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Abstract

This paper examines the impact of tolls on social welfare in
the context of a transportation network in which only a por-
tion of the agents are subject to tolls. More specifically, this
paper addresses the question: which subset of agents provides
the most system benefit if they are compliant with an approxi-
mate marginal cost tolling scheme? Since previous work sug-
gests this problem is NP-hard, we examine a heuristic ap-
proach. Our experimental results on three real-world traffic
scenarios suggest that evaluating the marginal impact of a
given agent serves as a particularly strong heuristic for select-
ing an agent to be compliant. Results from using this heuris-
tic for selecting 7.6% of the agents to be compliant achieved
an increase of up to 10.9% in social welfare over not tolling
at all. The presented heuristic approach and conclusions can
help practitioners target specific agents to participate in an
opt-in tolling scheme.

1 Introduction
Within road networks, the latest advances in GPS-based
tolling technology and electronic road pricing systems are
making it possible to charge specific tolls on each link of
the network (Numrich, Ruja, and Voß 2012; Chen et al.
2018). Such micro-tolling systems dynamically update the
tolls in response to real-time observations of traffic condi-
tions. From the other end, vehicles (either autonomous or
human drivers with computer-based routing) may re-route
according to how they value paying tolls compared to taking
an alternative path. A large body of research has shown that
appropriately setting tolls can lead to improved and even op-
timal social welfare in transportation networks (Pigou 1920;
Roughgarden and Tardos 2002; Braess 1969).

Despite the promise of such tolling systems, political fac-
tors might deter public officials from allowing such a micro-
tolling scheme to be realized. Road-pricing is known to
cause a great deal of public unrest and is thus opposed by
governmental institutions (Schaller 2010). Motivated by the
unpopularity of road-pricing, we propose an opt-in micro-
tolling system. An opt-in micro-tolling system is a system
where agents may voluntarily join the system and pay tolls.
Naturally, such a system would require an initial incentive
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(e.g., a lump-sum payment) for rational agents to gain util-
ity by opting-in. The system benefits in turn by being able
to influence the routes selected by these agents through set-
ting tolls. We refer to agents that join the system as compli-
ant agents; otherwise they are non-compliant agents. Non-
compliant agents plan their route to minimize travel time
and are not subject to tolls. Both sets of agents may choose
to take any link in the road network.

A key problem towards implementing such an opt-in
micro-tolling system is the problem of identifying the set
of agents who provide the most benefit to the system if they
opt-in. Consider a single compliant agent that must take a
congested road to reach its destination. Being able to in-
fluence this user has little value for reducing congestion
as the agent has no alternative but to take the congested
road. While previous work has shown that it is possible
to achieve system optimal performance with partial com-
pliance (Sharon et al. 2018), it is an open question as to
how the set of compliant agents should be selected. Solv-
ing this problem would allow practitioners to identify the
set of agents that maximizes system benefit and target them
with specific incentives to become compliant. This paper ad-
dresses this problem by answering the question, “Given that
we can select n compliant agents, how should we select the
n agents such that the system social welfare is maximized?”

Prior work on a related problem suggests that computing
the optimal set of compliant agents is NP-hard (Sharon et
al. 2018). Thus, we develop a heuristic method that selects
compliant agents based on a heuristic estimate of the agent’s
marginal impact on the system. While this exact quantity
cannot be computed in practice, we show that it can be ap-
proximated. We present experimental results obtained from
a dynamic traffic assignment simulation of three real-world
traffic scenarios. The results show that assigning the com-
pliant set according to our presented heuristic results in bet-
ter overall performance compared to baseline approaches for
selecting the compliant set. Moreover, the results suggest
that a significant improvement in traffic flow can be achieved
when as little as 7.6% of the agents are compliant. Addition-
ally, our experimental results suggest, counter-intuitively,
that having a moderate number of compliant agents can yield
higher social welfare compared to a larger number of com-
pliant agents in an adaptive tolling scheme.



2 The Traffic Model
We consider a scenario where a set of agents, A, must be
routed across a traffic network given as a directed graph,
G(V,E). Each link e ∈ E has a latency, le, defined to be
the amount of time needed to traverse e. A path, p, is an or-
dered set of adjacent links. The latency of p is defined to be
lp =

∑
e∈p le. Each link e is also assigned a toll value τe

that may change at every discrete time-step t. For any path
p we define the total tolls along p as τp =

∑
e∈p τe.

Each agent a ∈ A begins from a source node, sa ∈ V
at time ta and travels towards destination node, da ∈ V .
A path, p, is valid for a given agent, a, if it leads from sa
to da. We denote the value-of-time for agent a as va, i.e.,
the agent’s valuation of a delay of 1 time unit. Agents are
assumed to be self-interested and, hence, follow the least
cost path leading from sa to da. In this work, we define two
types of agents:

• Compliant – compliant agents are subject to tolls. As a
result a compliant agent, a, seeks to minimize the gener-
alized cost of its route: Cg(a, p) = lp · va + τp.

• Non-compliant – non-compliant agents are not subject to
tolls. As a result a non-compliant agent, a, seeks to mini-
mize only the latency component of its route: Cl(a, p) =
lp · va.

Since latency and toll values change, we assume agents con-
tinually re-optimize their chosen route according to current
conditions.1 As a result, an agent might change its planned
route at every node along its path.

This work considers that we can select a set of compli-
ant agents. We assume selected agents always opt-in to the
system. The compliant set must be chosen in a way that max-
imizes social welfare, defined to be

−
∑
a∈A

la · va.

where la is the actual travel time experienced by agent a.
Toll costs are considered as transfer payments and thus ex-
cluded from total social welfare.

A flow assignment specifies a path for each agent in A.
A flow is valid if all agents are assigned valid paths. Let X
be the set of valid flow assignments. A valid flow is defined
as strongly optimal if it yields the maximal social welfare
among all flows in X . Define Xl ⊆ X as the set of valid
flow assignments where each non-compliant agent (a) trav-
els on minimal latency paths (arg minp[Cl(a, p)]). A valid
flow that is composed from compliant and non-compliant
agents is defined as weakly optimal if it yields the maxi-
mal social welfare among all flows in Xl. Intuitively, weakly
optimal flows are optimal for a given number of compli-
ant agents but could potentially be improved if more agents
would become compliant. Strongly optimal flows cannot be
improved.

1In principle, agents may predict changing latencies and toll
values, however including prediction in our work requires assum-
ing a model for how agents would predict latency and tolls.

3 Background
In this section, we first define the marginal cost of links and
paths in the network. We then review the conclusions drawn
from previous work on computing the exact set of compliant
agents required to achieve strong optimality. These conclu-
sions serve as a starting point for our work.

Marginal Cost Paths and Tolls
Define the marginal cost of link e,me, to be the marginal im-
pact on the system (difference in social welfare) from adding
one more agent to link e and define the marginal cost of a
path to be mp =

∑
e∈pme. A path p leading from s to d is

said to be of minimal marginal cost if there is no other path
p′ leading from s to d such that mp > mp′ . Note that com-
puting the marginal cost requires counterfactual knowledge
of both the latency of the link and the latency of the link with
an additional agent.

If all agents choose minimal marginal cost paths then the
resulting flow is strongly optimal (Roughgarden and Tardos
2002). One way to encourage self-interested agents to follow
minimal marginal cost paths is by imposing marginal cost
tolls (MCT) (Pigou 1920; Beckmann, McGuire, and Win-
ston 1956; Braess 1969). When applying MCT each agent is
charged a toll that is equivalent to the damage it inflicts on
the system (i.e., the decrease it causes to social welfare).

Applying a marginal-cost tolling scheme requires know-
ing in advance the marginal delay that each agent will im-
pose on all others. This, in turn, requires exact knowledge of
future demand and roadway capacity conditions, as well as
counter-factual knowledge of the network state without each
driver. Assuming such knowledge is unreasonable in many
traffic models as well as in real-life traffic.

Computing the Optimal Set of Compliant Agents
Sharon et al. (2018) studied the problem of partial compli-
ance with a micro-tolling system within an idealized macro-
scopic model of a traffic network. This work proposed an al-
gorithm for computing the minimal set of compliant agents
that is required for achieving a strongly optimal flow. That
work drew three conclusions that are of particular relevance
to this paper:

1. Achieving a strongly optimal flow might require 100% of
the agents to be compliant.

2. If the set of compliant agents is sufficient for achieving a
strongly optimal flow then diverting those agents towards
minimal marginal cost paths would lead to a flow that is
both weakly and strongly optimal.

3. If the set of compliant agents is insufficient for achieving a
strongly optimal flow then computing the weakly optimal
flow is NP-hard.

4 Selecting Compliant Agents
This paper focuses on traffic scenarios where a subset of the
agents are compliant (i.e., pay tolls) and are thus traveling
on a path, p, that minimizes Cg(a, p) over all valid paths.
The rest of the agents are considered as non-compliant and
are thus traveling on a path, p, that minimizes Cl(a, p) over



all valid paths. Both sets of agents may include any network
link in their path; non-compliant agents do not pay tolls even
when traveling on a link with a non-zero toll. Compliant
agents that are taking the same link at the same time pay
the same toll. In contrast to Sharon et al. (2018), this paper
also considers scenarios where the set of compliant agents is
insufficient to achieve a strongly optimal flow. Specifically,
we address the question, “Given limited resources that allow
recruiting n agents to be compliant, which set of n compli-
ant agents will lead to the best system performance?”

In addressing this question, we assume that tolls are set
in a way that approximates the marginal cost toll (MCT).
We motivate this assumption from Conclusion 2 of section
3.2: diverting agents towards minimal marginal cost paths
leads to a flow that is both weakly and strongly optimal.
Though this conclusion applies for the specific case of suf-
ficient compliant agents, we assume it for the general case
due to the fact that computing the exact path assignment is
NP-Hard. We study the setting where tolls are set to approx-
imate the marginal cost toll since (if done exactly) marginal
cost tolling would lead to the optimal solution if all agents
were compliant. In principle, an opt-in micro-tolling scheme
could be applied alongside any tolling mechanism.

In order to answer our main question, we aim to develop
a function that approximates the benefit of having a given
agent as compliant. Specifically, we aim to develop heuristic
measures of the benefit of selecting an agent as compliant
versus non-compliant. More formally, this function should
assign each agent, a ∈ A, a value h(a) → R, such that
h(a1) < h(a2) implies that the system will benefit more
from agent a2 being compliant than a1 being compliant.

After defining such a function, we require a mechanism
that uses this function to select n compliant agents. If we
have knowledge of h(a) for all a ∈ A then we could select
the n agents with the highest h(a) values. However, know-
ing h(a) for all agents requires knowing – in advance – what
agents will enter the system. A more reasonable assumption
is that we can estimate the distribution of the h(a) values.
Our proposed mechanism can then approximately select n
compliant agents using the inverse of the cumulative distri-
bution function (CDF) of the estimated heuristic values dis-
tribution. Formally, let a ∼ A be an agent sampled from A
with uniform probability on all agents. Define F to be the
CDF of h(a), i.e., F (x) is the probability that h(a) < x.
The proposed mechanism selects n compliant agents by se-
lecting all agents with h(a) > F−1( |A|−n|A| ) to be compliant
where F−1 is the inverse of F . In practice, F−1 is likely
unknown but can be estimated empirically.

5 Heuristic functions
The previous section discussed a general mechanism for se-
lecting n compliant agents but it made the assumption that
we have a function, h, that assesses the impact of assigning
an agent as compliant. This section suggests such a function.

Development of a good heuristic estimate of the value
of assigning an agent to be compliant requires us to iden-
tify agents’ attributes that correlate with the impact of as-
signing the given agent as compliant. More formally, let

pl(a) = arg minp Cl(a, p) be the shortest non-compliant
path (minimal latency path) for a given agent, a. Let pg(a) =
arg minp Cg(a, p) be the optimal path with regard to the
generalized cost for agent a. The desired heuristic function
is one that correlates to:

h?(a) = mpl(a) −mpg(a) + (lpl(a) − lpg(a))× va (1)

Intuitively, the desired heuristic is the decrease in the
marginal cost imposed by an agent on the system plus the
utility loss suffered by that agent by changing from being
non-compliant to being compliant.

Assuming knowledge of the agents’ value of time as well
as the source, destination, and departure time for each agent,
we can compute pl(a) and pg(a) for any agent, a. Unfortu-
nately, computing the marginal cost of either paths is infea-
sible in real time (Sharon et al. 2017b). As a result we must
turn to approximation methods.

Difference between Marginal Cost Paths
We cannot compute the marginal cost and thus we cannot
use our desired heuristic h?. Instead we suggest approximat-
ing h? using approximate marginal cost tolling. Recall from
Section 3 that the sum of marginal cost tolls on links in a
path are equal to the marginal cost of that path. Thus, if we
can approximate the marginal cost toll on each link then we
can use the sum of the approximate tolls along a path, p, to
approximate mp.

Recall that we have assumed that tolls on links are set in a
way that approximates the MCT. Thus the tolls along a path,
p, approximate mp. We define the difference in marginal
cost path heuristic function as:

hDMCP(a) = τpl
− τpg

+ (lpl(a) − lpg(a))× va
Computing this heuristic requires computing the compli-
ant and non-compliant shortest paths (time complexity of
O(|E|+ |V | log |V |)).

One limitation of the DMCP heuristic is that it some-
times fails to differentiate between two agents. When a
given agent, a, has the same choices of pg and pl (i.e.,
pg(a) = pl(a) then hDMCP(a) = 0. As a result, hDMCP will fail
to differentiate between all agents with pg = pl and it will
be impossible to determine which agent is a better choice
for influencing.2 We next consider an alternative that has a
weaker relationship with h? but will better differentiate be-
tween two agents with similar hDMCP values. We will then
show how this alternative can be combined with DMCP to
better differentiate between two agents with identical DMCP
values.

Time Evaluation
Given this limitation, we now turn to examine agents’ at-
tributes that better distinguish between agents while still cor-
relating with mpl(a) − mpg(a). The agents’ value of time

2Differentiating between agents with pg = pl might seem un-
necessary. However, as apparent in the experimental results, such a
differentiation is meaningful due to the fact that agents constantly
reoptimize their route. An agent that seems not to be affected by
being compliant at the beginning of its journey might later be af-
fected due to the dynamic nature of traffic.



(VOT) is one such attribute. First, since agents represent het-
erogeneous drivers each agent’s VOT is drawn from some
random distribution making this heuristic less likely to group
compliant agents. Second, there is a direct correlation be-
tween the VOT for a given agent a (va) and the value of
mpg(a). This correlation is because moving an agent with a
lower va to a path with higher latency will impact social wel-
fare less than moving an agent with a higher va. This corre-
lation between va and mpg(a) implies a correlation between
va and mpl(a)−mpg(a). Building on this understanding, we
define the Time Evaluation heuristic function as:

hTE(a) = −va.

This heuristic prefers to select agents with lower value-
of-time because they are easier to influence with tolls.

Combining DMCP and TE
The Time Evaluation heuristic allows us to differentiate be-
tween agents at a finer-grained level than DMCP. However,
in contrast to DMCP, it ignores information about the path of
the agent. DMCP also implicitly factors in latency on links
since tolls will be higher on more congested links. Our final
proposed heuristic uses a weighted combination of the two
heuristics to obtain the strengths of both.

This final heuristic, denoted DMCP+TE, makes primary
use of the DMCP heuristic but also use the TE heuristic to
better differentiate agents with similar hdmcp values. The
DMCP+TE heuristic function is defined as:

hDMCP+TE = (1− α)hDMCP + αhTE(a)

where α is a small, positive constant (we use 0.01). The pur-
pose of α is so that if hDMCP is equal for two agents, hDMCP+TE

will still be different provided the agents have different value
of time values. Making α small means that the term only
breaks ties when hDMCP is close to equal for two agents. Com-
puting this heuristic has the same time-complexity of DMCP
(O(|E|+ |V | log |V |)).

6 Approximating MCT with the ∆-Tolling
Algorithm

We have made the assumption that tolls are set using an
approximate marginal cost tolling scheme and that these
tolls are in turn used to compute the DMCP+TE and DMCP
heuristic. In our experiments, we will use the ∆-tolling al-
gorithm and thus we briefly introduce ∆-tolling. We choose
∆-tolling since we are unaware of any other approximation
scheme for MCT that is model-free.

∆-tolling (Sharon et al. 2017b; 2017a) was introduced
as a model-free scheme for approximating marginal cost
tolling. As opposed to true marginal-cost tolling, ∆-tolling
only requires observing the average travel time on each link
and makes no assumptions on the underlying traffic model.
∆-tolling changes the toll on each link proportional to the
the difference between the current observed travel time and
the free-flow travel time.

At time step t, ∆-tolling updates each link e ∈ E by
first computing the difference (∆) between the current la-
tency (lte) and its free flow travel time (denoted by Te).

Next, ∆-tolling updates the toll for e at the next time step
(τ t+1

e ) to be a weighted average of ∆ times a parame-
ter, β, and the current toll value. A second parameter, R
(0 < R ≤ 1), gives the weight assigned to the β∆ term.
Deploying ∆-tolling requires tuning these parameters.

The R parameter determines the rate in which toll val-
ues react to observed traffic conditions. When R = 1 the
network’s tolls respond immediately to changes in traffic
but leave the system susceptible to spikes in toll values that
cause traffic flow to oscillate between paths. By contrast,
as R → 0 the tolls are stable, but are also unresponsive to
changes in traffic conditions. Sharon et al. (2017b) showed
that the performance of ∆-tolling is sensitive to the values
of both the R and β parameters.

7 Empirical Study
We compare the relative performance of the proposed
heuristics in several simulated traffic scenarios. In contrast
to prior work on partial compliance (Sharon et al. 2018), we
use a more realistic cell-transmission model simulator and
use ∆-tolling as a real-time approximation method to MCT.
We design our empirical study to address the following ques-
tions:

1. Do DMCP, TE, and DMCP+TE improve over a random as-
signment of compliant and non-compliant agents?

2. Which of the proposed heuristic methods performs best
and under what compliance levels?
Analyzing the results of the initial experiments led us to

suspect that the optimal number of compliant agents changes
as a function of how fast the tolling scheme reacts to the cur-
rent latencies on links in the network. This understanding, in
turn, led us to a second set of experiments, aiming to address
the question:

3. How does the compliance level relate to the optimal R
parameter in ∆-tolling?
In all experiments, our metric of interest is total system

welfare as defined in Section 2.

Model Specification
We compare the relative performance of the proposed
heuristics within a Dynamic Traffic Assignment (DTA)
simulator (Levin and Boyles 2015b) which models traffic
through the cell transmission model (CTM)(Daganzo 1994;
1995). A CTM simulator is a discrete, explicit solution
method for the hydrodynamic theory of traffic flow proposed
by Lighthill et al. (1955) and Richards (1956). CTM divides
each link in a given traffic network into a set of cells, each
of which has a length equal to the distance a vehicle would
travel in one time step at free-flow conditions. This choice of
cell length ensures stability of the cell transmission model (it
satisfies the Cournout-Friedrich-Lewy conditions (Courant,
Friedrichs, and Lewy 1928) for the underlying system of
partial differential equations).

While CTM was originally formulated for highway net-
works, it is now used for urban traffic simulation and can be
used with a variety of intersection models (Tampère et al.
2011). Modeling such intersections allows CTM to simulate



inter-link effects such as queue spillbacks. The simulations
reported here use intersection models reflecting a mixture of
traffic signals and stop signs (based on real world data).

Traffic Scenario Specification
We evaluated the performance of the different heuristics us-
ing three traffic scenarios: Sioux Falls, Austin, and San An-
tonio. Each scenario is specified by a network and a demand
table that provides the source node (sa), start time (ta), and
destination node (da) for each agent. The network and de-
mand table sizes for each scenario are:

• Sioux Falls - (LeBlanc, Morlok, and Pierskalla 1975) —
this scenario is widely used in the transportation research
literature (Bar-Gera, Hellman, and Patriksson 2013; Levin
and Boyles 2015a), and consists of 76 directed links, 24
nodes (intersections) and 28,835 agents spanning 3 hours.

• Austin - (Levin et al. 2015) — this network consists of
1,247 directed links, 546 nodes and 62,836 agents span-
ning 2 hours during the morning peak.

• San Antonio - this network consists of 1,662 directed
links, 864 nodes, and 10,858 agents.

The networks for all scenarios are depicted in Figure 1. The
traffic scenarios are available online at: https://goo.
gl/SyvV5m.

During simulation, agents respond to changing link travel
times and toll values by adapting their routes at each node. In
particular, agents compute the minimum cost path from their
current node n to their destination da according to their cost
function (Cg if compliant; Cl if non-compliant).

Similar to Sharon et al. (2017b) an additional rule was
added to prevent gridlocks which can arise in dynamic traf-
fic models when a cycle of links are at jam density: if a ve-
hicle is unable to enter a link because the link’s receiving
flow is zero for more than 96 seconds (16 time steps), the
vehicle attempts to reroute itself through the least cost path
leading to its destination that avoids the jammed link. The
same waiting time (96 seconds) was used by Sharon et al.
(2017b) and was justified as the best performing value.

Following the experimental setting in Sharon et al.
(2017b) the distribution of agent value-of-time follows a
Dagum distribution with parameters â = 22020.6, b̂ =
2.7926, and ĉ = 0.2977, reflecting the distribution of per-
sonal income in the United States (Łukasiewicza, Karpioa,
and Orłowskia 2012). At the beginning of each simula-
tion, the value va is sampled from this distribution for each
a ∈ A. We average total social welfare over 20 trials for
each compliance level and heuristic.

Determining Heuristic Thresholds
Our mechanism for selecting compliant agents requires the
empirical cumulative distribution function (CDF) of heuris-
tic values over agents. When using the Time Evaluation (TE)
heuristic, we simply use the inverse CDF of the Dagum dis-
tribution. For the Difference between Marginal Cost Paths
(DMCP) heuristics we estimate the inverse CDF by running

(a) Sioux Falls (b) Austin (c) San Antonio

Figure 1: Traffic scenarios used in the experiments.

the simulation with all vehicles as non-compliant.3 When an
agent, a, enters the system we compute h(a) and store this
value. We then sort the stored heuristic values of all agents
once the simulation is complete. If the sorted h values are
indexed as h0...hi...h|A| then the empirical CDF is defined
as F−1(x) = h|A|·x for x ∈ [0, 1].

Due to stochasticity in the value-of-time of agents, using
the empirical inverse CDF may result in greater or fewer
than n compliant agents. When plotting results we use the
true compliance level but then aggregate results to the near-
est 5% of compliance level when averaging performance for
each compliance level. For example, if a threshold results in
16% agents being compliant then we record and present the
compliance level as 15% when averaging results.

Heuristics comparison
Our main empirical analysis compares the DMCP, TE, and
DMCP+TE heuristic methods for various levels of compli-
ance. We also include a baseline (denoted RANDOM) that
selects compliant agents randomly. The top row of Figure 2
shows results for each heuristic as we vary the compliance
level withR = 1×10−4, β = 4 (the parameter settings used
by Sharon et al. (2017b)).

We first note that in all scenarios and for all heuristics
(Figure 2, top row), the system’s performance increases to
an optimum and then remains constant or decreases. We hy-
pothesize that the decrease in performance is most likely re-
lated to an R value that is too high – causing performance
to deteriorate as more agents become susceptible to spiking
toll values and oscillation. We test this hypothesis by repeat-
ing the same set of experiments with R = 1 × 10−5. We
display results for these experiments in the bottom row of
Figure 2. These results suggest that the system can benefit
from a higher R value when fewer agents are compliant. In
the following subsection we will revisit this observation.

We observe the DMCP+TE heuristic to perform best –
in Sioux Falls and San Antonio it reaches the maximal
or near maximal observed performance with approximately
20% of agents compliant when R = 1 × 10−4. In Austin
(R = 1 × 10−4), DMCP+TE requires 40% of agents to be
compliant to reach optimal social welfare — half as many
as TE or the baseline. With R = 1 × 10−5, DMCP+TE also

3In real-life scenarios, a CDF function can be approximated for
the DMCP heuristics through sampling of real-life observations.



(a) Sioux Falls (1× 10−4) (b) Austin (1× 10−4) (c) San Antonio (1× 10−4)

(d) Sioux Falls (1× 10−5) (e) Austin (1× 10−5) (f) San Antonio (1× 10−5)

Figure 2: Each figure shows the average social welfare for each heuristic method. The x-axis gives the fraction of agents who are
compliant and the y-axis gives the total social welfare:

∑
a∈A−va · la. The “No Tolls” baseline corresponds to zero compliant

agents. The ideal result is to have as high a social welfare value as possible with a small number of compliant agents. Each
heuristic is averaged over 20 random seeds. Error bars show a 95% confidence interval.

leads to greater social welfare with less agents compliant.
Using agent’s value-of-time (TE) is a small improvement
over randomly selecting compliant agents (RANDOM). We
also note that RANDOM perform slightly better than the pro-
posed heuristics in the San Antonio (R = 1× 10−4) exper-
iment for high compliance levels. This result may indicate
that it is possible for our heuristics to find local optima since
they are selecting compliant agents greedily.

Compliance and Tolling Scheme Reactivity
As noted in the previous subsection, we observe lower com-
pliance levels giving better system performance than full
compliance when the tolling scheme is more reactive to the
current travel time on links. This observation suggests that
more reactive adaptive tolling systems may in fact benefit
from having fewer agents pay tolls. First, we note that a re-
active scheme is desirable for quickly reducing the flow of
agents on links that have high travel time. But if the tolling
scheme overestimates the toll needed to achieve the desired
flow then too many agents may decide to choose a different
path. The change in many agents’ route choices will in turn
cause the travel time (and tolls) to spike on the new paths
and then more agents may switch back to the original path
(whose toll may have fallen too low by this time). While in
principle, the tolling scheme distributes agents correctly, in
practice, excessive switching of paths may introduce ineffi-
ciency into the system.

One solution to the problem of oscillation of agents be-

tween paths is to use a less reactive tolling scheme. The
problem with a less reactive scheme is that tolls should re-
flect current travel conditions and a less reactive scheme fails
to update tolls fast enough. In our final experiment, we study
if partial compliance can mitigate the oscillation problem.

While the oscillation problem may exist for any reactive
tolling scheme, we investigate it with the specific choice of
∆-tolling. Specifically, we hypothesize that a higherR value
(> 10−4) with fewer compliant agents will improve system
performance relative to full compliance. The reasoning be-
hind this hypothesis is that only agents that are affected by
the tolls are susceptible to oscillation, and so fewer compli-
ant agents would result in less oscillation of traffic. More-
over, a higher R value contributes to a toll value that is more
reactive to observed traffic.

To test this hypothesis, we evaluate different values of R
for each of our heuristics at different compliance levels. We
also compare different R values for our RANDOM baseline.
We set β = 4 in all experiments. Figure 3 contains the re-
sults for each method.

Across heuristics we see that the higher R values lead
to worse social welfare as the number of compliant agents
increases. In Figure 3(a), we see that the maximal perfor-
mance obtained by the DMCP+TE heuristic is sensitive to
the R parameter. For R ≥ 1× 10−4, social welfare peaks at
approximately the 20% compliance level and then remains
constant or decreases. The height of the peak is greatest for
R = 1× 10−3.



(a) DMCP (b) TE (c) RANDOM

Figure 3: Social welfare (y-axis) as a function of compliance level (x-axis) for different R values and different heuristics. Each
figure shows 6 different R parameter values for ∆-tolling. Results are averaged over 20 random seeds. Error bars show a 95%
confidence interval.

8 Discussion and Future Work

In this section we discuss the results presented in the pre-
vious section and suggest directions for future research. We
first observe in our results that across all traffic scenarios and
all heuristics, any number of compliant agents is better than
none. This result indicates that if even a small number of
agents can be incentivized to participate in an approximate
marginal cost tolling system (such as ∆-tolling) we may see
an improvement in the system’s performance. Furthermore,
this result demonstrates feasibility of opt-in micro-tolling
system when only a subset of agents opt-in.

While any number of compliant agents is better than none,
we show that our proposed DMCP+TE heuristic lead to fur-
ther improvements in system performance compared to as-
signing a random subset of agents to be compliant. In par-
ticular, across all traffic scenarios we see that the DMCP+TE
heuristic can obtain close to the performance of 100% com-
pliance. In fact, in the San Antonio scenario with 7.6% com-
pliant agents we see an improvement of 10.9% and in Sioux
Falls with 18.7% compliant agents we see an improvement
of 21.1%.

In our empirical analysis we make two assumptions that
could be relaxed in future work. First, we assume that agents
selected by one of our heuristic methods become compli-
ant with probability one. In the real world it is unlikely that
all selected agents will decide to opt-in. Future work should
consider the robustness of the presented heuristic methods
when selected agents may remain non-compliant with some
probability. Second, we considered traffic scenarios where
each agent makes a single trip through the network while in
the real world, agents may make multiple trips every day. In
such a setting, an effective heuristic may need to consider
the frequency of trips that an agent makes.

Finally, it is also important to consider how to incentivize
agents to participate in a micro-tolling system. A first step
towards addressing this problem could be to investigate the

loss in utility to an agent who switches from non-compliant
to compliant.

9 Conclusion

This paper has considered an opt-in micro-tolling system as
an alternative to a full micro-tolling system. We propose the
problem of how to select compliant agents in such a system
since the benefits from tolling may be sensitive to which
users comply with tolls. Since selecting the optimal set of
compliant agents has been suggested to be NP-hard, we in-
troduce a heuristic method for doing so. In experiments with
a dynamic traffic assignment simulator we demonstrate that
1) even randomly selecting agents to be compliant can lead
to improvement over having no compliant agents and 2) our
proposed heuristic method leads to more improvement with
fewer compliant agents than the baseline. These contribu-
tions demonstrate that, with our heuristic method, the ben-
efits of an approximate marginal cost tolling system can be
realized with only a subset of agents responding to tolls.
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