
Computer Security
Fundamental at Every Level

Ian Davis

The University of Texas at Austin
Department of Computer Science

CS370: Undergraduate Reading and Research, Spring 2016
Supervising Instructor: Alison N. Norman, PhD



Introduction

Modern society is powered by technology, and securing that technology is
crucially important. As technology continues to increase in both prominence
and user dependence, a lack of security features may cause disastrous results.
Security must be implemented end to end, from user-facing facets such as the
software that allows access to the Internet, to the systems and libraries that
support user applications, and the hardware that makes everything possible.
The technological layers at risk of exploitation, attack, and misuse can be
divided into three main categories: 1) user-level products and services, 2)
system control mechanisms, and 3) and physical hardware.

Complex software may utilize multiple categories to fulfill their functions,
and so may be even more difficult to secure. For instance, the Internet uti-
lizes all three categories: it has applications that require users to be able to
input and receive data, requires system software to control communication,
and hardware to create the physical transport of the data. The Internet that
the modern world has come to know, admire, and depend was not initially
designed to be what it is today. Originally, it was designed as “a group of
mutually trusting users attached to a transparent network” [1] with users
confined in closed networks, such as those in research institutes or govern-
ments. Today, the state of the Internet is far from that initial conception,
as it is used for widespread communication over open networks containing
unrelated users.

Many examples of technology have followed the same trend. Many of the
other tools prevalent within society were never built to support the role they
currently have. Unfortunately, security risks and other hazards are more
likely when a product is used in a way that differs from the original de-
sign. This research explains implementations that suffered from unexpected
vulnerabilities as well as the updates that resolved critical issues with prior
implementations. Examples from the user, system control, and hardware cat-
egories will be discussed in this paper, as well as complex software systems
and the vulnerabilities that plague them.

User-Level Hazards

As users browse the Internet, a constant flow of advertisements are displayed
in their browsers, some of which are targeted, or tailored to specific subsets

1



of the population, and are chosen based on trends in a user’s browsing habits.
Targeted advertisements are a recent development in online advertising, and
many users are unaware that the websites they visit track user requests in
order to better advertise [8].

The websites track user activities by setting an identifying marker in the
user’s browser when a page is requested, commonly referred to as a cookie.
The service uses the cookie data to track which pages are requested, and over
time data can be compiled and subsequently analyzed, giving insight on a
user’s possible interests. Cookies were implemented without a specification
or complete design, leading to a long line of vulnerabilities and insecurities.
For example, cookies can be set to read-only mode, but many current im-
plementations allow the the cookies to be modified anyway. Nowhere is the
integrity of the data protected [9]. Additionally, cookies are frequently used
to implement features such as persistent logins, where the website allows se-
cure pages to be loaded without reauthentication by verifying cookie data. In
that case, using vulnerabilities such as copying or overwriting secure cookies
could be exploited to gain access to restricted data.

When a widely used constructs such as cookies are found to be insecure, it
is common to assume that the next step is to fix the implementations and roll
out an update. However, the situation is more complex than that. While this
solution is simple in developed society, where a majority of devices support
newer functionality, developing countries often depend on devices that cannot
support newer standards. Thus, updating the core functionality of a service
might strand users in these developing countries without that service. For
instance, SHA-1 is a once-popular algorithm for certifying online identities,
in which certificates are used to verify the identity of a website operator.
SHA-1 was found to be breakable, resulting in insecure certificates. A new
standard, SHA-2, has been developed. However, disabling support for the
SHA-1 algorithm would cut off millions of users in developing countries from
the Internet. Even with the risk of cutting off nearly 40 million people [2],
many mainstream browsers such as Mozilla Firefox and Microsoft’s browsers
plan to disable SHA-1 support by late 2016 to ensure secure operation of
their browsers.

2



System Control Protection and Exploitation

Shifting to the system control layer, security measures become more promi-
nent. A recent system level security feature is the idea of provenance, or
the history through time of an object. After a security incident, the object
provenance could be reviewed, aiding in investigations. Since any changes to
marked system data is recorded, a provenance-aware system would be able
to detect abnormal changes in an application or set of data based on histor-
ical evidence using heuristics, allowing for efficient repair of system state by
reversing the history written by the actions of the malicious entity. Keeping
track of history for protected data such as system configurations, user data,
and access records would add minimal overhead, with tests averaging around
2.7% of system load in the study released by the University of Florida and
MIT [3]. In that implementation, SELinux, the set of security enforcement
policies governing modern Linux systems, is used as a manager to the prove-
nance system. The framework uses kernel modules likely already present in
most secure systems, allowing for easy implementation into existing systems.
Monitoring system functionality such as network connectivity uses common
kernel modules such as IPsec and SSL.

Networks and Internet connectivity open a system to a large number of
vulnerabilities and exploits. Peer to peer networks, such as the one present
in the Bitcoin cryptocurrency network, use connections to others across the
world to determine the status of the network and complete transactions.
Unlike server-based infrastructures, there is not a single point of control or
failure, resulting in a resilient and distributed network. Instead, the network
is managed and operated by the peer swarm, users currently connected to
the network. If a new peer connects to the network, it must receive the
data it needs to function from other peers already connected to the network.
Unfortunately, requiring data from unknown sources introduces possibilities
for exploitation and attack. For example, until recently, the Bitcoin peer
network implementation suffered from a vulnerability that made it possible
to launch an “eclipse attack”, defined as overwhelming a new peer with mal-
formed information [4]. Under normal conditions, a node machine does not
connect and communicate with a single peer – instead it uses the collection
of peers to aggregate the needed information. In this exploit, an attacker
overwhelms the connection tables of the victim, forcing the victim to use
only the information provided by that attacker. This attack can lead the
victim to complete computations or other tasks for the attacker.

3



Authentication and secure communication are important pieces of Inter-
net communication. OpenSSL, a protocol that secures most of the modern
Internet, was recently found to have a memory management vulnerabilty that
made many of the world’s secure systems vulnerable to attack. While the
mistake was easily corrected once caught, the memory management exploit
exemplified weaknesses in the development pipeline: the OpenSSL develop-
ment team was not being paid for their work, despite the importance of the
library. Since the exploit, companies have funded the team to continue devel-
opment on the software. Such heightened support is common after a security
event, but it would be better to support the fundamental libraries from the
start to help avoid such incidents.

Hardware/Infrastructure

The hardware level represents the lowest level of a system. Designing secure
hardware is a complicated process, as changing physical hardware requires
months of planning, testing, and production. An example of a hardware
security device is the Trusted Platform Module (TPM). A TPM is a hardware
chip that is sectioned off from the rest of the hardware, and it requires strict
permissions to change configuration settings. For example, through the use
of a TPM, a system can boot and check the current state of the system
against the TPM, aborting boot if an abnormality is found. TPMs are used
for many different functions throughout the system, such as storing private
keys for encryption.

As in the system control layer, the network is a major source of attacks.
With the advent of Cloud infrastructure, where system hardware might be
shared between multiple separate users, sectioning off network devices be-
comes critical. If multiple virtual machines are sharing a single interface, it
would be possible for one VM to see or change another machine’s packets. A
solution developed by the Israel Institute of Technology [5] describes the cre-
ation of network hardware that is also virtualized and assigned individually.
Securing virtual devices rather than subdividing access to a single shared
physical device gives more fine-grained control over the device. Allocating a
virtualized part of the device removes any access to a system without access
to that subsystem.

4



Complex Attacks

A set of system security risks do not fall easily into either hardware or system
level control software. An example of such a risk is a covert channel. Covert
channels allow unwanted data transfer to occur without breaking the defined
security policies. Covert channels come in many forms. A study published by
ETH Zurich focused on a thermal covert channel, where differences in tem-
perature are used to transfer information. The study utilized a system with
dedicated cores of the processor assigned to certain processes. By observing
the change in temperature of a CPU under various states of load, a malicious
application can use trends of execution to receive data from the other cores.
Data can be transferred at a rate of 12.5 bits per second, allowing three char-
acters to be passed in two seconds. While that may seem slow, an amount
equivalent to a few characters falling into the wrong hands in a highly secure
system could still lead to unwanted results. With more powerful hardware
than the entry level server platform that was used in testing, that rate could
be much faster [6]. If the channel is not detected and shutdown in an efficient
manner, large amounts of data could be transfered with little recourse.

Encryption is a process that obfuscates data so that it is not easily read-
able. The encryption and the subsequent decryption of data are compu-
tationally expensive. In modern devices, the hardware emits a detectable
amount of electromagnetic radiation while the CPU is executing, and during
heavy use such as when encryption or decryption algorithms are executing,
the emission of radiation increases. A study by Tel Aviv University [7] was
able to extract both partial and full Elliptic Curve Digital Signature Algo-
rithm (ECDSA) cryptographic keys by interpreting the amount of radiation
being emitted. These keys are the basis of the cryptographic algorithm. A
compromised key renders the encryption useless, allowing easy decryption of
the data. Due to the severity of the vulnerability, the device vendors have
released both software and hardware updates to help patch the devices. The
vulnerability was first found on Apple’s iOS devices, but was later success-
ful on other mobile devices such as devices running the Android operating
system.

5



Conclusion

The security vulnerabilities presented in this paper span in subject from web
exploits on persistent data in the browser to the radiation emission of a device
during execution. These examples highlight that security is an end-to-end
concern; securing a single portion of the spectrum is not sufficient. Despite
that, the development cycle continues to consider security as an afterthought,
only gaining focus after an event occurs. That mindset is not working now,
nor will now work in the future. As complexity of technology continues to in-
crease, security flaws will become more prominent and their effects will carry
a larger impact. Security needs to be a fundamental part of the development
process to reduce the occurrence and effects of security incidents, which will
in turn lead to more efficient and reliable systems.

References

[1] Benjamin M. Compaine and Shane M. Greenstein. Communications Pol-
icy in Transition: The Internet and Beyond. MIT, 2001.

[2] Lucian Constantin. Sha-1 cutoff could block millions of users from en-
crypted websites. CSO Online. Updated 12/10/2015.

[3] Adam Bates, Dave Tian, and Thomas Moyer. Trustworthy whole-system
provenance for the linux kernel. 24th USENIX Security Symposium, 2015.

[4] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg.
Eclipse attacks on bitcoin’s peer-to-peer network. 24th USENIX Secu-
rity Symposium, 2015.

[5] Igor Smolyar, Muli Ben-Yehuda, and Dan Tsafrir. Securing self-
virtualizing ethernet devices. 24th USENIX Security Symposium, 2015.

[6] Ramya Jayaram Masti, Devendra Rai, Aanjhan Ranganathan, Christian
Muller, Lothar Thiele, and Srdjan Capkun. Thermal covert channels on
multi-core platforms. 24th USENIX Security Symposium, 2015.

[7] Daniel Genkin, Lev Pachmanov, Itamar Pipman, Eran Tromer, and Yu-
val Yarom. Ecdsa key extraction from mobile devices via nonintrusive
physical side channels. Tel Aviv University, 2016.

6



[8] Farah Chanchary and Sonia Chiasson. User perceptions of sharing, adver-
tising, and tracking. Symposium On Usable Privacy and Security 2015,
2015.

[9] Xiaofeng Zheng, Jian Jiang, Jinjin Liang, Haixin Duan, Shuo Chen, Tao
Wan, and Nicholas Weaver. Cookies lack integrity: Real-world implica-
tions. 24th USENIX Security Symposium, 2015.

7


