Lecture 9: Geometric Modeling and Visualization

Geometric Partial Differential Equations:
Non-Linear Surface & Volume Diffusion
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Fairing Noisy Surfaces (Mean Curvature)

Initial functions After three iterations After five iterations

Mean curvature plot: non-smooth functions at x=0, y=0, z=0
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Fairing Noisy Surfaces (Gaussian Curvature)

Initial data After 1 iteration After 4 iterations

C Center for Computational Visualization
Institute of Computational and Engineering Sciences

Department of Computer Sciences University of Texas at Austin November 2007




Fairing of Scalar Function on Surface

Iso — Contours of Acoustic Amplitude

Initial data After 4 fairing iterations
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Functions on Surface: Texture

Initial dada After 1 iteration After 4 iterations
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Problem Considered

Given a discretized noisy triangular surface mesh G C R?
(geometric information) and a discretized noisy function-
vector [F,

Our goals are :

e Smooth out the noise and to obtain smooth geometry as
well as surface function data at different scales.

e Construct continuous (non-discretized) representations for
the smoothed geometry and surface function data.

e Provide approaches for visualizing the smoothness of both
the geometric and physical information during the smoothing
process.
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Related work in Image Processing

e Gabor ,1965, PDE based image processing, Jian, 1977,
Took off thanks to Koenderink, 1984 Witkin 1983.

e Perona and Malik, 1990, anisotropic diffusion, smoothing
and enhancing sharp features.

e Osher and Sethian, 1988, curvature based velocities.

e Mumford and Shah, 1989, PDE based segmentation.

e Terzopoulos et al, 1988, PDE based on active contours for image
segmentation.
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Previous Work for Mesh Fairing

1. Optimization

a. Minimize thin plate energy (Kobbelt 1996, Desbrun, Meyer,
Schroder, 1999).

Ey(f) = [fout2fin+ fon

b. Minimize membrane energy(Kobbelt, 1998 , Desbrun, Meyer,
Schroder, 1999).

En(f)=[fi+ [

c. Minimize curvature (Welch, Witkin, 1992).

2 2
E(S) = [k + K3
d. Spring energy( 2000).
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Previous Work for Mesh Fairing

2. Signal Processing(Guskov, Sweldens, Schroder,1999;
Taubin, 1995) using surface relaxation as low pass
filter

Rp; = Z W; P
jEVg(i)

where w, ; are chosen to minimize something,
e.g. the dihedral angles.
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Geometry Driven Diffusion

Evolution (time dependent)

Linear heat conduction equation.
o, p—Ap=0, A=div.V

For equalizing spatial variation in concentration
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Geometry Driven Diffusion

For the surface M, the counterpart of the Laplacian A
is the Laplace Beltrami operator A,,. Hence, one
obtains the geometric diffusion equation

0x—A,x=0 Aum=divy'V
for surface point x(Z) on the surface M(t)
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Model of Geometric Diffusion

Partial Differential Equation

0,x(t) — divM(t)(vM(t)x(t)) =0
MO)=M

where M(t) is the solution surface at time t, x(t) is
surface point.

Divergence div,,, v for a vector field v € Vs defined
as the dual operator of the gradient:

i dx = — [, vIV¢dx, V¢ c C°(M)
Jar divarvd M ) <
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Variational form

(arx(t)aQ)M(r) T (VM(r)x(t)avM(r)Q)TM(r) = 0
VO eCT(M (1))

where
(fa g)M: fogdxa (¢7 ¢)TM: qujT(d)dx

e How to represent M(t) ?

e How to choose 6 ?
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Loop’s Subdivision Surface

Edge rule:
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Refinement of a triangular mesh around a vertex

Vertex rule:

k+1 k k k k
X, =(—-na)x, +a(x, +x, +...+x ).
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Limit Surface — Regular Case

N, =1 +2uv),

N, =L@’ +2u’w),

N, =4 [u’ +v* +6u’v+6uv’ +12u*v’ + (2u’ +2v° + 6u’v+ 6uv*)w,
N, = L[6u” + 241’ (v +w) + u’(24v* + 60vw+ 24w°)

+u(8v’ +36viw+36vw’ + 8w’ )+ (V' + 6V w+12v*w® + 6vw’ +w')]

(u, v,w) = (v, w,u): Ny, No, N3, Ny — Nig, Ne, N1y, Ny
(4, v,w) = (w,u,v) 1 Ny, Ny, N3, Ny — Ng, N1, N5, Ng
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Limit Surface — Irregular Case

ez
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Refinement in the parametric space
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Here the main task is to compute the new control vertices. As
usual, the subdivision around an irregular patch is formulated
as a linear transform from the level (¥-1) 1-ring vertices of the
irregular patch to the related level £ vertices, i.e.,

X X s im A XE

A";‘-k+1 - ZX;C - ZAkXO
where

k1 k kT Tk ok koo k koqT
X =[x, 0% s X" =X 000X 65X, 5ees X015 ]

Using Jordan canonical form

A=TJT! AF=TJT1
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Refinement in the parametric space
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Spatial Discretization

(Oi(t), 0) naey H(V agnyx(2), VM(t)G)TM(t) =0, VO € Vi

Let
™m

z(t) = ) ci(t)gi(x), 0= di(x)
=1
Then we have a set of ordinary differential equations

71 71

D ci(t)(@ilz), ¢i(x)) ps) + @; ci(H(V @), Vun?i(z)) rag = 0

2=1

j: 17"""7m
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Where ¢,are the basis functions

o, 3 ; L+ Rt el - Mg 0"‘0\"‘0
o\ v % lo\ '0_" °".°\"o

(b)
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Time Discretization

Let X™ be approximation ofac(n'r) , wWhere 7 is the timestep. Then
The discretization is

(2,0,
s Ps +
J Qb M(nT)
(V s1(nn X, V M) i)

TM(??,T):O’?;: 1’”"m

Since

m
z(t) = >_ ci(t)di()
=1
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Then we have a linear system.
(M"™ + 7L™)C((n + 1)1) = M"C(n7)

where C(t) = [ei(t), - - -, em(E)]

— ((QS'H (Zsj)M('n’r))15 =1

and

_ ((VM(n'r)éza VM(’HT)¢J)TM(HT)) i =1
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Solving the Linear System

e M" and L™are sparse.

e M” is symmetric and positive definite.

e I, is symmetric and nonnegative definite.

e M™ 4+ 7L™ is symmetric and positive definite.

The system is solved by Gauss Seidel iteration
or conjugate gradient method.

?1. What is the best approach?
?2. How to determine the optimal step length?
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Numerical Integration

\‘ ¢ X /;\"\ //;: '\'-\
g "'.'.".i.::"\'\ o "'\'\ /\" .\"\ /’/...'i'-.*i;‘. "\
/ P\ P i W S\ Wt S
v 0L.2333333333 00.0) 0.1333333333 08168175729 | 0.03061387
y 0.5 0.1333353333  0.09L5762135 | 0.17044200
"y 0.3 0.7333333333  0.0915762135 | 0.47MA206
Ty (.3333333333  LIIRINAMS | 079742609
i (4459484000 | 010128631
v ALISAS1009 | 0.10128631
.,,,,_' {.333334983
wy o 03333333333 0.5 (L7333333333 D0 5HTE2135 | (LAT014206
> 0.1) 0.1333333333  0.8168175729 | 0.03961387
0, 0.3 0.1334533343  0.0915762155 | 047001206
iy (.3333333333  0.1139181909 | 0.10128651
s DIRINANST | 079742609
s 04430484009 | 0100128651
wy 0.33333333
1, 1.0 1.3333333333 | 0.5208333333 101995317436 | 0.13239415
153" (23333333333 | 0208333333 01009317436 | 013239415
858 U.3333333333 | 0.3208333333 11099517136 | 0.13239415
¥, 0.3623 (.2233815896 | 0.1259391%8
M 0.2253381589G | 0.12593518
L} 0.22338 15846 | 0.124%93518
1¥- 0.225
p 1 2 3 1 3
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nodes, W;are the weights.
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the algebraic precision.
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Anti-Shrinking

Denote the x,y and z components of the surface point x(?) as
x,(1), x,(t) and x,(t), respectively. Then, we have

(Opxi(t), () sy = — (Vaaw@e(t), Ve @i(t) ) maagy)

and

Hz(t),x(E)) pris
(=(2) &(*)) B _ 2(0:2(t), () sy =— 4Area(M(t))

I Area(M(t))
o = — f M(E) Hdx

Since Area(M(t)) > 0, the surface point x(» shrinks towards the
origin at the average speed of 4 Area(M(?)).
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Since
Ayx = — H(x)N(x)

we have

b — — H(z)N(x)
4 (5(t), 2()) ey = — AArea(M(2))

2 Area(w(t)) = — Hdx

w(t)
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Open Surface
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Diffusion Tensor

Oy (t) — div(a(z)V ppyx(t)) = 0

a(x) is a symmetric, positive define linear mapping on the
Tangent space

a(x): TM — TM

The problem is how to choose the diffusion tensor?
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Anti — Crease by Diffusion Tensor

Initial

After
Mesh 11,114
iterations
a=(area)
of triangle. B Limit
After 2228 7 surface
iterations. /
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Change Shape by Diffusion Tensor

a(x) = x$+ x%; where x = (X1;X2;X3)
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Enhance Sharp Features

Let ,,(1)(5), »@)(2), be the principle directions of M(z) at print z(t).
N(x) Be the normal at that point.

Then any vector z in the tangent plane could be expressed as

z = av\V(z) + Bv'?(z) + IN(x)
Then define a, such that

az = g(k1)oavD(x) + g(kz)BvA (@)t 6N(z)

where N . S A\
g(s) = { -
21457, §> A

X > 0 is given constant.
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Evolution Equation

Let <I>0(x, y) be gray-level value, introducing an artificial time ¢,
the image deforms according to

%ti) — ﬂq)(xa Y, t)] .

where @(x, Y, t) - R?% x [O, ’r) — K isthe evolving image,

J : R — R is an operator that characterizes the given algorithm,

and the image ® is the initial condition.
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Mean Curvature Plot

Initial data After 1 iteration After 4 iterations
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Curvature Driven Evolution

For curves or surfaces
o
Ot — f (kz)N

where k. are the principal curvatures and A/ 1s the normal.

This equation describes the deformation of curves or surfaces
in 1its normal direction.
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Variational Problem

Assume a variational approach formulated as
arg{Mingl(P)}

where {f is given energy. Let | (Q)) denote the Euler-Lagrange
derivatives. Since under general assumptions, a necessary condition
for @ to be a minimizier of {f is that J ((I)) — () , the minima
may be computed via the steady solution of the equation

% = F(@)

where 7 1s an artificial time parameter.
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Algorithms Combination

If two different image processing schemes are given by

o o>
5 = FuU®)., 5 = FAP)
then they can be combined as

5 = aF1(®) + Fy(®)
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Overview: PDE based diffusion

» Heat equation

0,0 —divVep =0

the solution 1s

?y (t=0)
W):{Kﬁ*q% (t>0)

where k() denotes the Gaussian filter of width O
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Overview: Gaussian Filter

g(t) — e—OCf G(f)= \/ge—nzfz/a

a(t) F G

Low Pass Filter
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Volumetric Image Rendering
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Isotropic Diffusion ( 1 timestep )
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Isotropic Diffusion ( 3 timesteps )
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Isotropic Diffusion ( 24 timestep )
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Nonlinear Image Diffusion

» Early attempt: Perona-Malik model
0,0 —div(e(Ve)Ve) =0

where diffusivity o becomes small for large |vg| , 1.c.

at edges
1

1+|Vo[* /22

g(Vo) =

or

V 2
¢((V9]) = exp(-! fz)‘ )
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Anisotropic Diffusion

Weickert’s anisotropic model:

Local structure: Vs

» Eigenvectors: v, [IVé; v, L Vo,

» Diffusivity along edges 2 =1

» Inhibit diffusivity across edges

1
1 =
T 14|V, 2
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Anisotropic Volume Diffusion

Preufer and Rumpf’s level set method for anisotropic
geometric diffusion

V¢

2,0 — ||V¢||a’lv(Dcy

decompose any local vector into three directions
two principal directions of curvature
normal direction of local structure
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Level set based Geometric Diffusion

» Diffusion tensor

G, (k™)
D’ =B/ G,(kx*°) B

o

»  Curvatures enhancing( 1D features) along
two principal directions of curvature on
surface

» No smoothing along normal direction
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Level set based Geometric Diffusion

* Any vector can be decomposed as

Z=av,+ pBv,+yN
e Then

DZ =og(x,)v, + Pg(x,)v, +YON

* SO

DVD® =<v N> g(kV,+<v,,N > g(k,)v, =0

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences University of Texas at Austin November 2007




Anisotropic Volumetric Diffusion: 3D curvature

e Three principal directions of curvature from volumetric
image--hypersurface in 4D

e use Gram-Schmidt to construct an orthogonal frame
of tangent space (e;.e,.e;)

e the mean curvature vector at point X 1S
H(x)= g[h(el ,e)+h(e,,e,)+h(e;,e;)]

twhere Ly Y)=ViY-V., ¥
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Anisotropic Volume Diffusion: Mean Curvature
Vector

V and Vand are the Riemannian connection in M and g* respectively

TM 1s the tangent space TM* 1s the normal space

>Since V,YeTM and h(X,Y)e TM*

only computation of VY is considered and then projected into the

normal space to obtain A(X,Y)

»Mean curvature vector H (x) = (V e € T Ve2 e, + Ve3 €, )L

| denotes the normal component of a vector.
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The Second Fundamental Form (Tensor)

e (Calculate the second fundamental form

 Let n be anormal vector field on M and X be a vector
field tangent to M, according to the equation of
Weingarten, we have

Viyn= ~A, X +Vyn

e where —4,x and V J)‘(n are respectively the tangent and
normal components
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Principal Curvatures and Directions

The principal directions of curvature {v',v*,v°} are the unit
eigenvectors of matrix 4,

Principal curvatures {k,,&,,K;}are the corresponding eigenvalues

Anisotropic diffusion tensor

 G(k,) 0 0
Dgz[vlavzav3]T 0 G(KZ) 0 [vl’VZ’v3]
0 0 G(x,)]
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Volumetric Image Rendering (Original Data)
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Anisotropic Volume Diffusion (1 timestep)

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences November 2007




Anisotropic Volume Diffusion (5 timesteps)
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Finite Element Method

e Discretize

D.9.X (t)(

VN,
,VN,)=0

Vo

Result
(M" +tL"(D!)X" =M"X"

Where

(DVN,,VN,),,
HVcbf

M =( N,
Hch

> q)pq =
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