasks fall in this category. Applying the
approach to such tasks, as well as studying ways to deal with novel and changing environments are the main
directions of future work in this area.
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